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Bioluminescence (BL) is an amazing optical readout that has great potential to be
utilized in various bioassays and molecular imaging, but also has some unique
defects in practical applications. The recent innovative research on BL has
enriched the available repertories of the toolbox. While these efforts greatly
diversified the users’ choices in the applications, the wide choices on the contrary
do not promise their successful applications to bioassays. This is mainly due to
complexity-driven confusion with the diversity and the lack of accurate
knowledge on the advantages and disadvantages of BL. This review is
intended to showcase the advantages and disadvantages of BL, and serve as a
searchlight to find directions for future studies. We hope that this review provides
instant references for readers on BL and leads them to properly understand the
“bright” and “dark” sides of BL to narrow down their choices in their applications.
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1 Bioluminescence from the “bright” and “dark” sides

There are many light-emitting organisms in nature. More than 2000 species of fireflies
are known on land (Kumar et al., 2019) and the number is updated every year. Such light-
emitting organisms are rather rare on land but extremely common in the oceans. Such light-
emitting organisms are found in oceans at all depths with the greatest numbers found in the
upper 1,000 m of the vast open ocean (Widder, 2001). This light emission from living
organisms is especially called bioluminescence (BL). This BL is a cold light-emitting event
by oxidation of a small molecular weight substrate called luciferin, catalyzed by an enzyme
named luciferase inside living organisms. The representative luciferases and luciferins were
detailed in Table 1 and Figure 1.

Because BL shows obvious contrasts in the advantages and drawbacks, many of recent
studies have been directed to tackle the drawbacks of BL, while capitalizing the advantages:
e.g., 1) development of new luciferases and synthesis of novel luciferins; 2) protein
engineering to create genetically encoded probes with luciferases; and 3) integration of
all the ingredients including the probes into new imaging systems to address molecular
events in living organisms. These three domains are closely related in the technical
progression. Luciferases and luciferins with excellent optical properties enable us to
design new optical probes with a novel strategy. The new bioluminescent probes are
expected to facilitate better BL imaging (BLI) of molecular events of interest in live cells and
animal models.

This review is intended to showcase the advantages and disadvantages of BL, and serve
as a searchlight to find directions for future studies.
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1.1 The “bright” side of bioluminescence

As BL has many distinctive advantages over the other optical
readouts, it has been broadly used in various bioassays and
molecular imaging modalities. The distinctive benefits of BLI are
summarized as follow: (Loening et al., 2006; Novobilsky and
Hoglund, 2020):

(i) High sensitivity in bioassay and molecular imaging. BL can
occur in the presence of a minimal amount of luciferase and
its specific substrate luciferin. The corresponding assays
have a potential to be very sensitive in a dark chamber (de
Wet et al., 1987). Even single cell can be imaged in living
mouse models (Iwano et al., 2018).

(ii) The low background and high signal-to-noise (S/N) ratio.
BLI systems can drastically suppress the background
intensities before BL initiation. Thanks to the absence of
inherent background luminescence in mammalian cells and
animal models, BLI systems generally allow high S/N ratios.

(iii) High quantum yield (QY). The luciferin-luciferase reactions
generally have a high quantum yield (QY), compared to the
other chemiluminescence, and consequently a significant
amount of light is generated for each chemical reaction that
occurs. For example, the QY of firefly luciferase (FLuc) was
reported to be ca. 41% (Ando et al., 2008), and the QYs of
Cypridina and Aqeuorin were known to be ca. 30% and
16%, respectively (Shimomura, 2006). Although highly
variable according to the luciferases, these QYs of BL are
generally higher than those of other chemiluminescence
(CL) such as 0.09% of Luminol (Ando et al., 2007).

(iv) Wider dynamic range of signals. BLI systems generally have
wider dynamic ranges, compared to other modalities such
as FLI. Although the dynamic ranges are manifold

according to the imaging systems, they generally appear
ranging from three to eight orders (Fan and Wood, 2007;
Branchini et al., 2018). Recently advanced BLI systems with
high sensitivity can determine even smaller number of cells
in the dynamic range. For example, a new BLI system was
previously highlighted with a simultaneous determination
of BL cells ranging from 101 to 2 × 104 cells on a microplate
(Nishihara et al., 2019). However, it is also true that the wide
dynamic range depends on a number of parameters
including the imaging system and the luciferin substrate
concentration.

(v) No requirement of external light source. BLI does not
require external light source. Because of this virtue, BLI
does not cause light toxicity in living organisms and does
not necessitate a complex measuring instrumentation
equipped with optical filters to discern the signal from
the background. This feature eventually contributes to
low background and high signal-to-noise (S/N) ratio (Li
Q. et al., 2019).

(vi) Quantitative imaging modality. BLI is considered as more
quantitative than fluorescence-based imaging modality.
Fluorescence (FL) is influenced by laser power for
excitation, but BLI is not influenced by such an external
light source. In a well-controlled experimental setup, BL
intensities are proportional to the cell numbers. Thanks to
the linearity, even the cell numbers are countable based on
the BL intensities (Iwano et al., 2018; Nishihara et al., 2019).

(vii) Versatility in various imaging systems as an optical
readout. BL systems are applicable to various bioassay
modalities and organisms from bacteria to animals. For
example, a luciferase can be embedded in various
bioassays and nicely work as an optical reporter,
which include bioluminescence resonance energy

GRAPHICAL ABSTRACT
Bioluminescence from the bright and dark sides (The image was designed to contrast the “bright” and “dark” sides of bioluminescence as the theme
of this review).
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transfer (BRET), reporter-gene assay (RGA), protein-
fragment complementation assay (PCA), and
molecular strain probe systems.

(viii) Quick signal development. The BL initiation is easy and
immediate without any pre-treatment nor complex
instrumental build-up. The luciferase reporters
immediately work after expression, whereas fluorescent
proteins necessitate a maturation time (oxidation) of the
fluorophore and a warming up time of the instrumentation
(Laser) before measurement.

(ix) Low costs compared with other imaging modalities. BL is a
low-cost imaging modality, compared with the other
established ones such as PET, SPECT, and MRI
(Massoud and Gambhir, 2003). BL is easily determined
by a low-cost instrument, and the reagents are
relatively cheap.

(x) Suitability in deep tissue imaging. BLI is suitable for a few
milli- and centimeter order of deep tissue imaging
(Massoud and Gambhir, 2003). Because of this virtue, it
is generally useful for small animal imaging.

(xi) Biocompatible and non-radioactive feature. BL systems are
originally derived from living organisms. Hence, all the
ingredients for BL development are biocompatible and not
harmful for living subjects.

(xii) Low possible false-positive signals. The luciferase-luciferin
reactions are based on enzymatic specificity. Hence, the BL-
based bioassays are less disturbed by false-positive signals.
In contrast, FL-based assays are more likely disturbed by
fluorescent ingredients in biological samples. BL-based
bioassays are considered more quantitative and
straightforward in the process of the data.

(xiii) Suitability for high-throughput screening of chemicals.
BL-based biosensors are suitable for high-throughput
screening for chemical biology and drug discovery
applications due to their ability to maintain sensitivity,
signal strength, and biological fidelity in automated
systems (Azad et al., 2021).

(xiv) Secretory nature of some marine luciferases. Some
marine luciferases from copepods are naturally
secreted into the extracellular compartments of animal
cells or the blood stream of animal models after
expression (Takenaka et al., 2012). The feature enables
us to easily and repeatedly measure the reporter levels in
the culture medium or blood samples of animals without
any pre-treatment step for separating reporters from the
cell debris.

1.2 The “dark” side of bioluminescence

Conversely, the disadvantages of BL imaging and analysis may
be summarized as follows:

(i) Low optical intensity of BL, compared with FL. BLI exerts
relatively low photon emission, compared with the other
imaging modality such as fluorescence imaging (FLI),
although it generally exerts high QYs. For example,
Emerald luciferase (ELuc) from click beetle generates as

low as 1.17 × 104 photons/sec/cell with D-luciferin (Niwa
et al., 2023). NanoLuc (engineered from deep sea shrimp
luciferase) and FLuc emit 3.72 × 10−18 Watts/molecule
(i.e., 8.6 photons/sec/molecule) and 7.25 × 10−20 Watts/
molecule (i.e., 0.2 photons/sec/molecule), respectively
(Klein et al., 2023). Because of the low photon emission,
BLI is generally measured in a group of cells, and requires a
long light acquisition time typically from seconds to
minutes. Because of this feature, BLI is disadvantageous
for monitoring temporal dynamics of molecular events in
living organisms.

(ii) Necessity of the specific substrates. BLI necessitates a
specific substrate as the “luminophore” and optionally
needs cofactors such as Mg2+ and ATP. Because of this
necessity, an excess amount of the substrate should be
exogenously delivered for cell-based studies or injected
into the blood stream of animals. Deficiency of the
substrates or the cofactors can cause false-negative
consequences.

