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Remarkable progress has been made to elucidate the structural and mechanistic
enzymology of the biosynthetic pathways that give rise to naturally occurring
C-nucleosides. These compounds are generally cytotoxic and exhibit interesting
antiviral, antibiotic and anti-parasitic activity. Here we review current knowledge
concerning formycin biosynthesis and highlight deficiencies in our understanding
of key chemical transformations in the pathway.
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1 Introduction

There is renewed interest in the synthesis and clinical application of modified
nucleosides and nucleotides (Duffy et al., 2020; Schramm, 2018; Seley-Radtke and
Yates, 2018; Yadav et al., 2019). These compounds represent lead structures for
antiviral drug discovery (De Clercq, 2016), and are finding use as components of
expanded genetic alphabets (Hoshika et al., 2019; Pfeiffer and Nidetzky, 2020),
diagnostic reagents (Sefah et al., 2014), and drug delivery systems (Zhang L. et al.,
2020). Notably, the effectiveness of remdesivir in treating SARS-CoV-2 infections
(Mackman, 2022) has prompted a re-evaluation of the clinical utility of C-nucleosides;
compounds in which the nucleobase is connected to the sugar by a C-C rather than themore
labile C-N bond. In nature, C-nucleoside linkages are present in numerous microbial
secondary metabolites that exhibit interesting antibiotic and anti-viral activities, and the
past decade has seen considerable progress in understanding the biosynthetic origins of
these natural products (Shiraishi and Kuzuyama, 2019; Sosio et al., 2018; Zhang et al., 2022).
In this mini-review, we discuss current knowledge about the pathway leading to the
formycins 1-3 (Figure 1A), which are pyrazole-containing bioactive compounds (Santos
et al., 2020), and identify gaps in our understanding that remain to be closed.

2 Structure, chemistry and biological properties of
the formycins

Formycins A 1 and B 2 (Figure 1A) were first isolated from Nocardia interforma
approximately 60 years ago (Hori et al., 1964; Koyama and Umezawa, 1965), and
subsequently in cultures of Streptomyces kaniharaensis SF-557 (Zhu et al., 2020),
Streptomyces lavendulae (Aizawa et al., 1965) and Streptomyces resistomycificus NRLL
2290 (Zhang M. et al., 2020). There have been numerous studies into their structure,
chemical properties, and biological activity (Robins et al., 1966; Ishizuka et al., 1968;
Prusiner et al., 1973; Chenon et al., 1976). As well as being C-nucleosides, the
pyrazolopyrimidine ring features an N-N bond, a functional group that is relatively
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uncommon in natural products (Blair and Sperry, 2013; Waldman
et al., 2017). 1H NMR spectroscopy was used to establish the
tautomeric preferences of the pyrazolopyrimidine in solution, with
the major species being protonated at N7 (Krugh, 1973) consistent
with quantum chemical calculations (Orozco and Luque, 1995).

After cellular phosphorylation at C-5’ (Mehta and Gupta, 1985),
formycins A 1 and B 2 become nonhydrolyzable analogues of AMP and
GMP, respectively exhibiting anti-tumor, anti-viral (Dapp et al., 2014),
antibiotic and anti-parasitic activity (Bzowska, 2008). The compounds
likely exert their biological effects via a number of possible molecular
mechanisms, including inhibition of the enzymes AMP nucleosidase
(Ehrlich and Schramm, 1994) and purine nucleoside phosphorylase
(PNP) (Kierdaszuk et al., 2000). Indeed, the biological properties of
formycin A have inspired the synthesis of analogs that exhibit picomolar
affinity for human PNP (Ho et al., 2010) and suppress T-cell activity by

interferingwith purine recycling (Cohen et al., 1978;Markert, 1991). The
incorporation of formycinA into RNA, presumably via the triphosphate,
is also thought to be the molecular mechanism underlying its ability to
kill Leishmania parasites (Rainey and Santi, 1983). Given these findings,
it is perhaps surprising that neither formycins nor their derivatives have
found clinical use.

