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Introduction: Glioblastoma is a brain cancer difficult to treat but recently mixed-
ligand vanadium(V) Schiff base/catecholato complexes have exhibited high
in vitro anti-proliferative activity. Hence, we explored the activity of [VVOL1L2],
which contains two iron chelating ligands, 2-hydroxy-1-naphthylaldehyde iso-
nicotinoyhydrazone (L1H2) and clioquinol (L2H). This complex was previously
reported to be very effective against Trypanosoma cruzi, the causative agent of
Chagas disease. These studies explored the possibility that a compound with
efficacy against Trypanosoma cruzi also has efficacy against human glioblastoma
cancer cells. Since [VVOL1L2] was poorly soluble in water and the clioquinol ligand
dissociated from the complex upon addition to an aqueous environment, an
understanding of the speciation was very important to interpret its
biological activity.

Methods: Stability studies in cell media were followed by UV/Vis spectroscopy to
determine speciation of relevance to the in vitro anti-proliferative activity of the
complex with T98G glioblastoma cells, which was also measured in the absence
and presence of Fe(III).

Results and Discussion: The current work demonstrated that the mixed-ligand
vanadium coordination complex had high in vitro anti-proliferative activity
against the human glioblastoma (T98G) cell line. The enhanced anti-
proliferative effects of the mixed-ligand vanadium complex against T98G cells
could be due to either hydrolysis of complex and release of the toxic clioquinol, or
the rapid uptake of the lipophilic complex prior to hydrolysis. The speciation
studies showed that at least part of the potent toxicity of the mixed-ligand
coordination complex stemmed from release of the bioactive clioquinol
ligand from the complex, which depended on whether Fe(III) was present. The
studies also showed that the [VV(O)2 (L1H)] coordination complex was the most
potent complex that remained intact and, hence, the complex that is the most
biological active. Thus, future development of complexes should focus on the
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one-ligand intact complexes or making any mixed-ligand complex more water
soluble, stable in aqueous solution, or designed to be rapidly taken up by diseased
cells prior to hydrolysis.

KEYWORDS

mixed-ligand vanadium complex, glioblastoma, enhanced anti-proliferative properties,
speciation, complex hydrolysis, cellular uptake, albumin-V complex, Fe(III) chelating agent

1 Introduction

Vanadium is an element with biological significance, and
numerous prospective therapeutic drugs based on vanadium
have been proposed for addressing various diseases,
particularly diabetes and cancer (Thompson et al., 2009;
Levina and Lay, 2011; Willsky et al., 2011; Pessoa et al., 2015;
Scior et al., 2016; Levina and Lay, 2017; Crans et al., 2019a; Pisano
et al., 2019; Kowalski et al., 2020; Levina et al., 2020; Kostenkova
et al., 2024). The applications of vanadium compounds for
treatment of diabetes included clinical trials with vanadium
salts and V(IV)-maltolato complex (BMOV) (Thompson et al.,
2009; Levina and Lay, 2011; Willsky et al., 2011; Pessoa et al.,
2015; Crans et al., 2019a; Kowalski et al., 2020). However, the
number of applications of vanadium for treatment of diabetes
significantly reduced the contributions in this area which was
compounded when BMOV went of patent on 30 September 2011.
For the past decade the interest in the application of vanadium
compounds for treatment of cancer has dramatically increased.
The vanadium coordination complexes used contain
oxidovanadium(IV) and -(V) moieties including VIVO2+,
VVO3+, VVO2

+, and VVO3
− (Thompson et al., 2009; Willsky

et al., 2011; Pessoa et al., 2015; Scior et al., 2016; Levina and
Lay, 2017; Crans et al., 2019a; Pisano et al., 2019; Kowalski et al.,
2020; Levina et al., 2020; Kostenkova et al., 2024). Additionally,
polyoxometalates have also exhibited noteworthy biological
activity (Bijelic et al., 2019; Aureliano et al., 2021; Kostenkova
et al., 2023a). Different classes of cancers have been reported to be
treated by vanadium compounds including in vitro efficacy
against breast, prostatic, liver, kidney, bone, brain and other

cancers cell lines. Recent applications of vanadium compounds
for treatment of cancers include applications of the next
generation of cancer treatment such as oncolytic viruses that
can be enhanced using vanadium compounds (Selman et al.,
2018; Bergeron et al., 2019; McAusland et al., 2021). In addition,
the potential for intratumoral application of vanadium
compounds has recently been described, whereby high
antiproliferative in vitro efficacy was demonstrated in cancer
cell lines from difficult cancers to treat, such as the brain cancer,
glioblastoma (Levina et al., 2020; Levina et al., 2022; Murakami
et al., 2022; Kostenkova et al., 2023b; Levina et al., 2023).
Glioblastoma is both difficult to treat and has very low
survival rates once diagnosed.