(iii) The optical performance driven by the chemical property of
the substrates. The substrate as a luminophore is the center
of the optical properties of BL. The chemical properties
determine the overall optical performance including the
color and intensity.
For example, the hydrophilicity and π-electron conjugation
of the functional groups of the substrate collectively
determine the plasma membrane (PM) permeability,
color, and optical intensity (Nishihara et al., 2019). If the
functional groups are highly hydrophobic, the water
solubility is poor and causes trouble in the injection of
the substrate solutions into an animal.

(iv) Secretory nature of some marine luciferases. Some marine
luciferases such as Metridia longa luciferase (MLuc) and
Gaussia princeps luciferase (GLuc) from copepods have
secretory nature, which can be a reason of the reporter
loss in mammalian cells. This nature is generally suppressed
by tagging with an endoplasmic reticulum (ER) retention
signal like a C-terminal KDEL sequence. This ER retention
can cause a new problem of the substrate supply. It is
because the substrate has to pass through the two
membrane barriers to reach out their ER-retained
luciferases of live cells. To bypass this problem, secretory
luciferases have been displayed on the PM of live cells to
ease the substrate diffusion into the PM (Santos et al., 2009).

(v) The optical intensity influenced by reaction conditions.
Because the BL is an outcome of an enzymatic reaction,
any factors affecting enzyme reactions potentially influence
the BL intensity and color. It includes pH, ion levels,
temperature, buffer species, etc. This feature may be the
reason that weakens the quantitative feature of BL.
Considering every luciferase and luciferin has its optimal
reaction conditions, one needs to optimize the assay
conditions for the best optical performance.

(vi) Poor spatial resolution. BLI systems provide a less spatial
resolution modality than other imaging modalities such
as FLI. The spatial images of cells are generally smeared
and dim, whereas FLI is much more sharp, vivid,
and clear.
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TABLE 1 Optical properties of representative luciferases and their variants. This table was reproduced and updated from Kim et al. (Kim and Paulmurugan,
2021) with permission from Springer Nature.

Luciferase (size) Origin (λmax, nm
a) Substrate Features Ref.

Beetle Luciferases Firefly luciferase (FLuc,
Luc2, Ppy) (61 kD)

Photinus pyralis (562 nm with
D-luciferin, 677 nm with
Akalumine)

D-luciferin,
Akalumine

pH-sensitive, thermolabile de Wet et al. (1985),
Iwano et al. (2013)

Ppy GR-TS (Mut. of FLuc)
(61 kD)

Photinus pyralis (547 nm) D-luciferin,
Akalumine

Temperature and pH-stable
variant

Branchini et al. (2007)

Ppy RE-TS (Mut. of FLuc)
(61 kD)

Photinus pyralis (612 nm) D-luciferin,
Akalumine

Red-shifted, increased pH and
thermostability

Branchini et al. (2007)

Ppy RE9 (Mut. of FLuc)
(61 kD)

Photinus pyralis (620 nm) D-luciferin,
Akalumine

Red-shifted, highly increased
pH and thermostability

Branchini et al. (2010)

PLR3 (Mut. of FLuc) (61 kD) Photinus pyralis (614 nm) D-luciferin,
Akalumine

Red-shifted, brighter and
increased affinity for ATP, high
pH and thermostability

Branchini et al. (2017)

AkaLuc (Mut. of FLuc)
(61 kD)

Photinus pyralis (650 nm) AkaLumine-HCl Red-shifted, highly bright and
stable

Iwano et al. (2018)

Click Beetle Green (CB
green) (65 kD) (Mut. of
CBLuc)

Pyrophorus plagiophthalamus
(540 nm, Green)

D-luciferin Green Wood et al. (1989)

Click Beetle Red (CB red)
(65 kD) (Mut. of CBLuc)

Pyrophorus plagiophthalamus
(615 nm, Red))

D-luciferin Red-shifted Chang et al. (2014)

Click Beetle luciferase Red2
(CBR2, CBR2opt) (65 kD)
(Mut. of CBLuc)

Pyrearinus termitilluminans
(628 nm for Red)

D-luciferin Mutated Pty Hall et al. (2018)

Emerald Luciferase (Pty,
ELuc) (65 kD) (Mut. of
CBLuc)

Pyrearinus termitilluminans
(538 nm for Green)

D-luciferin High thermostability, pH-
insensitive, codon-optimized
version termed ELuc

Nakajima et al. (2010)

PhRED-TS (65 kD) (Mut. of
CBLuc)

Pyrophorus plagiophthalamus
(623 nm)

D-luciferin 9.8-fold increased activity;
pH insensitive, increased
thermostability

Weihs and Dacres
(2019)

Railroad worm luciferase
(RWLuc, SLR) (61 kD for
Green and 60 kD for Red)

Phrixotrix viviani and
Phrixotrix hirtus (546 nm for
Green or 630 nm for Red)

D-luciferin Green or red Viviani et al. (1999),
Viviani et al. (2006),
Bevilaqua et al. (2019)

Thermostable railroad
worm luciferase (RWLuc
red) (60 kD for Red)

Phrixotrix hirtus (630 nm
for Red)

D-luciferin Thermo stable Li et al. (2010)

Marine luciferases Renilla luciferase (RLuc)
(36 kD)

Renilla reniformis (Sea Pansy)
(480 nm)

CTZ thermolabile Lorenz et al. (1991)

Renilla luciferase 8 (RLuc8)
(36 kD) (Mut. of RLuc)

Renilla reniformis (Sea Pansy)
(487 nm)

CTZ Long lifetime in cells, enhanced
serum stability and
thermostability, improved
quantum yield

Loening et al. (2006),
Loening et al. (2007)

Renilla luciferase 8.6-535
(RLuc8.6-535) (36 kD) (Mut.
of RLuc)

Renilla reniformis (Sea Pansy)
(535 nm)

CTZ Bright and red-shifted Loening et al. (2007)

Renilla luciferase 7-521
(RLuc7-521) (36 kD) (Mut. of
RLuc)

Renilla reniformis (Sea Pansy)
(521 nm)

CTZ Bright and red-shifted Loening et al. (2010)

Gaussia luciferase (GLuc)
(20 kD)

Gaussia princeps (470 nm) CTZ Secreted Verhaegent and
Christopoulos (2002)

Monsta (20 kD) (Mut. of
GLuc)

Gaussia princeps (513 nm) CTZ Secreted, Variable λmax values
according to buffer conditions

Kim et al. (2011a)

GLuc4 (20 kD) (Mut. of
GLuc)

Gaussia princeps (495 nm) CTZ Secreted Degeling et al. (2013)

(Continued on following page)
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(vii) Potential cross-leakage of BL signals in multi-reporter
systems. Because of the broad bandwidths of luciferases,
the BL spectra are prone to be overlapped in multi-reporter
systems. This feature causes an optical cross-leakage
between the BL signals of multi-reporter systems. Optical
filters may be useful for minimizing the BL signal
contamination.

(viii) Potential interferences of chemicals in samples. Because BL
depends on enzymatic reactions of luciferases, BL emission
can be interfered by various small chemicals in samples.
Such inhibitors include linear, planar compounds including
a benzothiazole, benzoxazole, or benzimidiazole core. It is
because the benzothiazoles bind to the D-luciferin pocket of
FLuc as blockers (Thorne et al., 2012). Resveratrol and
compounds containing m-carboxylate group are also
known to inhibit FLuc activities (Bakhtiarova et al.,

2006). RLuc is also inhibited by compounds containing
an aryl sulfonamide core (Ho et al., 2013). It is also known
that cAMP-dependent protein kinase (PKA) inhibitor
H89 works as an inhibitor of RLuc (Herbst et al., 2009).
These inhibitory feature of some chemicals in samples
works false-negatively and is a unique disadvantage of
BL assay systems.

2 Beetle and marine luciferases

2.1 Outline of luciferases

There are many light-emitting organisms in nature. From the
natural sources, many luciferases emitting cold light have been
established. The chemical study on the light-emitting mechanism

TABLE 1 (Continued) Optical properties of representative luciferases and their variants. This table was reproduced and updated from Kim et al. (Kim and
Paulmurugan, 2021) with permission from Springer Nature.

Luciferase (size) Origin (λmax, nm
a) Substrate Features Ref.