3 Formycin biosynthesis

Although little was known about the molecular details of formycin
biosynthesis until recently, early work established that formycin B 2 is a
precursor of formycin A 1 in N. interforma (Sawa et al., 1968).
Subsequent feeding experiments using 13C and 15N-labeled
compounds then revealed that i) lysine provides (at least) one of the

FIGURE 1
(A) Structures of compounds discussed in the text. (B) Gene cluster encoding coformycin (indicated by the arrow) and formycin biosynthesis. Color
scheme: yellow, oxygenases; salmon, aminotransferase; orange, hydroxylases; purple, C-glycoside synthase; blue, homologs of enzymes involved in de
novo purine biosynthesis; green, oxidoreductases; sky blue, MetRS homolog; grey, hypothetical enzymes. Functional annotations are provided in Table 1.
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nitrogen atoms in the pyrazole moiety (Ochi et al., 1976), and ii) four
carbon atoms in the pyrazolopyrimidine ring are obtained from
glutamate (or a related metabolite such as 2-oxoglutarate) (Ochi
et al., 1979). 14C-incorporation studies also demonstrated that 5′-
phosphoribosyl-1′-pyrophosphate (PRPP) is the source of the ribose
ring in the formycins (Kunimoto et al., 1971). Glutamate is a biosynthetic
precursor of other C-nucleoside natural products (Elstner and
Suhadolnik, 1972; Isono and Suhadolnik, 1977), including
pyrazofurin A 4 (Figure 1A) (Buchanan et al., 1980; Suhadolnik and
Reichenbach, 1981); the latter finding has subsequently proved essential
for efforts to understand the chemistry of formycin biosynthesis (vide
infra) (Ren et al., 2019; Zhang L. et al., 2020).

3.1 The gene cluster encoding enzymes that
mediate formycin biosynthesis

After approximately 35 years of little progress towards
elucidating the metabolic pathway leading to the formycins,

whole genome sequencing of S. kaniharaensis SF-557 allowed
both our group (Zhu et al., 2020), and (independently) Liu and
his co-workers (Ko et al., 2017; Wang et al., 2019), to identify the
biosynthetic gene cluster (BGC) encoding the enzymes that mediate
formycin synthesis (Figure 1B; Table 1). In addition to exploiting
comparative bioinformatics analysis (Watam et al., 2018),
identification of the BGC relied on the presence of genes
encoding homologs to both lysine N-hydroxylating
monooxygenase (Franceschini et al., 2012) and 4-(β-D-
ribofuranosyl)aminobenzene 5′-phosphate (RFA-P) synthase,
which forms a C-glycoside from PRPP and para-aminobenzoic
acid (Rasche and White, 1998; Dumitru and Ragsdale, 2004;
White, 2011; Bechard et al., 2019) during the biosynthesis of the
modified folate methanopterin (White, 1996). Direct experimental
evidence was provided, however, by Liu and co-workers (Wang
et al., 2019). Thus, using the donor strain ET12567/pUSZ8002
(Paranthaman and Dharmalingam, 2003) to introduce
Streptomyces-Escherichia coli shuttle vectors (Sun et al., 2009)
into S. kaniharaensis SF-557, mutant strains were obtained

TABLE 1 Actual and putative (red or purple) functional annotations of proteins encoded by the 24 ORFs in the formycin BGC found in Streptomyces
kaniharaensis SF-557.

Protein No. of residues Functional annotation

ForD 449 FAD-dependent oxidoreductase

ForE 342 FAD-dependent oxidoreductase

ForH 196 Phosphoribosylaminoimidazolecarboxamide formyltransferase

ForA 423 Adenylosuccinate synthetase

ForF 333 NAD-dependent hydroxyacid dehydrogenase

ForG 210 RNA polymerase σ-70 factor

ForI 423 PLP-dependent aminotransferase

ForJ 677 MetRS homolog (N-N bond formation)

ForK 443 L-lysine 6-monooxygenase

ForL 379 L-lysine dehydrogenase

ForM 420 Phosphoribosylglycinamide synthetase

ForN 127 Hypothetical protein

ForO 645 Acylpeptide hydrolase

ForP 188 Nudix hydrolase

ForQ 396 Amidohydrolase

ForR 374 FAD-dependent oxidoreductase

ForS 538 FAD-dependent oxidoreductase

ForB 474 Adenylosuccinate lyase

ForT 341 C-glycoside synthase

ForU 408 Phenylpropionate dioxygenase

ForV 185 FMN reductase

ForC 333 SAICAR synthetase

ForW 936 Fe-S protein, lactate dehydrogenase homolog

ForX 295 Ribokinase
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containing in-frame deletions of the forC, forF, forH, forL, forT, and
forU genes. Formycin A production in these deletion mutants was
either abolished or significantly diminished, with the exception of
the Δ forC and Δ forL mutants (Wang et al., 2019). Presumably,
other enzymes in the organism can perform the transformations
associated with ForC and ForL. Similar experiments to show that
ForW and ForX are required in the biosynthetic pathway, however,
have not yet been reported. Remarkably, the formycin BGC
therefore consists of 24 ORFs, three of which encode two
enzymes and a transporter involved in the biosynthesis of
coformycin 5, an evolutionarily unrelated nucleoside (Figure 1A)
(Ren et al., 2020). Formycin and coformycin (Nakamura et al.,
1974), which is a potent inhibitor of adenosine deaminase (ADA)
(Frieden et al., 1980), are therefore produced by S. kaniharaensis SF-
557 at the same time. This co-production of adenosine-like, non-
canonical nucleosides and ADA inhibitors is frequently observed,
and may represent a general mechanism to prevent ADA-catalyzed
deamination of nucleoside-containing natural products (Xu
et al., 2018).