Over the past 15–20 years rational design of vanadium-based
compounds have been reported with the objective to develop agents
against the parasite Trypanosoma cruzi (T. cruzi), causative agent of
Chagas disease (Gambino, 2011; Pessoa et al., 2015; Scalese et al.,
2015; Scalese et al., 2017; Scalese et al., 2018; Scalese et al., 2019;
Mosquillo et al., 2020; Scalese et al., 2021; Scalese et al., 2022b).
Chagas disease is an ancient endemic illness in Latin America
considered a neglected disease (NTD) by the World Health
Organization (Santos et al., 2020; WHO, 2023). Within this
context, various series of VIVO- and VVO-based compounds were
synthesized and demonstrated to have activity against T. cruzi
(Gambino, 2011; Pessoa et al., 2015; Scalese et al., 2015; Scalese
et al., 2017; Scalese et al., 2018; Scalese et al., 2019; Mosquillo et al.,
2020; Scalese et al., 2021). Within these vanadium-based
compounds, [VVOL1L2] (Figure 1), featuring L1 as doubly
deprotonated 2-hydroxy-1-naphthylaldehyde isonicotinoyl-
hydrazone (Iron Chelator 311 or NIH, CAS 796-42-9) and L2 as

FIGURE 1
Structures of V(V) complexes and their ligands.
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deprotonated 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol,
CAS 130-26-7), has been reported as a hit compound against T.
cruzi (Scalese et al., 2021). [VVOL1L2] was selectively active against
T. cruzi trypomastigotes, which is the infective form of the parasite
found in the blood of infected humans, while being well tolerated by
non-cancer mammalian (VERO) cells (Scalese et al., 2021).

The ligand L1H2 is a potent Fe(III) chelator that easily
penetrates cell membranes (Buss et al., 2002) and shows anti-
tubercular (Sah and Peoples, 1954; John et al., 2016), anti-
malarial (Walcourt et al., 2004; Melnyk et al., 2006), anti-HIV
(Debebe et al., 2007) and anti-cancer (Richardson et al., 1995;
Green et al., 2001; Whitnall et al., 2006) activities. Clioquinol
(L2H2) is a broad spectrum metal chelator with particularly
strong affinity for Cu(II) and was widely used as an anti-
protozoan drug but was withdrawn from clinical use due to
neurotoxicity (Perez et al., 2019). However, it is currently still
used for topical treatment of fungal infections (Prachayasittikul
et al., 2013; Song et al., 2015; Oliveri and Vecchio, 2016; Chauhan
et al., 2023). Investigations remain underway to develop safer and
less toxic formulations of L2H to harness its anti-microbial, anti-
cancer and anti-neurodegenerative activities (Lanza et al., 2018;
Khan et al., 2020; Joaquim et al., 2021; Chauhan et al., 2023). The
approach of combining these two biologically active ligands,
L1H2 and L2H, with a biologically active metal ion, such as
V(V), was explored and led to a complex with enhanced and
selective anti-trypanosomal activity of [VVOL1L2] (Scalese et al.,
2021). However, limited stability of V(V/IV) complexes in
biological media and small therapeutic index are the main
factors that prevented V-based drugs from entering clinical
use in diabetes (Thompson et al., 2009; Scior et al., 2016). The
former led to data misinterpretations in preclinical studies (Le
et al., 2017; Levina and Lay, 2017; Nunes et al., 2021). In the case
of [VVOL1L2], we found by 51V NMR spectroscopy that the
complex dissociates in aqueous solutions with the release of
L2H ligand and formation of the homoleptic complex,
[VV(O)2(L

1H)] (Figure 1) (Scalese et al., 2022a). As a result,
we concluded that at least part of the observed efficacy and
specificity on T. cruzi trypomastigotes cells are due to
dissociated ligand (Scalese et al., 2021). However, binding of
biologically active ligands to V(V/IV) ions can lead to improved
activity via ligand stabilization and increased cellular uptake
rate (Hamidi et al., 2016; Reytman et al., 2018; Murakami
et al., 2022).

The potential for anti-cancer properties of the [VVOL1L2] complex
were also postulated, since there are reported similarities in metabolism
of protozoans such as T. cruzi and Leishmania and various human
cancer cells (Martínez-Flórez et al., 2020; Dorosti et al., 2014; Perez et al.,
2008). For example, some anti-trypanosomal compounds such as
artemisinin and albendazole have demonstrated efficacy against
experimental tumors and, conversely, antitumor agents such as
imatinib, antifolates and cisplatin have displayed antiparasitic effects
(Kinnamon et al., 1979; Perez et al., 2008; Dorosti et al., 2014; Scalese
et al., 2017; Odularu et al., 2019; Rivas et al., 2019;Machado et al., 2023).
Specifically, antigens such as Tn, TF, sial Tn and Tk have been found in
both some parasites and in solid lymphoma tumors (Perez et al., 2008).
However, this is of limited relevance to cancers of the brain since there is
an additional requirement to traverse the blood-brain barrier (BBB).
This not only requires drugs to be small and lipophilic (Wu et al., 2023),

but also for metal complex anti-cancer drugs to be sufficiently stable to
traverse the BBB, which is not the case for [VVOL1L2] (Scalese
et al., 2022a).

Despite these limitations, the differential reactivity of V(V/
IV) complexes in cancer tumors and surrounding healthy tissues
can be used to advantage in novel cancer treatments, particularly
for brain and pancreatic cancers (Levina et al., 2020; Levina
et al., 2022; Murakami et al., 2022; Kostenkova et al., 2024;
Levina et al., 2023), where direct intratumoral injections have
the potential to overcome the limitation of transport through the
BBB (Levina et al., 2022). In particular, aggressive brain cancers
are difficult to treat, with glioblastoma by far being the most
common and aggressive form of glioma (brain tumor) with an
average incidence of three cases per 100,000 individuals
(Fakhoury, 2016). The difficulty in drug transport across the
BBB, together with the high cell proliferation of glioblastoma
and invasion with frequent recurrence after surgical
intervention and chemotherapy presents a challenge for drug
design (Fakhoury, 2016; Wu et al., 2023). Recent clinical trials
and applications have looked to overcome some of these
impediments by the of use intratumoral injections of highly
cytotoxic or immunomodulating drugs. Next generation
intratumoural injection approaches to treat glioblastoma
currently in Phase I and II human clinical trials include those
for platinum-based drugs (e.g., cisplatin and oxaliplatin), and
T-Vec, which are drugs used to treat advanced melanoma and a
range of other cancers (Hamid et al., 2020; Levina et al., 2022).
Certain mixed Schiff base/catecholato and homoleptic
catecholato complexes are amongst the few classes of V(V)
species that have sufficient stability in cell culture media to
be taken up by cancer cells intact to exert strong anti-
proliferative activity against diverse cancer cell lines (Crans
et al., 2019b; Griffin et al., 2019; Levina et al., 2020; Levina
et al., 2022; Murakami et al., 2022; Kostenkova et al., 2023b;
Levina et al., 2023). In this work, we explored detailed stability
and anti-proliferative studies on [VVOL1L2] and [VV(O)2(L