Benthosema pterotum
luciferase (BPLuc) (27 kD)

Benthosema pterotum
(475 nm)

CTZ Thermostable Homaei et al. (2013)

Metridia longa luciferase
(MLuc, MLuc7) (24 kD)

Metridia longa (480 nm) CTZ Secreted, small molecular
weight

Markova et al. (2004)

Oplophorus luciferase
(OLuc) (106 kD)

Oplophorus gracilorostris
(Deep sea shrimp) (454 nm)

CTZ A complex of large and small
subunits

Inouye et al. (2000)

NanoLuc (NLuc) (19 kD)
(Mut. of a small subunit of
OLuc)

Oplophorus gracilorostris
(Deep sea shrimp) (456 nm)

FMZ (poorly soluble
and toxic in cells)

High pH and thermostability,
very bright, stable and
prolonged light emission

Hall et al. (2012),
Shipunova et al. (2018)

teLuc (19 kD) (Mut. of
NanoLuc)

Oplophorus gracilorostris
(Deep sea shrimp) (502 nm)

Diphenylterazine
(DTZ)

Enhanced activity with
Diphenylterazine

Yeh et al. (2017)

yeLuc (19 kD) (Mut. of
NanoLuc)

Oplophorus gracilorostris
(Deep sea shrimp) (527 nm)

Selenoterazine (STZ) Enhanced activity with
Selenoterazine

Yeh et al. (2017)

QL-nanoKAZ (19 kD)
(Reverse Mut. of NanoLuc)

Oplophorus gracilorostris
(Deep sea shrimp) (458 nm)

CTZ Bright with nCTZ Inouye et al. (2022)

Cypridina luciferase (CLuc)
(61 kD)

Cypridina noctiluca (460 nm) Cypridina luciferin Secreted, thermostable Nakajima et al. (2004)

Bacterial
Luciferase

Native Bacterial luciferase
(Lux) (40 kD for α subunit
and 30 kD for β subunit)

Aliivibrio fischeri, Vibrio
harveyi, and Photorhabdus
luminescens (490 nm)

FMNH2 and long-
chain aliphatic
aldehyde

Bacterial expression Cronin et al. (2012)

Synthetic Bacterial luciferase
(iLux) (40 kD for α subunit
and 30 kD for β subunit)

Photorhabdus luminescens
(490 nm)

FMNH2 and long-
chain aliphatic
aldehyde

Optimized for mammalian
expression, Substrate-free
imaging of human cells

Xu et al. (2014), Gregor
et al. (2018)

Artificial
Luciferase

LuxSit luciferase (LuxSit)
(14kD)

Artificial, Deep Learning
(480 nm)

DTZ artificial design, small size,
thermostable

Yeh et al. (2023)

Artificial Luciferase 16
(ALuc16) (23 kD)

Copepoda luciferase database
(496 nm)

CTZ Secreted, bright, λmax is variable
according to buffer conditions

Kim et al. (2013)

Artificial Luciferase 23
(ALuc23) (23 kD)

Copepoda luciferase database
(503 nm)

CTZ Secreted, bright, strain-sensitive Kim et al. (2013), Kim
et al. (2020)

Artificial Luciferase 47
(ALuc47) (21 kD)

Copepoda luciferase database
(487 nm)

CTZ Secreted, highly specific to CTZ Kim et al. (2017)

Artificial Luciferase 49
(ALuc49) (21 kD)

Copepoda luciferase database
(490 nm)

CTZ Secreted, specific to CTZ Kim et al. (2017)

aMaximum wavelength (λmax) of bioluminescence spectrum.

Mut. denotes mutant.
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did not begin until the early 20th century. The luciferin–luciferase
reaction of fireflies was first demonstrated by Harvey (1917). FLuc
was partially purified and characterized for the first time byMcElroy
et al. in 1955, and then crystallized by Green et al. in 1956
(Shimomura, 2006). The beetle luciferases are considered to have
evolved from the ancestral fatty acyl-CoA synthetase (ACS), an
enzyme, which is present in all insects (Adams and Miller, 2020).
The specifications of luciferases were briefly summarized in Table 1
and especially important ones were highlighted in this section and in
Figure 1A. The corresponding luciferins from natural resources were
briefly summarized in Figure 1B. A typical example of animal
imaging with an CTZ analog substrate was shown in Figure 1C.

Because the luciferases from natural resources are limited in the
color variety in the relatively shorter wavelength, a lot of efforts have
been directed to extend the color palette to the red and infrared side
(650–950 nm) in order to achieve the minimized light attenuation
and tissue absorption of the optical signal. The red- and blue-shifted
BL has been achieved through mutagenesis of luciferases, together
with synthesis of the specific substrates with different luminophore
structures (Iwano et al., 2013; Mezzanotte et al., 2017; Iwano et al.,
2018). The specific mutation sites were depicted in Figure 2.

Among beetle luciferases, firefly luciferase (FLuc) derived from
North American Photinus pyralis (Ppy) has been exceptionally well
investigated and has been widely utilized in various BLI systems

FIGURE 1
(A) The 3D structures of beetle and marine luciferases. The substrates in the active sites were highlighted with red balls. The 3D structures were
obtained from the following references: FLuc/LcrLuc (2D1R) (Nakatsu et al., 2006), RLuc (7OMR) (Schenkmayerova et al., 2023), GLuc (7D2O) (Wu et al.,
2020), NLuc (7SNT) (Nemergut et al., 2023), DLuc (1VPR) (Schultz et al., 2005), and LuxA/LuxB (3FGC) (Campbell et al., 2009). (B) Natural and synthetic
luciferins for beetle andmarine luciferases. (C)Mouse imaging with a CTZ analog BBlue2.3. BBlue2.3 emits strong blue light in the presence of RLuc.
The blue light can excite the adjacent near-infrared fluorescent protein (iRFP) and is transferred to NIR at ca. 720 nm, because iRFP has a soret band at
around 380 nm. This NIR light is useful for a deep tissue imaging of living mice. The optical images were reproduced from Kim et al. (Nishihara et al., 2019)
with permission from Ivyspring under CC BY-NC 4.0.

Frontiers in Chemical Biology frontiersin.org06

Kim and Furuta 10.3389/fchbi.2024.1459397

https://www.frontiersin.org/journals/chemical-biology
https://www.frontiersin.org
https://doi.org/10.3389/fchbi.2024.1459397


(Adams andMiller, 2020). The native luciferases have beenmodified
by random and site-directed mutagenesis for improving the optical
properties including the intensity, stability, color, and spectra.
Because the crystal structures of Ppy FLuc and Japanese Luciola
cruciata (Lcr, Genji-botaru) FLuc were reported (Conti et al., 1996;
Nakatsu et al., 2006), their active sites have been a target of the
mutagenesis for improving the optical properties including red-
shifted BL. The mutation sites in FLuc share consensus sites with the
other beetle luciferases such as click beetle and railroad worm
luciferases (Figure 2) (Nakatsu et al., 2006; Li et al., 2010).

One of the most successful examples is the red-shifted BL with
the pair of Akaluc (luciferase) and Akalumine (luciferin). A bright
mutant named Akaluc through random mutagenesis of FLuc was
established, which has 28 amino acid mutations across the sequence
(Iwano et al., 2013). Akaluc shows improved thermostability and
robust BL with the maximal emission peak at 650 nm with the
substrate Akalumine as an optimized variant of D-luciferin.

Marine luciferases derived from marine organisms such as sea
pansy and copepods, catalyze the oxidation of their specific
substrates to produce BL. Unlike the beetle luciferase, the marine
luciferases require only molecular oxygen (O2) for the reaction, but
do not necessitate cofactors such as ATP and Mg2+. The marine
luciferase includes the sea pansy Renilla reniformis (Lorenz et al.,
1991), the copepod G. princeps (Verhaegent and Christopoulos,
2002) and M. longa (Markova et al., 2004), the ostracod Cypridina
noctiluca (61 kDa) (Nakajima et al., 2004), the dinoflagellate
Pyrocystis lunula (Lecuyer et al., 1979), and the deep sea shrimp,
Oplophorus gracilirostris (Inouye et al., 2000). GLuc and MLuc were
cloned from copepods G. princeps and M. longa, respectively, and
successfully utilized in BLI of mammalian cells (Santos et al., 2009).
A few years later, Takenaka et al. established 25 kinds of new
copepod luciferases including M. pacifica luciferases (MpLuc1,
and 2) (Takenaka et al., 2008; Takenaka et al., 2012).

The marine luciferases can be divided into secretory and non-
secretory ones. RLuc and its variants are the representative non-
secreted luciferases, whereas many of the other marine luciferases
such as copepod luciferases (GLuc) andM, longa luciferase (MLuc))
are innate secretory ones.

RLuc was originally established by Karkhanis et al. (Shimomura,
2006). Many RLuc variants were created by mutagenesis based on
“consensus sequence-driven mutagenesis strategy (CSMS)”
(Loening et al., 2006). This strategy was developed on the
premise that frequently occurring amino acids at a given position
allow a larger thermostabilizing effect than less frequent amino
acids. This approach allowed them to find potential mutagenesis
sites from the aligned sequences of the same lineage of luciferases.
Thanks to the strategy, Loening et al. established various red-shifted
variants of RLuc and applied them to animal models (Loening et al.,
2007; Loening et al., 2010). The mutants were named RLuc8,
RLuc8.6, RLuc8.6-535, RLuc8.6-535SG, etc.