The large number of open reading frames (ORFs) in the
formycin BGC was unexpected given the similarity of this natural
product to adenosine 6 (Figure 1A), which is formed by
microorganisms from α-D-ribose-5′-phosphate in only eleven
enzyme-catalyzed steps (Buchanan and Hartman, 1959; Kappock
et al., 2000). The enzymes ForA, ForB, ForC, and ForH are indeed
homologs of those that build the six-membered ring in purine
nucleobases (Ko et al., 2017). Moreover, some of the enzymes
encoded in the formycin BGC are homologous to those that
mediate pyrazofurin A biosynthesis, suggesting that the pathways
to formycin and pyrazofurin A (Figure 1A) proceed via a series of
common intermediates (Ren et al., 2019; M; Zhang et al., 2020b;
Zhao et al., 2020). Due to some confusion in the literature, in this
review we use the naming convention for enzymes in the
pyrazofurin BGC devised by Ryan and Du (Zhao et al., 2020).
Thus, genes encoding a lysine N6-hydroxylating monooxygenase are
named ForK/PyrM and a methionyl-tRNA synthase homolog are
denoted ForJ/PyrN (M. Zhang L. et al., 2020; Zhao et al., 2020). The
function of these two enzymes, which are found in other microbial
pathways leading to natural products possessing an N-N bond (He
et al., 2022; Matsuda et al., 2022a; Twigg et al., 2019; Zheng et al.,
2024), is to couple lysine to glutamate in the early stages of formycin
and pyrazofurin 4 (Figure 1A) (Zhao et al., 2021). Similarly, the
genes ForT and PyrE encode homologous enzymes that catalyse C-C
bond formation (Gao et al., 2020; Ren et al., 2019; M; Zhang
et al., 2020b).

3.2 Early steps in the pathway: Building the
N-N chemical bond

The deduced primary structures of ForK, and the homologous
enzyme PyrM, identify these enzymes as lysine N-hydroxylating
monooxygenases, similar to the well-characterized enzyme used in
kutzneride biosynthesis (Neumann et al., 2012; Setser et al., 2014).
ForK seems likely to use dioxygen to hydroxylate the ε-amino group
of lysine 7 (Supplementary Figure S1A) in an interesting reaction
that likely proceeds via homolytic O-O cleavage in a flavin
hydroperoxide intermediate (Badieyan et al., 2015). Work in our

group has confirmed that ForK is an FAD-dependent enzyme for
which NAD(P)H is the reducing agent. As observed for other
microbial FAD-dependent N-hydroxylating monooxygenases
(Mügge et al., 2020), ForK is a tetramer at high concentration
but becomes dimeric as the protein concentration is decreased.

Given that the hydroxy substituent is a leaving group, especially if
activated by acetylation or phosphorylation, the chemical logic of
hydroxylating the side chain nitrogen is to activate it for nucleophilic
attack by an amine to form anN-N bond. This transformation is likely
accomplished by ForJ, based on recent studies of the catalytic activity
of the homologous enzyme PyrN in pyrazofurin A biosynthesis, which
mediates the coupling of N6-hydroxylysine 8 and glutamate 9 via an
N-N bond (Supplementary Figure S1B) (Zhao et al., 2021). As is the
case for ForK, PyrN is composed of two domains, one of which is
homologous to methionyl-tRNA synthetase (MetRS) (Mechulam
et al., 1999). The other, smaller domain binds one Zn2+ ion and is
a member of the cupin superfamily of enzymes (Dunwell et al., 2000).
Elegant experiments using truncated PyrN variants showed that the
MetRS-like domain mediates formation of a reactive ester 10
(Supplementary Figure S1B), which undergoes acyl-transfer to
form an N-hydroxyamide 11 in the absence of the cupin domain
(Zhao et al., 2021). Full-length PyrN, however, yields the hydrazine-
containing intermediate 12 when incubated with ATP, glutamic acid
andN6-hydroxylysine (Supplementary Figure S1B) (Zhao et al., 2021).
Thus, the cupin domain plays an essential role in promoting N-N
bond formation. Although PyrN could not be crystallized, genome
mining identified a cupin protein from Rhodococcus jostii RHA1 (also
called RHS1) that catalyzes N-N bond formation (Zhao et al., 2021)
and for which an X-ray crystal structure is available showing the
presence of a Zn2+-binding site (PDB: 5UQP). QM/MM calculations
support a mechanism in which N-N bond formation takes place by
reaction of the ester formed by the MetRS-like domain and a second
glutamate molecule, which are both coordinated to the Zn2+ center
(Zhao et al., 2021). The N-N bond formation in the proposed
mechanism, however, proceeds via a formal 6-endo-tet
SN2 reaction, which is technically disfavored by Baldwin’s rules
(Baldwin, 1976; Gilmore et al., 2016). The calculated barrier for
this PyrN-catalyzed step, which is 13.3 kcal/mol, remains to be
validated by kinetic experiments.