1H)]
in a human brain cancer (glioblastoma) cell line, T98G, which
was previously established as a lead model for anti-cancer
activity studies of reactive V(V) complexes (Levina et al.,
2020; Levina et al., 2022; Murakami et al., 2022; Kostenkova
et al., 2023b). The speciation studies are crucial for
understanding which species cause the biological activity of
vanadium complexes with the objective to improve their
design and ultimately promote their future clinical use (Scior
et al., 2016; Levina et al., 2017; Levina and Lay, 2017; Crans et al.,
2019a; Levina et al., 2023).

2 Materials and methods

2.1 General materials and methods

Common laboratory chemicals and the L2H free ligand
(analytical grade, >99% purity) from Merck were used without
additional purification, and water was purified by the MilliQ
technique. The following sources of proteins (Merck) were used:
human apo-transferrin (Tf; >98% protein; ≤0.005% Fe; Cat. No.
T1147), and human serum albumin (HSA; >99% protein; Cat.
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No. A8763). The ligand L1H2 and the V(V) complexes, [VOL1L2]
and [V(O)2(L

1H)], were synthesized and characterized
previously in the Gambino group (Scalese et al., 2021). Stock
solutions of complexes or free ligands in dimethyl sulfoxide
(DMSO) or dimethylformamide (DMF) were prepared on the
day of experiments. Solutions in DMF were used for mass
spectrometry only, due to the detrimental effect of DMSO in
this technique. Stock solutions of Fe(III)-citrate (~10 mM) were
prepared by mixing aqueous solutions of Fe(NO3)3·9H2O and
citric acid disodium salt (1:2 metal to ligand molar ratio), and
adjusting the pH value to ~5.0 with aqueous NaOH (1.0 M).
Precise Fe(III) concentrations in these solutions were determined
by graphite furnace AAS, using an Agilent Technologies Series
200 spectrometer (equipped with Zeeman background
correction) and certified Fe(III) standard (Aldrich Cat. No.
16596). Stock solutions of sodium ascorbate (0.50 M) were
prepared immediately before use by dissolving solid ascorbic
acid (Merck 255564) in 0.50 M aqueous NaOH.

Stabilities of V(V) complexes and ligands were studied by
electronic absorption (UV-vis-NIR) spectroscopy at 310 K in
either phosphate buffered saline (PBS, containing 150 mM NaCl
and 20 mM phosphate buffer, pH 7.4) or in cell culture medium
without phenol red (Thermo Fisher Scientific, Cat. No. 31053-028,
CCM) that was fully supplemented according to the conditions of
cell assays (see below), and additionally supplemented with 2-[4-
(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES,
10 mM) to maintain pH 7.4 under ambient atmosphere (Levina
et al., 2017). The pH values of PBS and media were checked
immediately before use with Activon 210 ionometer that was
equipped with AEP 321 glass/Ag/AgCl electrode and calibrated
daily using standard pH solutions (Aldrich). The UV-vis-NIR
spectra were acquired over the 300–1,020 nm range (resolution,
0.5 nm) on a Specord S600 diode-array spectrometer (Analytic
Jena, Germany) that was equipped with a HP89090A Peltier
temperature controller.

Low-resolution electrospray ionization mass spectrometry
(ESI-MS) data for complexes and free ligands were collected
on a Bruker amaZon SL spectrometer, using the following
parameters: nebulizer pressure, 27.3 psi; spray voltage, 4.5 kV;
capillary temperature, 453 K; N2 flow rate, 4 L min−1; m/z range,
100–1,000 (alternating positive- and negative-ion modes).
Analyzed solutions (5.0 μL) were injected into a flow of
MeOH (flow rate, 0.30 mL min−1). Acquired spectra were the
averages of 100–200 scans (scan time, 10 ms). Solutions for mass
spectrometry were prepared by diluting stock solutions of V(V)
complexes or the ligands (10 mM in DMF) 200-fold either with
pure MeOH, or with MeOH/H2O mixture (1:1 vol/vol) that
contained NH4HCO3 (10 mM, pH 7.5) (Le et al., 2017; Griffin
et al., 2019). Simulations of the mass spectra were performed
using IsoPro software (version 3.0, M. Senko, Sunnyvale, CA,
United States, 1998).

Concentrations of V in cell digests were determined by ICP-MS
with a Perkin-Elmer Nexion 350X spectrometer, using a standard
V(IV) solution (Choice Analytical, Australia) and 193Ir the peak as
an internal standard. The measurements were performed in kinetic
energy discrimination (KED) mode to eliminate the interference of
[35Cl16O]+ ions with the determination of 51V+ (Sarmiento-Gonzalez
et al., 2005).