Kim et al., expended the concept of the CSMS to artificially
construct whole amino acid sequences (named Artificial luciferases
(ALuc)), whose identities are distinctive from any existing
luciferases (Kim et al., 2013; Kim et al., 2017). The ALucs have
been made through extracting and linking frequently occurring
amino acids from an alignment of many existing copepod
luciferases in public databases, where copepod luciferases were
selected because they are the smallest ones among luciferases

with two-repeated catalytic domains like a mirror image, besides
the variable N-terminal domain including the secretion signal
(Inouye and Sahara, 2008). This effort to create new ALucs is
ongoing to date (Kim et al., 2023c).

Another marine luciferase from deep sea shrimp O.
gracilirostris (OLuc) was engineered to develop the brightest
NanoLuc. OLuc consists of two 35 kDa subunits and two
19 kDa subunits (Shimomura et al., 1978). NanoLuc (or
NLuc) is established through random and direct mutagenesis
of the smaller luciferase unit of OLuc (19 kDa). Although it
utilizes native coelenterazine (CTZ) as the substrate, a CTZ
analog named furimazine (FMZ) boosts the BL intensity by
25-fold (Hall et al., 2012). The red-shifted BL of NanoLuc was
further achieved through two pathways: one is by mutagenesis of
NanoLuc and the other is by organic synthesis of the specific
substrates. Yeh et al. (2017) synthesized a series of FMZ analogs
exerting red-shifted BL with NanoLuc. They further established
bright and red-shifted variants of NanoLuc named teLuc and
yeLuc. The maximal intensities of teLuc and yeLuc were found to
be 502 nm and 527 nm, respectively (Yeh et al., 2017). The
allosteric behavior of NanoLuc also has been investigated using
experimental and computational techniques for further
engineering (Nemergut et al., 2023).

2.2 The merits and demerits of beetle
luciferases

Beetle luciferases derived from insects necessitate the cofactors,
ATP and Mg2+, besides the specific substrate and molecular oxygen
(O2) for BL emission. Beetle luciferases oxidize the substrate
luciferins and lead them to the excited state. The excited
intermediates emit photons when they relax to the ground state.
Many researchers capitalize on this mechanism to modify the
luciferase and/or luciferin scaffolds for improving the optical
intensity and color variety of BL.

These beetle luciferases provide the following exclusive
advantages:

(i) Red-shifted BL spectra. The BL spectra of beetle luciferases
are generally witnessed at the wavelength region longer than
those of marine luciferases. This feature minimizes the light
attenuation in physiological samples and animal models.

(ii) BL signal stability. Beetle luciferases generally develop stable
BL signals. This feature positively works for the fidelity of the
bioassays, compared to marine luciferases implementing
busting and rapidly decaying BL signals.

(iii) Low autoluminescence. The possibility of autoluminescence
of beetle luciferase systems is much lower than that of marine
luciferase systems. Because beetle luciferase-luciferin
reaction necessitates ATP and Mg2+, besides O2, the
threshold for BL emission is considered high.

The beetle luciferases also have the following disadvantages:

(i) Large molecular weights. Beetle luciferases are generally large
in the molecular weights, compared to marine luciferases.
For example, the molecular weight (Mw) of 62 kDa of FLuc is
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approximately two to three fold larger than those of marine
luciferases such as RLuc (36 kDa) and NanoLuc (19 kDa)
(Auld and Inglese, 2016). Because of this bulkiness, beetle
luciferases as a reporter can cause steric hinderance to the
host probes in bioassay systems.

(ii) Dimmer BL intensity. The absolute BL intensities of beetle
luciferases are considered generally dimmer than those of
marine luciferases. For example, NanoLuc/FMZ pair was
reported much brighter than FLuc/D-luciferin pair in human
embryonic kidney (HEK) 293T cells (Yeg et al., red-shifted
luciferase-luciferin pairs for enhanced bioluminescence
imaging). Even in RGAs, NanoLuc and GLuc were
reported to implement better BL intensity and signal-to-
background ratios than FLuc in RGAs (Neefjes et al., 2021).
Humanized GLuc is also extremely brighter than humanized
RLuc and FLuc (Tannous et al., 2005).

(iii) Requirement of cofactors. Beetle luciferases necessitate
cofactors, ATP and Mg2+, besides the specific substrate
D-luciferin and O2. In contrast, marine luciferases need
the specific substrate D-luciferin and O2 only for BL

emission. Any deficiency of the cofactors or uneven
biodistribution can implement false-negative results.

2.3 The merits and demerits of marine
luciferases

(i) Strong BL intensity. It is generally accepted that the BL
intensities of marine luciferases such as NanoLuc and
GLuc variants are generally brighter than those of beetle
luciferases.

(ii) Small molecular weights. Marine luciferases are generally
smaller than beetle luciferases in the size. In contrast of the
62 kDa of FLuc, marine luciferases are ranging from 15.7 to
20 kDa in the molecular weights (Auld and Inglese, 2016).
This compactness exerts less steric hinderance to the host
molecule after labeling.

(iii) Simplicity in the light emitting mechanism. Marine
luciferases follow a relatively simple mechanism to
generate BL: The reaction is initiated by the binding of O2

FIGURE 2
(A) Summarized map showing the mutation sites of various luciferases for improving the optical performances. FLuc (Japanese Genji-Botaru,
Luciola cruciate) (Nakatsu et al., 2006), Railroad worm luciferase (Li et al., 2010; Bevilaqua et al., 2019), Click beetle luciferase red (Hall et al., 2018), Renilla
luciferase (Loening et al., 2006; Loening et al., 2007; Woo and von Arnim, 2008; Loening et al., 2010), Gaussia luciferase (Welsh et al., 2009; Kim et al.,
2011a), and NanoLuc (Yeh et al., 2017; Inouye et al., 2022; Nemergut et al., 2023). (B) The substrate-bound active and allosteric sites. Known,
effective mutation sites in the active sites were highlighted by stick structures (left and center), and the FMZ-bound allosteric site between chains A and B
is shown in the right. The 3D structure information was obtained from the following references: FLuc/LcrLuc (2D1R) (Nakatsu et al., 2006), RLuc (7OMR)
(Schenkmayerova et al., 2023), NLuc (8AQ6) (Nemergut et al., 2023).
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at the C-2 position of the CTZ, giving peroxide. The peroxide
then forms a four-membered ring “dioxetanone.” The
dioxetanone promptly decomposes as a result of the
splitting of two binds in a concerted fashion, producing
CO2 and the amide anion of coelenteramide in its excited
state. The excited state of the amide anion emits light when
the energy level falls to the ground state (Shimomura, 2006).
In contrast, beetle luciferases follow complex steps to emit BL
in the presence of ATP and Mg2+. It indicates that the BL
emission steps are more likely to be influenced by other
factors and ingredients.

Marine luciferases have the following common demerits as
optical readouts in bioassays and molecular imaging.

(i) BL emission in a shorter wavelength range. Marine
luciferases generally emit BL at the shorter wavelength
region. The shorter wavelengths suffer from severe light
attenuation in the tissue of living subjects. For example, a
luciferase fromOplophorus gracilorostris (deep sea shrimp) is
a typical marine luciferase emitting blue BL (462 nm)
through oxidizing CTZ in the presence of O2. In
mammalian tissues, hemoglobin impairs the BL
transmission below 600 nm.

(ii) Limited color palette. Marine luciferases have a limited range
of the available color palette, especially deficiency in red-
shifted colors above 550 nm (Weihs and Dacres, 2019). This
is especially disadvantageous in multi-reporter systems.

(iii) Bursting but rapid decay of the bioluminescence. Marine
luciferases generally exert bursting BL emissions with the
substrate. However, the BL quickly decays, too. Because of
this nature, the measurement requires a luminometer
equipped with an injector to measure the
transient peak BL.

(iv) Autoluminescence. Because marine luciferases require only
O2, besides the substrate, the threshold of BL emission is
relatively low, compared to that of beetle luciferases. Even in
the absence of the marine luciferases, the representative
substrates, CTZ and its analogs, are prone to be
decomposed in physiological samples and exert relatively
high autoluminescence (Nishihara et al., 2019). This feature
makes sample handling difficult and increase error bars
in bioassays.

(v) Potential influence of multivalent cations. Among
luciferases, copepod luciferases are especially sensitive to
multivalent cations (Kim et al., 2015). An excess amount
of multivalent cations can enhance or inhibit the activities of
copepod luciferases, because copepod luciferases have unique
EF-hand-like structures, which are known as the binding site
of Ca2+ (Kim and Izumi, 2014).

(vi) Poor folding efficiency in mammalian cells. Some marine
luciferases have problems with the folding efficiency in
mammalian cells and require special consideration on it
such as codon optimization and folding locations.
Copepod luciferases especially contain rich disulfide bonds
to stabilize the structure, and thus are prone to be misfolded
in the cytosol of mammalian cells.