Based on their sequence homology to amonooxygenase encoded
by the Spb39 gene (Matsuda et al., 2017), which forms
hydrazinoacetic acid in the pathway leading to a dipeptide
natural product containing an N-N bond (Matsuda et al., 2017),
ForL and PyrL are probably FAD-dependent monooxygenases,
which carry out C-H abstraction on 12 to give an intermediate
that spontaneously breaks down to give the aldehyde 13 and
hydrazinoglutamate 14 (Supplementary Figure S1B). The detailed
kinetic and structural characterization of these enzymes, however,
has not yet been reported. This machinery for making N-N bonds
appears to be conserved in bacteria to make a wide variety of natural
products in addition to pyrazofurin A and the formycins (Matsuda
et al., 2022b; Matsuda and Wakimoto, 2024).

3.3 Assembling the C-nucleoside

ForT is a C-glycoside synthase that couples PRPP 15 with 4-
amino-1H-pyrazole-3,5-dicarboxylate (APDA) 16 (Supplementary
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Figure S2A) (Ren et al., 2019). Remarkably, the very closely related
molecule 4-hydroxy-1H-pyrazole-3,5-dicarboxylate (HPDA) 17 is
not a substrate, despite the homologous enzyme, PyrE, using both
pyrazoles (M. Zhang L. et al., 2020). As a result, HPDA 17 is almost
certainly converted to the APDA precursor 19 in the preceding step
of the pathway by the PLP-dependent enzyme ForI using L-aspartate
as a nitrogen source (Supplementary Figure S2B) (Gao et al., 2019).
From an evolutionary perspective, ForT is structurally homologous
to homoserine kinase, thereby placing it within the GHMP kinase
superfamily of enzymes (Zhou et al., 2000). Using a combination of
X-ray crystallography and kinetic studies of a series of ForT variants
(Gao et al., 2020; Li et al., 2023), we have been able to obtain evidence
that C-C bond formation proceeds via electrophilic substitution to
form a tetrahedral intermediate. Subsequent decarboxylation then
yields the C-nucleoside 18 (Supplementary Figure S2A), which can
be elaborated to a pyrazolopyrimidine (Supplementary Figure S3).
The crystal structure of the T138V ForT variant (in which Thr-138 is
replaced by valine) bound to APDA 16 and MgATP reveals that the
pyrazole substrate forms very few interactions with the enzyme,
being held in place by hydrogen bonds to the carboxylate that is
retained in the product, thereby correctly positioning APDA relative
to the reactive C-1’ carbon of PRPP 15 (Li et al., 2023). The only
other APDA/ForT interaction, which is mediated by a water
molecule, involves a pyrazole nitrogen and the side chain
carboxylate of Glu-221. It is therefore possible that Glu-221 acts
as a general base to activate the pyrazole for nucleophilic attack, and
replacing this residue with alanine does indeed yield an inactive
ForT variant (Li et al., 2023). Given that ForT does not make
hydrogen bonds with the amino substituent of the pyrazole,
elucidating the mechanism by which it can discriminate between
APDA 16 and HPDA 17 will likely require computational strategies
(Zhang et al., 2023).

The lack of direct APDA/ForT interactions, however, raises the
question of whether the enzyme can couple alternate substrates to
PRPP (Gong et al., 2021; Pfeiffer and Nidetzky, 2023A; Pfeiffer and
Nidetzky, 2023B). To date, we have shown that ForT can accept an
isomeric pyrazole, but the product appears to be the N-nucleoside
rather than a C-nucleoside (Li et al., 2023). It is possible that pyrroles
may also be substrates for the coupling reaction, in the light of recent
work on the biosynthesis of showdomycin (Ren et al., 2021), another
C-nucleoside with interesting biological activity (De Clercq, 2016).