2.2 Cell culture, proliferation and V
uptake assays

Pre-sterilized media and sterile plasticware used in cell
culture were purchased from Thermo Fisher Scientific
Australia. The well-established human cancer cell lines: T98G
(glioblastoma multiforme, CRL-1690) and HFF-1 (normal
human foreskin fibroblasts, SCRC-1041) were purchased from
the American Type Culture Collection (ATCC) and used at
passages four to six. The cells were cultured using standard
techniques (Freshney, 2016) in Advanced DMEM (Cat. No.
12491-015), supplemented with L-glutamine (2.0 mM),
antibiotic-antimycotic mixture (100 U mL−1 penicillin,
100 mg mL−1 streptomycin and 0.25 mg mL−1 amphotericin B)
and fetal calf serum (FCS; heat-inactivated; 2% vol). For
proliferation experiments, cells were seeded in 96-well plates
at an initial density of 1.0×103 (T98G) or 3.0×103 (HFF-1) viable
cells per well in 100 μL medium and left to attach overnight.

Cell proliferation was measured in 72 h assays using either fully
supplemented growth medium or the medium additionally
supplemented with physiological concentration of human
serum albumin (HSA, 0.60 mM), human apo-transferrin (Tf,
30 μM) (Levina et al., 2023) or sodium ascorbate (5.0 mM).
These additionally supplemented media were prepared
immediately before use and filtered through a sterile 0.22 μm
pore membrane (Merck SLGP044RS). Stock solutions of
[VOL1L2], [V(O)2(L

1H)], L1H2 or L2H (10 mM in DMSO) were
serially diluted two-fold with DMSO and then added to cell culture
media so that all the treatments, including controls, contained
1.0% (vol.) DMSO, which was well tolerated by the cells (Ilieva
et al., 2021). Stock solutions of Fe(III)-citrate and Na3VO4

(10 mM in H2O) were serially diluted with sterile water. Cell
culture media containing the treatment compounds at the
required final concentrations were either added to the cells
within 1 min (fresh solutions) or left in cell culture incubator
(310 K, 5% CO2) for 24 h prior to the cell treatments (aged
solutions) (Griffin et al., 2019; Levina et al., 2020; Murakami
et al., 2022; Kostenkova et al., 2023b; Levina et al., 2023). Each
treatment included six replicate wells and two background wells
that contained the same components except the cells. After 72 h
incubation with the treatment compound, the treatment medium
was removed and the medium containing MTT reagent (1-(4,5-
dimethylthiazol-2-yl)-3,5-diphenylformazan, Sigma M5655;
1.0 mg mL−1; prepared immediately before use) (Sylvester,
2011) was added. After 4–6 h incubation with MTT reagent,
the medium was removed, the blue formazan crystals were
dissolved in 0.10 mL per well of DMSO, and the absorbance at
600 nm was measured using Victor V3 plate reader. Typically, the
treatment compounds were applied in a series of nine two-fold
dilutions, starting from 100 μM V, plus the DMSO control, and
the IC50 values were calculated using Origin Pro software
(2022 version, OriginLab, Northampton, MA, United States).
Note that [VOL1L2] partially precipitated at the highest
concentration, while all the other compounds were fully soluble
in the medium up to 100 μM.

For V uptake experiments, T98G cells were grown to ~80%
confluence in twelve-well plates (three replicas per treatment).
Incubations with the treatment compounds (50 μM V; freshly
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added to fully supplemented medium) were performed for 1 h at
310 K, 5% CO2. Longer treatments were not used due to high
toxicity of some of the compounds, which led to premature cell

detachment. After the treatments, V-containing media were
removed, the cell layers were washed twice with PBS, detached
with TrypLE solution, pelleted, and washed again with PBS.

FIGURE 2
Typical UV-vis-NIR spectra of V(V) complexes, their free ligands and decomposition products at 50 μM concentration: (A) decomposition of
[VOL1L2] under the conditions matching those of ESI-MS studies; (B) decomposition of [VOL1L2] under the conditions matching those of cell assays (CMM
is cell culture medium, see Materials and Methods for details); (C) decomposition of [V(O)2(L

1H)] under the conditions matching those of cell assays; (D)
decomposition of [V(O)2H

1] under cell assay conditions in the presence of serum proteins, ascorbate or Fe(III); (E) comparison of decomposition
products of L1H2 in CCM and phosphate buffered saline (PBS); and (F) decomposition of L2H in CCM.
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Detachment and washing of cell pellets were used to remove V
that was absorbed on the culture plates and on the cell surface
(Jensen et al., 2011). Cell numbers in each pellet were counted
with Countess automatic counter, typical numbers were
(2 ± 0.5)×105 cells/well, cell viability was >95% (Trypan blue

staining). Cell pellets were digested with 0.20 mL of 65% HNO3

(trace pure, Fluka Cat. No. 30709) for 3 days at 295 K, then
diluted with Milli-Q water to 1.0 mL for ICP-MS
analysis. Cellular V concentrations were expressed in atoms
V per cell.