3 Luciferins

Substrate is a key component for glowing BL with luciferases.
The role of substrates was previously explained as “luminophore,”
because it is the energy source and oxidized by luciferases to generate
BL. The luciferases recruit the “luminophore” substrate from the
aqua phase, whereas fluorescent proteins embed the “fluorophore”
inside the molecular scaffold. It is interesting to note that the
chemical structure of the common substrate of marine
luciferases, CTZ, is similar to the fluorophore of fluorescent
proteins (65SYG67), sharing the same imidazolone ring structure
(Kim et al., 2012).

While luciferases are extremely diverse, luciferins are
surprisingly simple to be categorized, because a limited number
of specific luciferins (to date only 12) are shared by many luciferases.
Thus, BL systems can be surprisingly simplified into a few groups
according to the substrate luciferins. Among them, D-luciferin and
CTZ occupy the major portion.

A recent trend in luciferin studies is to append functionalities to
the natural luciferins using organic synthesis. The authors classified
and explained general luciferins in the “non-activatable luciferin”
section, while more functional luciferins, e.g., containing on-off
switches were summarized below in the “activatable substrates”
section. The chemical structures were depicted in Figure 3.

3.1 Non-activatable luciferins

Luciferin is an essential component for BL reaction as the energy
source. Luciferins are supplied by the biosynthesis in living
organisms, although most of the mechanisms are unknown.
While a myriad number of light-emitting species exist in nature,
their luciferin repertoires are astonishingly small. The representative
ones include 1) beetle luciferin (D-luciferin), 2) coelenterazine
(CTZ), 3) tetrapyrrole luciferin, 4) fungal luciferin, 5) bacterial
luciferin, and 6) Cypridina luciferin (Fleiss and Sarkisyan, 2019)
(Figure 1). The disadvantages of the natural luciferins may be
explained as follows:

Disadvantages of D-luciferin. D-luciferin as the common
substrate for beetle luciferases is unevenly biodistributed in mice.
After i.v. injection, D-luciferin immediately shows high uptake in
the kidney and liver. Later, it is predominantly accumulated in the
bladder, but minimally diffused to the brain (Berger et al., 2008).

Disadvantages of CTZ. The common substrate for the marine
luciferin, CTZ, has relatively poor solubility in hydrophilic solvents
and chemically unstable property.

The principal role of these natural luciferins is to luminesce with
luciferases, and do not have additional functionalities such as analyte
sensing and conditional color variation. In this review, we introduce
a series of substrates that have intentional chemical modification of
the native substrates, which are named “non-activatable luciferin.”
This review focuses on the D-luciferin and CTZ because they are the
most used and representative substrates of beetle and marine
luciferases (Figure 3).

D-luciferin consists of a benzothiazole moiety attached to a
thiazole carboxylic acid moiety (Oba et al., 2013). These two
moieties have been modified for better optical properties such as
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red-shifted BL and the history proves that such modified
D-luciferins are tolerated by beetle luciferases.

Iwano et al. (2013) synthesized an analog named Akalumine to
generate NIR BL by extending the π-conjugation length between the
benzothiazole and thiazole moieties, and established the red-shifted
BLI system with a FLucmutant Akaluc. They accomplished a diverse
hue of visible and NIR BL, whose longest emission maximum was
observed at 675 nm.

One important modification of D-luciferin was achieved
through alkylation and cyclic alkylamino modification of the
hydroxy group (-OH) (Otto-Duessel et al., 2006). The alkyl and
aminoluciferins are further modified by bulky fluorescent dyes for
red-shifted emission of BL (Mezzanotte et al., 2013). A cyclic
alkylamino modification of the OH group of Akalumine was also
conducted by Ikeda et al. (2020).

Prescher et al. rationally designed a unique class of NIR-emitting
coumarin luciferin analogs specifically recognizing a mutant
luciferase and emitting NIR BL (Yao et al., 2021; Love et al.,
2023). These types of luciferins are suitable for multiplexed
imaging of molecular events in animal modalities.

CTZ is the luciferin of a wide variety of marine luciferases
including RLuc and GLuc, and is another modified tripeptide that is
biosynthesized from one phenylalanine and two tyrosine residues
(Shimomura, 2006). This CTZ-based imaging system naturally
emits BL in blue in the presence of O2. Modification of the C-2,
C-6, and C-8 positions of the CTZ backbone has been actively
studied by several research groups to exert 1) luciferase specificity, 2)
red-shifted BL, and 3) enhanced BL. These modified CTZ analogs
are known to be tolerated by marine luciferases.

High selectivity to RLuc is accomplished by introducing a double
bond at the C-6 position, besides the elimination of OH group at the
C-2 position (Nishihara et al., 2017). It is also known that an
ethynylation at the C6 position enhances the overall optical
intensities of the analogs with ALucs (Nishihara et al., 2017).
Kamiya et al. (2022b) also reported that elimination of the
functional group at the C-8 position, named K5 and K6, is useful
for the RLuc specificity, whereas the bulkiness at the C-8 position,
named K2, is driven to ALuc specificity.

Red-shifted BL is obtained through conjugating fluorescent dyes
to the C-2 or C-6 position of the backbone of native CTZ (Nishihara
et al., 2018). For example, a CTZ analog named Cy5-CTZ was
prepared by conjugating Cyanine-5 (Cy5) dye to CTZ through an
acetylene linker. The acetylene linker enables through-bond energy
transfer (TBET) between the energy donor CTZ and the energy
acceptor Cy5. This novel CTZ analog is intrinsically fluorescent and
emits NIR-shifted luminescence in the Cy5 channel upon reacting
with appropriate luciferases, RLuc and ALuc (Abe et al., 2019; Kim
et al., 2023d).

Even blue-shifted CTZ analogs can be utilized for NIR BLI in
animal models through a large stock-shift of NIR fluorescent
proteins (iRFPs) (Nishihara et al., 2019). It was accomplished
through combining the blue-shifted CTZ analog with RLuc8.6SG-
linked iRFPs.

One of the most desirable functionalities of luciferin may be red-
shifted BL, which can minimize the light attenuation in
physiological samples or in the tissues of living subjects. Abe
et al. (2019) recently synthesized a CTZ analog that emits NIR
BL. The CTZ analog named Cy5-CTZ was prepared by conjugating

Cy5 dye to CTZ through an acetylene linker. The acetylene linker
enables TBET between the energy donor CTZ and the energy
acceptor Cy5. This novel derivative is intrinsically fluorescent
and emits NIR-shifted luminescence in the Cy5 channel upon
reacting with an appropriate luciferase, RLuc. The authors
demonstrated that Cy5-CTZ is optically stable in physiological
samples, rapidly permeabilizes through the plasma membrane,
and luminesces NIR BL.

3.2 Activatable luciferins

This review defines “activatable luciferins” as chemically
modified luciferins for exerting special abilities such as
responding to a specific stimulator or recognizing a target
protein, and emitting optical signal(s), together with the original
role as the energy source for light emission.

A prototypical “photoactivatable” luciferin should embed a
conceptional on-off switch in response to a specific stimulator or
a molecular event. For this purpose, the functional groups of
luciferins have been chemically modified.

Caged luciferins are typical photoactivatable means, where
the substrate itself is protected by a cage and released by a specific
signal or molecular event. These caged luciferins commonly carry
a bulky group that blocks the interaction of luciferin backbone
with the enzyme. The cages are removed by specific wavelengths
of UV irradiation in animal models (Zhang et al., 2018), a
stimulator (analyte) including oxygen species (Kojima et al.,
2015), copper ions (Heffern et al., 2016; O’Sullivan et al.,
2022), calcium ion (Tian et al., 2022), and labile iron levels
(Aron et al., 2017).

The balance of sulfur redox plays an important role in
maintaining homeostasis of the living subjects. The D-luciferin
backbone was modified to visualize endogenous hydrogen
polysulfides (H2Sn) and applied to animal models (Li J. B.
et al., 2019). Likewise, some active substrates that is sensitive
to reactive nitrogen species (RNS) have also been synthesized (Li
et al., 2018).

Some CTZ analogs with special functional groups can
specifically recognize serum albumins from different sources.
These CTZ analogs bind the drug binding sites I and/or II of
serum albumins and generate luminescence signals, where the
albumins work like pseudo-luciferase. Based on this concept,
Nishihara et al. reported a CTZ indicator for imaging human
serum albumin (HSA) (Nishihara et al., 2020). Kim et al. (2023a)
also developed albumin indicators, S6 and S6h, for sensing HSA
and bovine serum albumin (BSA). It was also reported that
Cypridina luciferin quantifies the spike protein levels of
COVID-19 (SARS-CoV-2) acting as a pseudo-luciferase
(Nishihara et al., 2024).