3.4 The final steps of the pathway

Elaboration of the pyrazole-containing C-nucleoside 18 to
formycin B 5′-monophosphate 21 is accomplished by an
identical series of steps to those used in the de novo formation
of inosine 5′-monophosphate (IMP) (Supplementary Figure S3)
(Ko et al., 2017). The enzymes ForC, ForB, ForH and ForA, which
carry out these steps, are therefore homologs of those used in
purine biosynthesis (Kappock et al., 2000). In a surprising
observation, however, ForH is a truncated form of PurH, the
enzyme that forms the pyrimidine ring during purine
biosynthesis (Kappock et al., 2000). As ForH is composed only
of a cyclohydrolase domain similar to that present in PurH (Wang
et al., 2019), it does not exhibit any formylase activity and cannot
convert the pyrazole amide 20 into the N-formylated intermediate

21 that must be cyclized to yield the pyrazolopyrimidine ring in
formycin B 5′-monophosphate 22 (Supplementary Figure S3). As
shown in a series of elegant experiments by Liu and co-workers, the
conversion of 20 into 21 is catalyzed by PurH. On the other hand,
although PurH catalyzes the synthesis of the formylated intermediate
21, it cannot use this compound as a substrate. ForH must therefore
catalyze the cyclization of 21 to yield formycin B 5′-monophosphate
22 (Wang et al., 2019). Thus, formycin production depends on the
presence of PurH, an enzyme required in purine biosynthesis. The
enzymes ForA and ForB then convert formycin B 5′-monophosphate
22 into formycin A 5′-monophosphate 23 using identical amination
chemistry used in the synthesis of AMP from IMP in purine
biosynthesis (Kappock et al., 2000). Formycin B 5′-monophosphate
22 is also the precursor of oxoformycin B 3 (Figure 1A) (Sawa et al.,
1968) although the enzyme that oxidizes the pyrazolopyrimidine ring
has not yet been identified. Presumably, it is homologous to IMP
dehydrogenase (Hedstrom, 2009). Formycin A, formycin B and
oxoformycin B are isolated as the nucleosides, however, meaning
the 5′-phosphates must be removed by phosphatases prior to release
of the C-nucleosides into the environment. The apparent absence of a
gene encoding a phosphatase in the formycin BGC implies that these
dephosphorylation reactions are catalyzed by one, or more,
phosphatases already present in the cell.

4 Discussion

Despite the progress made in understanding the metabolic
origins of the N-N and C-nucleoside bonds in the formycins,
functions for only nine of the 24 proteins encoded in the
formycin BGC have been elucidated. Even excluding the gene for
a putative transporter that mediates excretion of these C-nucleoside
natural products, this leaves a remarkable number of enzymes
seemingly required for the conversion of hydrazinoglutamate 14
into HPDA 17. As a result, there is little consensus regarding the
reactions needed to bridge these two intermediates in the
biosynthetic pathway. The key chemical problems are to form a
new C-N bond at C-4 and to hydroxylate C-3 of hydrazinoglutamate
14. In principle, both reactions can be accomplished by oxidizing 14
to obtain an intermediate containing a double bond between C-3
and C-4 but no such desaturase has been identified. The latest
proposal therefore postulates a dehydropyridine intermediate,
which is easily oxidized to the pyridine 24 (Supplementary
Figure S4). Enzyme-catalyzed ring-opening followed by C-N then
yields the target pyrazole skeleton (Ren et al., 2019). Although this
“simple route” appears consistent with annotated oxygenases and
hydroxylases encoded in the cluster (Table 1), C-N bond formation
to give the pyrazole proceeds via an energetically disfavored five-
endo-trig reaction (Baldwin, 1976; Gilmore et al., 2016). An
approach based on in-frame deletion or modification of specific
genes in the cluster (Alberti and Corre, 2019), as described for S.
kaniharaensis by Liu and co-workers (Wang et al., 2019), coupled to
identifying intermediates seems the most promising strategy to
resolve the issue (Caesar et al., 2021). Whatever the outcome of
such studies, the chemistry used by microorganisms to make and
manipulate heterocyclic ring systems will continue to surprise and
fascinate natural product chemists (McCarty et al., 2009; Palmu
et al., 2017; Kong et al., 2019; Ren et al., 2022).
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