FIGURE 3
Typical ESI-MS data for V(V) complexes and their free ligands (50 μM in 50% MeOH-H2O containing 10 mM NH4HCO3; negative-ion mode) taken
immediately after preparation: (A) [VOL1L2]; (B) [V(O)2(L

1H)]; (C) L1H2; (D) L
2H; (E–H) experimental (lines) and fitted (dots, calculated with IsoPro software)

signals of main species.
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3 Results

3.1 Reactivities of V(V) complexes and
their ligands under the
conditions of T98Gcell assays

Decomposition of V(V) complexes under the conditions
matching those of cell viability assays was studied using a
combination of electronic absorption (UV-vis-NIR) and
electrospray mass spectrometry (ESI-MS) techniques (Le et al.,
2017; Griffin et al., 2019; Levina et al., 2023). A water-methanol
mixture (H2O: MeOH = 1 : 1 v/v) containing a volatile buffer
(10 mM NH4HCO3, pH ~ 7.5) was used as an approximation for
biological conditions that were compatible with the ESI-MS studies
(Le et al., 2017; Griffin et al., 2019; Levina et al., 2023). When freshly
prepared stock solution of [VOL1L2] (10 mM, dark blue) in dimethyl
sulfoxide (DMSO) was diluted 200-fold with the H2O-MeOH-
NH4HCO3 mixture, the initial blue color (shoulder at ~600 nm;
black line in Figure 2A) disappeared within ~1 min at 295 K, which
led to a yellow solution (maxima at 335 and 435 nm; red line in
Figure 2A). This spectrum closely matched that of the
corresponding dilution of [V(O)2(L

1H)] (final V concentration,
50 μM; blue line in Figure 2A). A slight increase in background
absorbance in red vs. blue line in Figure 2A was likely due to the light
scattering by colloidal particles formed by the poor water-solubility
of L2H (Cayman Chemicals, 2023). Rapid decomposition of
[VOL1L2] (50 μM) in H2O-MeOH-NH4HCO3 solution with the
formation of [V(O)2(L

1H)] was confirmed by ESI-MS (negative
ion mode; m/z = 372 for the deprotonated form, [V(O)2L

1]−), while
traces of the original complex were observed at m/z = 660
(Figure 3A). In agreement with the previous results of 51V NMR
studies (Scalese et al., 2022a), these data indicated that [VOL1L2]
rapidly decomposed in aqueous media with the release of 8-
hydroxyquinoline ligand (L2H) and formation of the homoleptic
complex [V(O)2(L

1H)]. The ESI-MS data (negative ion mode) of
50 μM solutions of [V(O)2(L

1H)], L1H2 or L2H in H2O-MeOH-
NH4HCO3 showed the signals due to [V(O)2L

1]− (m/z = 372),
[L1H]− (m/z = 290) and [L2]− (m/z = 305), respectively, although
the latter signal was poorly defined due to the low water solubility of
L2H (Figures 3B–D). The corresponding experimental and
calculated isotopic distributions are shown in Figures 3E–H.

Time-dependent UV-vis-NIR spectral changes during the
decomposition of [VOL1L2] under the conditions that closely
matched those of cell culture assays (50 μMV, fully
supplemented cell culture medium, pH 7.4, 310 K) (Levina et al.,
2017) are shown in Figure 2B. The initial spectrum of [VOL1L2] in
cell culture medium (CCM; red line in Figure 2B) showed a broad
absorbance band at ~600 nm, which resembled that of a 50 μM
[VOL1L2] solution in DMSO (black line in Figure 2B), except for an
elevated absorbance background due to the formation of colloidal
particles. The ~600 nm band gradually disappeared within ~10 h to
give rise to the characteristic absorbance bands of [V(O)2(L

1H)] at
335 and 345 nm (blue and green lines in Figure 2B), which was also
confirmed by ESI-MS data (Figure 3A) and the published 51V NMR
data (Scalese et al., 2022a). After 72 h incubation at 310 K and
centrifugation to remove insoluble particles (2 min at 16,000 g), the
spectrum of the supernatant was consistent with a ~40 μM
[V(O)2(L

1H)] solution (purple line in Figure 2B). The remaining

blue precipitate was fully soluble in DMSO and showed the
spectrum consistent with that of [VOL1L2]. Taken together, the
data contained within Figures 2A, B indicated that [VOL1L2]
(50 μM) gradually dissolved in CCM on the hours timescale at
310 K, while the dissolved fraction rapidly converted to
[V(O)2(L

1H)]. This gradual dissolution explained the apparently
slower decomposition of [VOL1L2] in CCM (an entirely aqueous
medium; Figure 2B) compared with 50% H2O-MeOH solution that
completely dissolved [VOL1L2] at this concentration (Figure 2A).

Unlike for [VOL1L2], the homoleptic [V(O)2(L
1H)] complex was

fully soluble at 50 μM and highly stable in CCM, showing ~10%
decrease in absorbance at 335 and 345 nm after 72 h incubation at
310 K (red and blue lines in Figure 2C). The spectra of [V(O)2(L

1H)]
in CCM were also close to that in DMSO solution (black line in
Figure 2C). No significant changes in the spectra of [V(O)2(L

1H)]
were observed after 24 h of incubation (310 K) in CCM that
contained physiologically relevant concentrations of two main
metal-binding proteins human serum albumin (0.60 mM), or
transferrin (30 μM) (Ritchie et al., 2002; Levina et al., 2020;
Levina and Lay, 2020; Levina et al., 2023) (black, red and blue
lines in Figure 2D). Similarly, no changes occurred in the presence of
100-fold molar excess of a strong biological reductant, ascorbate
(green line in Figure 2D). Other V(V) complexes are known to be
rapidly reduced to V(IV) species by ascorbate in neutral aqueous
solutions (Wilkins et al., 2006; Horton et al., 2014). By contrast,
significant spectral changes, including the formation of two new
broad absorbance bands at 500–700 nm, were observed during the
reaction of 50 μM [V(O)2(L

1H)] with an equimolar amount of
Fe(III)-citrate in CCM for 24 h at 310 K (purple line in
Figure 2D). A similar spectrum was observed following the
reaction of L1H2 with Fe(III)-citrate under the same conditions
(yellow line in Figure 2D). These results show that Fe(III) can
successfully compete with V(V) for the binding to L1H2 (a known
strong Fe(III) chelator) (Buss et al., 2003; Whitnall et al., 2006;
Debebe et al., 2007; Kalinowski et al., 2008) under physiologically
relevant conditions. A similar reaction in cell culture medium led to
a new absorbance band at ~410 nm (Figure 2E) due to the likely
formation of new Schiff base product (Levina et al., 2023).