The optical properties of activatable luciferins may be
summarized as follows:

(i) Minimized autoluminescence. Caged luciferin is another
important category of D-luciferin analogs. Caged luciferin
cannot luminesce until an enzymatic cleavage event occurs
and thus can minimize the autoluminescence. β-Galactoside-
linked D-luciferin was previously introduced, which is only
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active in case its galactoside moiety is removed by the co-
expressed β-galactosidase (Porterfield et al., 2015).

(ii) Low BL intensity. Activatable substrates are chemically
modified with bulky groups for implementing an on-off
switch in the backbone. The modified substrates generally
weaken the BL intensities, compared to the original ones.

4 Bioluminescence imaging
(BLI) systems

The ingredients, luciferins and luciferases, have been systemized
for bioassays and molecular imaging.

The BLI systems have been divided into “static” and
“activatable” groups (Reumann et al., 2010). Kim et al. (2011b)
also categorized the BLI systems into two major groups: 1) a family

of genetic and transcriptional probes (GTPs), and 2) a family of non-
transcriptional and activatable probes (NAPs) (Figure 4).

Typical feature of GTP comprises transcription of the luciferase in
the imaging process. This family of probes generally requires a long
ligand-stimulation time until sufficient accumulation of the reporter
protein is reached. This is mainly controlled at the promoter level. An
RGA and a two-hybrid assay are grouped in this family. On the other
hand, NAPs are expressed beforehand and pre-localized in adequate
intracellular compartments of interest. The probe is ready to develop
BL upon stimulation of a signal. Therefore, the NAPs intrinsically
respond quickly to signals and generally are expected to have higher
S/N ratio than GTPs. PCA, protein-fragment splicing assay (PSA),
and single-chain probes, are a few which are categorized under NAPs.

The NAPs can be further categorized into split-reporter imaging
systems and split-free imaging systems. The details are explained in
the following sections.

FIGURE 3
(A) The chemical structures of non-activatable luciferins. The non-activatable substrates are functional but cannot actively recognize analytes. The
right panel (Inset a) exemplifies the optical spectra of Cy5-CTZ. The optical images were reproduced from Kim et al. (Kim et al., 2023d) with permission
from Springer. (B) The chemical structures of activatable luciferins. The activatable luciferins can determine analytes and report BL. The right panel (Inset
b) exemplifies albumin-specific light emission of S6h and S6. The color generated by S6h is variable according to the ratios of the bovine and human
serum albumins. The optical images were reproduced from Kim et al. (Kim S.-B. et al., 2023) with permission fromMDPI. The specific substrate names are
referred from the following references: AkaLumine (Iwano et al., 2013); AkaLumine-HCl (TokeOni) (Iwano et al., 2013); CycLuc1 and 2 (Li Q. et al., 2019);
NIRLuc2 (Ikeda et al., 2020); K2, K5, and K6 (Kamiya et al., 2022b); 1a-1d (Tamaki et al., 2021); C3 (Kamiya et al., 2022a); 6-FITC-CTZ (Nishihara et al., 2018);
Cy5-CTZ (Abe et al., 2019); BP-PS (caged luciferin) (Li J. B. et al., 2019); CCTZD-1, -2, -3 (caged CTZ analog) (Zhang et al., 2018); S6 and S6h (Kim S.-B.
et al., 2023; Kamiya et al., 2023); HuLumino1 (Nishihara et al., 2020); and Cypridian luciferin (Nishihara et al., 2024).
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4.1 Genetic and transcriptional probe
(GTP) systems

Luciferases as an optical reporter can be genetically engineered
to construct various optical probes. GTP systems typically
comprise a transcription step of the luciferase as a reporter in
the imaging process. Therefore, the on-off switch of this type of
probe systems depends on the gene transcription machinery in live
cells or living subjects. These imaging probes conceptionally
embed a full-length luciferase, termed “split-free reporter
imaging system”.

The most broadly utilized GTP systems are “reporter-gene
assay system” and “two-hybrid assay system.” These systems
commonly make use of an expression vector encoding a
specific promoter sequence linked to the coding region that
regulates the transcription of the reporter luciferase. A ligand-
activated transfection factor binds to the promoter sequence and
triggers expression of the reporter luciferase accumulation in cells
which can be measured at various time points. The high-
throughput mammalian two-hybrid applications, facilitate
reporter genes use in large-scale interactome mapping and
drug discovery projects.

The GTP systems can comprise multiple reporters and be
utilized in various molecular imaging aspects as an expanded tool
box of bioluminescent imaging. They may be conceptionally
summarized into three categories:

(i) Orthogonal multiplex luciferase–luciferin system. These GTP
systems letmultiple luciferases coexist in the same context. They
oxidize completely distinctive luciferins without cross-talks and
thus one can easily be distinguished for each BL signal (Chan
et al., 2012). Recently, a triple reporter gene assay system was
developed based on a humanized mushroom luciferase, besides
NanoLuc and FLuc (Mujawar et al., 2023). Kim et al. also
developed a multiplex reporter system through combining two
luciferases with each luciferase-specific luciferins, which was
newly synthesized (Nishihara et al., 2017). Similar orthogonal
luciferase–luciferin systems have been developed by Jones et al.,
who synthesized many luciferins to find positive binding pairs
with each luciferase (Jones et al., 2017). These systems allow
researchers distinguish the signal from each other.

(ii) Ratiometric luciferase-fluorescent protein system. One of the
most direct and intuitive methods is to consecutively link a
couple of fluorescent and bioluminescent reporters. A pH-
sensitive BL reporter system named “pHLuc” is an excellent
example for such reporter system (Ong et al., 2020). pHLuc
enables us to ratiometrically determine pH levels in living cells
and animal models through a linkage of pH-sensitive green
fluorescent protein (GFP) with pH-stable full-length luciferases,
Antares and NanoLuc have been established. pHLuc successfully
visualized variance in the level of acidosis across the tumor.

(iii) Heterogenous multiplex imaging system. This unique system
consists of a luciferase–luciferin system combined with other
reporter enzymes like β-galactosidase (Martin et al., 1996).
and constitutes a multiple reporter system. FLuc and β-
galactosidase activities are determined with the same
aliquot of cell lysates. Therefore, one can reduce manual
labor and increase experimental accuracy.

The advantages of GTPs may be summarized as follows:

(i) Superior BL intensities. GTPs make use of full-length
luciferases as an optical readout and thus are generally
strong in the BL intensities. In contrast, molecular probes
carrying dissected luciferase fragments for a temporal loss and
conditional recovery of the activities such as PCA and PSA are
generally poor in the absolute BL intensities. It is because this
method inevitably hampers the intrinsic enzymatic property
of the luciferase and actually recovers merely 0.5%–5% of the
original luciferase activity (Paulmurugan and Gambhir, 2005;
Kim et al., 2007c).

(ii) Simplemolecular designs. Bioassay probes using full length luciferases as an
optical readout generally have simple molecular designs. Conversely,
molecular probes for PCAs generally require a sophisticated probe
design and a tedious optimization step for deciding a suitable splitting
site in the luciferase.

The disadvantages of GTPs may be summarized as follows:

(i) Poor S/N ratios. Bioassay systems using a full-length
luciferase as an optical readout generally have a poor S/N
ratio because they do not have strict on-off switches. For
example, the basal physiological activities implement slow
accumulation of the reporter protein in reporter gene assays,
elevating the background signals.

(ii) Long stimulation time. The expression of a reporter gene
requires a long stimulation time for the reporter
accumulation to obtain sufficient S/N ratios. Hence,
monitoring temporal dynamics of target proteins is limited.

(iii) Representing a limited kind of molecular events. Reporter-
gene assays using a full-length luciferase make use of the
expression machinery in the nucleus of cells as the on-off
switch. Therefore, the assay is suitable for determining the
molecular events implementing the protein expression inside
the cells.

4.2 Non-transcriptional and activatable
probe (NAP) systems

NAP systems express their probes beforehand and pre-localized
in adequate intracellular compartments of interest. The probe itself
embeds a conceptual on-off switch and is ready to develop an optical
signal upon any stimulation of analytes. NAP systems are best for
studies of the spatial and temporal dynamics of protein pairs.

The typical examples of NAP systems include 1) PCA systems,
2) PSA systems, 3) BRET-based Bioassays, and 4) molecular
strain probes.