An immediate shift of the main absorbance band from 370 nm to
440 nm was observed when L1H2 (50 μM) was dissolved in CCM
compared with the corresponding solution in DMSO (black and red
lines in Figure 2E), which corresponded to a color change from pale to
bright yellow. This change was due to deprotonation of L1H2 and
tautomeric equilibrium in the L1H− anion, which led to the formation
of conjugated double bonds [reaction (1) in Scheme 1]. Another
spectral change occurred within 24 h of incubation of L1H2 with CCM
at 310 K, which led to a single absorbance maximum at 415 nm (the
spectrum at 72 h incubation, which was not significantly different
from that at 24 h, is shown with a blue line in Figure 2E). The initial
spectrum of L1H2 in PBS was nearly identical to that in CCM (green
and red lines in Figure 2E), but the absorbance at >300 nm practically
disappeared after 72 h incubation at 310 K (purple line in Figure 2E).
This change is consistent with the hydrolysis of L1H2 to aldehyde and
hydrazine precursors [reaction (2) in Scheme 1] (Buss and Ponka,
2003). The different spectra of reaction products in PBS and CCM
point to the likely further reactions with CCM components, such as
amine groups of amino acids and aldehyde groups of sugars (Levina
et al., 2017), with the formation of Schiff base products [reaction (3) in
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SCHEME 1
Proposed reactivity of the L1H2 ligand under biologically relevant conditions (CCM is cell culture medium).

TABLE 1 Anti-proliferative activities of V(V) complexes and their ligands in T98G (human glioblastoma) and HFF-1 (normal human skin fibroblast) cell lines.

Compound IC50, μM (T98G)a IC50, μM (HFF-1)a Uptake (T98G)b

[VOL1L2] 6.4 ± 0.4 (7.8 ± 0.6)c 36 ± 5 NDd

[V(O)2(L
1H)] 3.1 ± 0.2 (3.9 ± 0.4)c 16 ± 2 23 ± 7

[V(O)2(L
1H)] + HSAe >100 NDd 19 ± 13

[V(O)2(L
1H)] + Tfe ~0.2 NDd 21 ± 4

[V(O)2(L
1H)] + HSA + Tfe >100 NDd 13 ± 8

[V(O)2(L
1H)] + ascorbatef 69 ± 8 NDd 25 ± 7

[V(O)2(L
1H)] + Fe(III)g 63 ± 5 NDd 35 ± 8*

L1H2 1.7 ± 0.1 (3.7 ± 0.3)c 12 ± 3 —

L1H + Tfe ~0.2 NDd —

L1H + HSAe ~100 NDd —

L1H2 + Fe(III)g 76 ± 8 NDd —

L2H2 4.9 ± 0.5 (4.5 ± 0.6)c 24 ± 3 —

Na3VO4 26 ± 4h (24 ± 4)c,h 23 ± 3h 75 ± 21*

aConcentrations of the compounds that caused 50% decrease in cell viability in 72 h assays. Typical concentration-viability curves are shown in Figure 4. Unless noted otherwise, dilutions of the

compounds (0–100 μM) in cell culture medium were added to the cells within 1 min after the preparation. Values are the means and standard deviations of six replicate wells.
bVanadium uptake (million V atoms per cell) after 1 h treatment of T98G cells with 50 μM V complexes; mean values and standard deviations for three replicate wells. Values designated with

asterisks are significantly (p < 0.05) higher than the value for [V(O)2(L1H)].
cDilutions of the compounds (0–100 μM) in cell culture medium were pre-incubated at 310 K and 5% CO2 for 24 h, then added to the cells for further 72 h.
dValues not determined.
ePhysiological concentrations (Ritchie et al., 2002) of HSA (0.60 mM) and/or Tf (30 μM) were added to cell culture medium. Addition of HSA, also provides close to physiological

concentrations of Fe(III) (10–15 μM) (Levina and Lay, 2020).
fTreatments with [V(O)2(L1H)] (0–100 μM) in the presence of excess ascorbate (5.0 mM).
gTreatments with [V(O)2(L1H)] or L1H2 (0–100 μM) in the presence of equimolar amounts of Fe(III)-citrate.
hData from (Murakami et al., 2022).
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FIGURE 4
Typical concentration-viability dependencies of (A) [VOL1L2] treatments of T98G or HFF-1 cells; (B) [V(O)2(L

1H)] treatments of T98G or HFF-1 cells;
(C) L1H2 treatments of T98G or HFF-1 cells; (D) L2H treatments of T98G or HFF-1 cells; (E) treatments of T98G cells with fresh solutions [V(O)2(L

1H)] in the
presence of serum proteins (HSA is human serum albumin and Tf is human apo-transferrin); (F) treatments of T98G cells with fresh solutions [V(O)2(L

1H)]
or L1H2 in the presence of excess ascorbate or equimolar concentrations of Fe(III). Fresh solutions: final dilutions of treatment compounds in CCM
were added to cells within 1min; aged solutions: final dilutions of treatment compounds in CCMwere pre-incubated at 310 K and 5%CO2 for 24 h before
addition to cells. The corresponding IC50 values are listed in Table 1. Dots and error bars represent median values and standard deviations of six
replicate wells.
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Scheme 1]. These reactions are consistent with the previous
observations (Buss and Ponka, 2003) of L1H2 hydrolysis being
faster in CCM compared with simple aqueous buffers. In addition,
the intact ligand can bind Fe(III) and other trace metals in the
medium [reaction (4) in Scheme 1 shows the example of Fe(III)
binding] (Richardson and Bernhardt, 1999).

In contrast to the spectrum of 50 μML2H in DMSO that showed
a single sharp absorbance band at 330 nm (black line in Figure 2F),
the corresponding spectrum in CCM showed a broad absorbance
across the entire visible range (red line in Figure 2F), possibly due to
non-covalent association with hydrophobic components of CCM,
particularly serum proteins (Levina et al., 2017). This absorbance
largely disappeared after 72 h incubation (blue line in Figure 2F),
and is likely due to precipitation of poorly soluble L2H (Cayman
Chemicals, 2023). A weak new absorbance band at ~400 nm was
likely due to complexation of L2H to trace transition metal ions in
the medium as reported previously (Lanza et al., 2018; Lopez
et al., 2019).

3.2 Effect of reactivity on the anti-
proliferative activities of V(V) complexes and
their ligands in cultured human cells

A comparison of IC50 values for the anti-proliferative activities
of [VOL1L2], [V(O)2(L

1H)] and their free ligands (L1H2 and L2H) in
human glioblastoma (T98G) cells and non-cancer skin fibroblasts
(HFF-1) is given in Table 1, and the corresponding concentration-
viability curves are shown in Figure 4. Similarly high activities
(IC50 < 10 μM) were observed for all four compounds in
T98G cells; this included both fresh and aged (24 h at 310 K)
solutions (Table 1). The activities of all four compounds in HFF-
1 cells showed favorable selectivity with 5-6-fold higher IC50 values
than for T98G cells (Table 1). The cytotoxic activities of
[V(O)2(L

1H)] and L1H for T98G cells were both an order of
magnitude better than vanadate (Na3VO4). In addition, their
selectivities were superior since vanadate cytotoxicities were the
same for the two cell lines (Table 1) (Murakami et al., 2022). The
concentration-viability profiles for all the compounds did not follow
the classical sigmoidal shape (Sylvester, 2011) and showed a sharp
decrease in viability at 0–10 μM, followed by a slower decrease at
10–100 μM (Figures 4A–D).

Unlike for the previously studied V(V)-Schiff base catecholato
complexes (Crans, et al., 2019b, et al., 2023c; Levina et al., 2020;
Murakami et al., 2022; Levina et al., 2023), the mixed-ligand
complex, [VOL1L2], was ~2-fold less active than [V(O)2(L

1H)],
in both cell lines studied (Table 1), which can be attributed to the
slow dissolution of [VOL1L2] under cell culture conditions
(Figure 2A). Given the rapid conversion of dissolved [VOL1L2]
into [V(O)2(L

1H)] and L2H (Figures 2A,B), the latter two
compounds were likely responsible for the anti-proliferative
activity of [VOL1L2], but their activity was not synergistic, which
is consistent with similar activities of fresh and aged solutions of
[VOL1L2] (Table 1), The activities of fresh and aged solutions of
[V(O)2(L

1H)] were also similar (Table 1), which is consistent with
its high stability in CCM (Figure 2C). Similar activities were also
observed for fresh and aged solutions of L2H (Table 1), despite its
low water solubility and gradual precipitation in CCM (Figure 2F),

which indicates that the activity was due to the soluble fraction of
the ligand. Remarkably, L1H2 retained significant activity in aged
solutions (Table 1), despite its known decomposition into aldehyde
and hydrazine precursors [reaction (2) in Scheme 1] (Buss and
Ponka, 2003). This activity can be explained by the reactions of the
formed precursors with CCM components that can lead to new
bioactive molecules, as indicated by the differences in the UV-vis-
NIR spectra of decomposition products of L1H2 in CCM and PBS
solutions (Figure 2E).

Despite the absence of obvious changes in the UV-vis-NIR
spectra of [V(O)2(L

1H)] in the presence of physiological
concentrations (Ritchie et al., 2002) of HSA and apoTf (0.60 mM
and 30 μM, respectively, Figure 2D), these proteins had profound
and opposite effects on the anti-proliferative activity of the complex
in T98G cells (Table 1; Figure 4E). The presence of HSA abolished
the activity of [V(O)2(L

1H)], while Tf drastically increased it (black
and blue lines in Figure 4E). A mixture of physiological
concentrations of HSA and Tf reduced the activity [V(O)2(L

1H)],
similarly to the effect of HSA alone (Table 1, not shown in
Figure 4E). These effects were in stark contrast with those
observed for inorganic V salts, Na3VO4 and VOSO4, where Tf
alone or in combination with HSA reduced the activity, while
HSA alone slightly increased it (Levina and Lay, 2020).
Remarkably, the effect of Tf and HSA on the activity
[V(O)2(L

1H)] was mirrored by that for the free ligand, L1H2

(Table 1 and red and green lines in Figure 4E).
As shown in Table 1 and Figure 2F (red and blue lines), the

anti-proliferative activities of [V(O)2(L
1H)] and L1H2 decreased

20-40-fold in the presence of equimolar concentrations of
Fe(III)-citrate, due to the binding of Fe(III) to L1H2 (reaction
(4) in Scheme 1) and displacement of V(V) from [V(O)2(L