PCA and PSA probes occupy the main body of NAPs. While
PCAs and PSAs have many merits as bioassays, it is tedious and
time-consuming to determine the optimal dissection sites of each
luciferase for the design of the probes. To address this issue, Kim
et al. previously suggested a hydrophilicity search of the amino
acid sequence using the scale of Kyte and Doolittle (Swiss
Institute of Bioinformatics, SIB) (Kyte and Doolittle, 1982).
Kim (2012) suggested that this search on a remarkably
hydrophilic region empirically narrow down the potential
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dissection site region for PCA and PSA. The approach is
empirically confirmed with the proven, successful dissection
sites from Kim et al. and other researchers (Figure 5; Table 2)

(Luker et al., 2004; Paulmurugan and Gambhir, 2007). This
approach is explained as a remarkably hydrophilic interface in
the middle of the sequence should be exposed to the aqueous

FIGURE 4
Schematic illustration of GTP and NAP systems. The molecular probes were referred to as the following names: Reporter gene assay system and
two-hybrid assay system (Fetchko and Stagljar, 2004; Neefjes et al., 2021), Protein-fragment complementation assay (single- and two-chain types)
(Paulmurugan and Gambhir, 2006; Kim et al., 2019a), Protein-fragment splicing assay (Ozawa et al., 2001a; Kim et al., 2004), BRET-based bioassays (Yeh
et al., 2017; Nishihara et al., 2019), Molecular strain probes (Kim et al., 2016; Bae Kim et al., 2020).
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phase and preferably accessible by the substrate in the aqueous
phase. Hence, we can easily exert temporal inactivation of the
luciferases by dissection at the hydrophilic region and the
exposed hydrophilic sites are preferably survived in the
context of animal cells after expression.

The common merits of NAP systems may be summarized
as follows:

(i) Rapid responses. NAP systems are pre-expressed in cells
and ready to respond to analytes. Upon stimulation, PCA
probes completed the optical signal development within
few minutes after ligand stimulation (Kim et al., 2007a;
Taneoka et al., 2009; Hattori et al., 2013). This near real-
time feature is advantageous for repeatedly imaging the
dynamics of the molecular events in cells. This is a
greatly rapid time frame, considering that reporter-
gene assays require overnight incubation until the
reporter is accumulated enough to be determined by
luminometers.

(ii) High S/N ratios. The NAP systems are generally expected to
have higher S/N ratio than GTPs. NAPs contain the on-off
switches inside the probe and suppress the basal false
positive signals.

(iii) Reversibility. Not always, but many NAP systems are
conceptually reversible and thus allow for the detection of
kinetic constants and equilibrium aspects of the molecular
events of interest in living cells.

The common demerits of NAP systems may be summarized
as follows:

(i) Poor BL intensities. Not always, but many NAP probes are
designed to suppress the BL intensities upon construction of
the on-off switch. For example, PCAs carry dissected
luciferase fragments for a temporal loss and conditional
recovery of luciferase activities. However, this
methodology inevitably hampers the intrinsic enzymatic
property of the luciferase and recovers merely 0.5%–5% of
the original luciferase activity (Paulmurugan and Gambhir,
2005; Kim et al., 2007c).
Similarly, molecular strain probes are designed to cause steric
hindrance to the substrate access in the basal conditions by
fusing protein pairs of interest at the N- and C-terminal ends
of the embedded luciferase with minimal linkers. The steric
hindrance is relieved upon occurrence of the intramolecular
protein–protein interaction (PPI). This suppression-driven
working mechanism explains why the overall optical signals
are generally weaker than those of GTPs.

(ii) Complex molecular designs. NAPs generally require
complex molecular designs for containing their unique
on-off switches. For example, PCA- and PSA-based probe
systems proceed with a sophisticated probe design and a
tedious optimization step. This optimization includes
deciding the overall layout of the components and a
suitable dissection site inside the luciferase reporter.

(iii) Irreversible and potentially high background intensity of
PSAs. All the PSAs and some of PCAs are irreversible in
the reaction mechanisms. PSAs especially proceed with

spontaneous splicing reactions by time and thus the
background intensities are generally drifted by time. This
feature worsens the S/N ratios.

4.2.1 Protein-fragment complementation assay
(PCA) systems

PCAs provide a unique experimental strategy for quantitatively
imaging the dynamics of PPIs in animal cells. A luciferase as a
reporter is genetically dissected into N- and C-terminal fragments
and thus it temporarily loses its enzymatic activity. The N- and
C-terminal fragments are then genetically fused to a pair of proteins
of interest. If the two proteins interact, the adjacent reporter
fragments are approximated together and their activity is
reconstituted (Figure 5) (Remy and Michnick, 2006; Li P.
et al., 2019).

A frontier study on conditional association of protein fragments
was demonstrated in 1994 with split-ubiquitin (Johnsson and
Varshavsky, 1994). The complementation of split-fluorescent
protein was first examined in Escherichia coli by Ghosh et al.
(2000). Calmodulin (CaM)‒M13 binding was examined in
mammalian cells with fragmented yellow fluorescent protein
(YFP) in 2001 (Nagai et al., 2001).

Michnick et al. (2010) also pioneered the development of PCAs:
They conducted a whole cell-wide mapping of PPIs in yeast using
luciferase fragments in 2008 (Tarassov et al., 2008) and 2010 (Levy
et al., 2010). They also presented detailed protocols for large-scale
analysis of PPIs with the survival selection of dihydrofolate
reductase (DHFR) reporter PCA in 2010. The known examples
of PCAs are summarized in Table 2.

The above-mentioned PCA systems are based on an
association between two independently expressed fusion
proteins. In contrast, Paulmurugan and Gambhir (2006) and
Kim et al. (2007a) independently developed single-chain probes
for sensing estrogenicity and androgenicity of ligands,
respectively, where all the components required for a ligand
sensing and light emission are integrated into a single
molecular backbone.

4.2.2 Protein-fragment splicing assay
(PSA) systems

PSAs have been introduced for determining PPI in animal
cells. PSAs make use of protein ligase intein-extein fragments that
enable us to provoke spontaneous protein splicing between two
fusion proteins without energy. In the probe design, split-
fragments of a luciferase are genetically linked to a protein pair
of interest via dissected intein fragments, where the split-
luciferases act as the extein. The split-luciferase temporarily
loses its enzymatic activity. Upon approximation of the split-
fragments, the inteins trigger protein splicing, which is a self-
catalyzed excision of the intein and ligation (reconstitution) of the
flanking split-luciferase (Gimble, 1998). The known examples of
PSAs are summarized in Table 2.

PSA was pioneered by Ozawa et al. using both a split-GFP in
2000 (Ozawa et al., 2000) and split- FLuc in 2001 (Ozawa et al.,
2001a). BLI of PPIs in living mice was first reported by Paulmurugan
et al., where both strategies of protein complementation and intein-
mediated protein splicing were comparatively examined
(Paulmurugan et al., 2002).
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4.2.3 Bioluminescence resonance energy transfer
(BRET) -based bioassays

Bioluminescence resonance energy transfer (BRET) is an
emerging assay strategy for determining PPIs in animal cells.
The BRET-based bioassays are based on the nonradiative
energy transfer from a bioluminescent donor (e.g., RLuc) and a
fluorescent protein acceptor. The donor and acceptor are tandemly
fused to a pair of proteins of interest, respectively. In case that the
proteins are approximated at a distance of less than 100 Å, the
BRET signal enhances. BRET allows sensitive analysis of small
spatial changes of proteins. It is used to interrogate PPIs or
conformation changes of proteins of interest. As this review
cannot recognize all the BRET systems in literature, we briefly
describe the main ones below.

The first generation BRET assay, called “BRET1” used RLuc and
an enhanced YFP (EYFP) as donor–acceptor combination, which
yielded a spectral separation of nearly 50 nm (Xu et al., 1999). To
date, many versions of BRET systems have been reported with

various combinations of FP and luciferases: for example, 1) systems
named from BRET1 to BRET9 (Otsuji et al., 2004; Dragulescu-
Andrasi et al., 2011; Li et al., 2013; Machleidt et al., 2015; Sun et al.,
2016; Hiblot et al., 2017; Bae Kim et al., 2020), 2) “NanoBRET” and
“eNanoBRET” using NanoLuc as the energy donor (Dale et al.,
2019), 3) “Nano-lantern” (Saito et al., 2012), 4) “Antares” using an
orange fluorescent protein (CYOFP1) and NanoLuc (Chu et al.,
2016), (v) NIR-BRET based on a −300 nm blue-to-near infrared shift
of the emission (Nishihara et al., 2019), and a Venus-engineered
bacterial luciferase (heterodimer of luxA and luxB) for BRET for
enhanced BL intensities (Kaku et al., 2021).

RLuc and its derivatives have been widely used in most of the
BRET systems as the energy donor. Recently, the other marine
luciferases such as GLuc, NanoLuc, ALuc, and Cypridina
luciferase (CLuc) have also been used as energy donors in the
BRET-based assays. Alternatively, modification of the substrates
was also targeted for creating unique NIR-BRET systems
(Nishihara et al., 2019).

FIGURE 5
(A) Hydrophilicity map of amino acids and representative dissection sites (scissors marks), that is reported in literatures. Each reference number
refers to the paired citation: Ref. 1 (Ozawa et al., 2001a), Ref. 2 (Luker et al., 2004), Ref. 3 (Paulmurugan andGambhir, 2005), Ref. 4 (Kim et al., 2007a), Ref. 5
(Kim et al., 2007b), Ref. 6 (Villalobos et al., 2010), Ref. 7 (Kim et al., 2008), Ref. 8 (Hida et al., 2009), Ref. 9 (Kim et al., 2007c), Ref. 10 (Kim et al., 2009b), Ref.
11 (Remy andMichnick, 2006), Ref. 12 (Kaihara and Umezawa, 2008), and Ref. 13 (Paulmurugan and Gambhir, 2003). (B) The suitable dissection sites
of beetle and marine luciferases. The 3D structures of FLuc, RLuc, Gluc, and NanoLuc were obtained from the reference structures, 1BA3 (Franks et al.,
1998), 7OMR (Schenkmayerova et al., 2023), 7D2O (Wu et al., 2020), and 7SNT (Nemergut et al., 2023), respectively. The arrows indicate the dissection
sites in the luciferase structures.
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TABLE 2 Optimal dissection sites of luciferases for construction of bioluminescent probes and molecular imaging. This table was reproduced and updated
from Kim et al. (Kim and Paulmurugan, 2021) with permission from Springer Nature.

Luciferases Optimal
dissection
sites (AAa)

Guest protein pairs Working mechanism Ref.

Firefly luciferase (FLuc) 1-415/416-550 AR LBD and FQNLF motif Intramolecular complementation Kim et al. (2007a)

1-437/438-454 IRS-1 and SH2 domain of PI3 kinase Intein-mediated protein splicing Ozawa et al. (2001a)

2-416/398-550 FRB and FKBP12 Intermolecular complementation Luker et al. (2004)

1-437/438-550
1-445/446-550
1-475/245-550
1-475/265-550
1-475/300-550

FRB and FKBP12 Intermolecular complementation Paulmurugan and
Gambhir (2005)

1-416/417-550 AR and Src Intermolecular complementation Kim et al. (2007b)

1-416/395-550 IBC domain of IP3R2 Intramolecular complementation Ataei et al. (2013)

1-437/438-544 IRS-1 and SH2 domain of PI3-kinase Protein splicing using DnaE (Ssp. PCC6803) Ozawa et al. (2001a)

1-437/438-544 MyoD and Id Protein splicing using DnaE (Ssp. PCC6803) Ozawa et al. (2001b)

1-490 (H489K)/438-544
(K491C)

FRB and FKBP12 Protein splicing using Saccharomyces cerevisiae
VMA (N-VMA: 1-182, C-VMA: 390–454)

Schwartz et al. (2007)

Click beetle luciferase
(CBLuc)

1-439/440-542
1-439/443-542
1-439/437-542

AR LBD and LXXLL motif Intramolecular complementation Kim et al. (2007c)

Click beetle luciferase Red
(CBLuc Red)

2-413/395-542 CXCR4 and β-arrestin Intermolecular complementation Salomonnson et al.
(2013)

ELuc 1-411/390-550
1-415/394-550

GPCR and β-arrestin Intermolecular complementation Misawa et al. (2010)

Renilla luciferase (RLuc) 1-229/230-311 Full length AR Intein-mediated protein splicing Kim et al. (2004)

1-91/92-311 Dimerazation between ERK2 and
ERK2

Intramolecular complementation Kaihara and Umezawa
(2008)

1-229/230-311 MyoD and Id Intermolecular complementation Paulmurugan and
Gambhir (2003)

1-229/230-311 FRB and FKBP12 Intermolecular complementation Paulmurugan et al.
(2004)

Gaussia luciferase (GLuc) 18-109/110-185 FRB and FKBP12 Intermolecular complementation Remy and Michnick
(2006)

18-105/106-185 CaM and M13; AR LBD and LXXLL
motif; ER LBD and Src SH2 domain

Intramolecular complementation Kim et al. (2009b)

1-93/94–169b CXCL12 and CXCR4 Intermolecular complementation Salomonnson et al.
(2013)

ALuc16 19-125/126-212 GR LBD and LXXLL motif
RAR LBD and LXXLL motif

Intramolecular complementation Kim et al. (2013), Kim
et al. (2019a)

19-129/130-212 GR LBD and LXXLL motif Intramolecular complementation Kim et al. (2013)

19-141/142-212 GR LBD and LXXLL motif Intramolecular complementation Kim et al. (2013)

19-146/147-212 GR LBD and LXXLL motif Intramolecular complementation Kim et al. (2013)

NanoLuc 1-156/157-171 FRB/FKBP; BRAF/CRAF; PKA/β-
arrestin-2

Intermolecular complementation Dixon et al. (2016)

1-156/157-171 Exocytosis of Gult4 Intermolecular complementation Endo et al. (2019)

The slash means the dissected position.

EGF, epidermal growth factor; IRS-1, Phosphorylated insulin receptor substrate 1; FKBP12, mammalian target of rapamycin and FK506-binding protein 12; FRB, rapamycin-binding domain;

AR LBD, ligand binding domain of androgen receptor; CaM, calmodulin; M13, a CaM-binding peptide; IBC, IP3-binding core domain (residues 224–604); MyoD, a myogenic regulatory

protein; Id, a negative regulator of myogenic differentiation.
aAA means amino acids.
bThe secretion signal at the N-terminal end seems to be uncounted in the literature.
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The unique merits of BRET may be explained as follows:
Different from FRET, BRET does not require outer light source
and has low background intensities and relatively high S/N ratios.
Because of this virtue, BRET does not suffer from phototoxicity,
photobleaching, and autofluorescence (Weihs et al., 2020). BRET is
also an appropriate means to examine PPIs, protein folding, and
protease activities because the BRET-permissive distance of less than
10 nm is very similar to the dimensions of biological
macromolecular protein complexes.

4.2.4 Molecular strain probes
Kim et al. (2009a) previously demonstrated a unique non-

transcriptional assay system based on molecular tension of a
luciferase artificially appended by PPI. For the basic probe
design, a full-length luciferase was sandwiched between two-
component proteins of interest with the minimal length of
flexible linkers. Upon stimulation of a ligand, the two-component
proteins are approximated PPI and append a molecular tension to
the sandwiched luciferase. Kim et al. (2009a) found that tensed
luciferases can enhance the BL intensity. To date, they examined
various luciferases and found that RLuc8, ALuc23, and ALuc49 are
suitable for developing the molecular tension probes. For example,
the full-length RLuc8 is sandwiched between the ligand-binding
domain of estrogen receptor α (ER LBD) and the SH2 domain of Src.
This fusion protein elevates the optical intensities ligand-
dependently. Likewise, full-length ALuc23 or ALuc49 was
sandwiched between FKBP-rapamycin binding protein (FRB) and
FK506-binding protein (FKBP), and showed excellent sensorial
performance as a bioluminescent probe (Kim et al., 2016; Kim
et al., 2023b). The imaging systemworks even in a cell-free condition
(Kim et al., 2019b) and in the application to BRET system (Bae Kim
et al., 2020).

5 Summary

BL is an excellent optical readout that has been harnessed in
various bioassays and molecular imaging. The recent innovative
research greatly diversified the repertories of the toolbox.
Considering the potential choices of users, it is valuable to
properly understand the merits and demerits of current BL-
driven bioassays and molecular imaging systems.

Because we previously reported two major reviews on BL studies
in Anal. Sci. and Anal. Chem. (Ozawa et al., 2013; Kim and
Paulmurugan, 2021), we are also intended to update recent
research articles in this review. While this review initially
showcases BL resources (luciferase and luciferin) and their
applications to BL-driven bioassays, it also highlights both the
excellence and inferiority of respective BL-based bioassays and
molecular imaging modalities to provide readers with balanced
views. The “bright” side of BL was discussed in detail, which
includes the long dynamic range, low background intensity, high
S/N ratios, biocompatibility, simplicity in the measurement system,
low cost, and versatility in the assay design. In parallel, we
introduced the “dark” side as disadvantages of BL such as low
optical intensity, necessity of the specific substrates, poor spatial
resolution, and potential signal cross-leakage owing to broad
bandwidths.

It is expected that future efforts are devoted to basic material
studies, in addition to its parallel application in tracking biological
events of cells in vitro and in vivo. Similarly, it is also expected that
many BL studies exert a wide variety of colors palettes and NIR BL
systems. The direct merits of these developments could be that one
can construct multiplex bioassay systems using multiple optical
readouts, while the use of red and NIR BL can enhance imaging
applications in physiological samples and in living subjects.

The other important research tendency in BL studies is the
convergence and heterogenicity: BRET is a good example of such a
convergence between BL and FL. Likewise, BL can be adapted to
various heterogenous materials like nanoparticles and fluorescent
dyes. The genius convergence is fully open to future
analytical chemists.

Taken through great efforts, BL should be settled to be truly
quantitative, highly sensitive, and versatile optical readouts. Such
great breakthroughs in BL will be achieved from ideas inspired by
understanding of nature, computer modeling, and even simple
imagination.
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