1H)]
(Figure 2D). Therefore, the decrease in viability of T98G cells by
~70% in the presence of the lowest used concentrations
[V(O)2(L

1H)] or L1H2 (0.39 μM) and 30 μM Tf (black and red
lines in Figure 2E) was likely due to the binding by Tf of the trace
Fe present in the medium (typically, 1–2 μM) (Levina and Lay,
2020). The inhibitory effect of HSA on the activities of
[V(O)2(L

1H)] or L1H2 is harder to explain at this stage, but it
may be due to the blockage of cellular uptake of the compounds
by their non-covalent transient binding to HSA (Levina et al.,
2023). Physiologically relevant concentration of ascorbate
(5.0 mM) (Przybyło and Langner, 2020) also reduced the
activity of [V(O)2(L

1H)] (Table 1) despite the stability of the
complex to reduction by ascorbate (Figure 2D). This can be due
to the general protective effect of ascorbate against the toxicity of
[V(O)2(L

1H)] that is likely to involve generation of reactive
oxygen species (Horton et al., 2014; Aureliano et al., 2023).

Uptake of V from [V(O)2(L
1H)] (50 μM for 1 h at 310 K) by

T98G cells was low (on the order of 107 V atoms per cell) (Levina
et al., 2023) and did not exceed that from Na3VO4 (Table 1), which
was consistent with the previous results for [V(O)2L] complexes,
where L is a deprotonated Schiff base (Murakami et al., 2022;
Kostenkova et al., 2023b). Notably, cellular V uptake from
[V(O)2(L

1H)] slightly but significantly increased in the
presence of an equimolar amount of Fe(III)-citrate, which
suggests that V(V) ions that are displaced from [V(O)2(L

1H)] by
Fe(III)-citrate (Figure 2D) can enter cells more efficiently than the
intact complex.
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4 Discussion

This work was undertaken to evaluate the potential medicinal
applications of the mixed-ligand complex, [VOL1L2] (Scalese
et al., 2021), for potential treatment of glioblastoma
(T98G cells), where the both ligands are known chelators of
essential metal ions (Fe(III) and Cu(II)). The utility of the
mixed-ligand complex was complicated by its poor water
solubility and the rapid decomposition in aqueous medium.
However, it was the objective to investigate the activity of any
potential decomposition products upon hydrolysis of the
complex. To our surprise, the two main decomposition
products, [V(O)2(L

1H)] and L2H, were found to be more
active than the intact complex against glioblastoma (Table 1).
Considering the stability in aqueous medium (Figure 2D) and
biological activity (Table 1) of the precursor [V(O)2(L

1H)]
complex, it may be the most promising potential future agent
against cancer, unless future mixed complexes are significantly
more soluble and have increased stability. This result was
unexpected, and only was discovered by the speciation studies,
which emphasized the importance of considering the chemistry
of these complexes in a biological environment. Although it
should be noted that our speciation studies, despite our
attempts to replicate physiologically relevant conditions, will
not exactly mimic the cellular environment. Since the complex
does decompose it seems clear that in the reported studies with
the mixed-ligand vanadium complex in T. cruzi the observed
activity is a combination of the vanadium complex and that of
free ligand (Scalese et al., 2021), and that the free clioquinol is
likely responsible for the greatest effects. Although this
conclusion was not reached in our previous study, this was in
part be explained by the fact the hydrolysis studies were carried
out in DMSO and, hence, resulted in much slower hydrolysis rate.
Although the assay conditions for studies with T98G cells are
different than those used for studies with T. cruzi, the latter
assays were also carried out in an aqueous culture medium and,
hence, the complex would hydrolyze faster than in DMSO.
However, the studies carried out here, were performed at a
lower concentration than previously used, which increased the
hydrolysis rate in the current studies. Studies such as those
presented in this work provide guidelines for further
investigations seeking to improve potential agents for
medicinal applications.

The binding of L1 to V(V) drastically slowed down its hydrolysis
in neutral aqueous solutions, thus, altering the mixed complex’s
activity spectrum from that of the free ligands. The activity of the
simple coordination complex [V(O)2(L

1H)] can be efficiently
regulated by the presence of labile Fe(III), which bound the
ligand when released from the complex. Hence, the presence of
other metal ions modifies the distribution and activity spectrum of
the complexes in both systems. Specificity of some of the known
roles of Fe metabolism in cancer and host-pathogen interactions
may be in effect (Martínez-Flórez et al., 2020; Dorosti et al., 2014;
Perez et al., 2008). This effect is particularly relevant, since for the
complexes under consideration L1H2 is a known Fe(III) chelating
agent and oncogene transformation have been reversed with iron
chelation in androgen insensitive prostate cancer and cancer stem
cells (Abdelaal and Veuger, 2021). Literature describes various roles

of Fe(III) chelators including inhibition of signaling pathways that
drive proliferation, stimulate apoptotic and ER stress signaling
pathways, sensitize cancer cells to PARP inhibitors and attenuate
oxidative phosphorylation and glycolysis (Yu et al., 2012;
Kontoghiorghes, 2022). These are processes which can be utilized
in cancer therapy, and reverse oncogenic transformation in the
presence of Fe(III) (Abdelaal and Veuger, 2021; Szymonik
et al., 2021).

The experimental data shown in Table 1 and Figure 4E
demonstrate that [V(O)2(L

1H)] can be active against human
cancer cells at sub-micromolar concentrations, as long as the
Fe(III) present in the system is tightly protein-bound. Effective
inactivation of [V(O)2(L

1H)] by serum albumin (Table 1;
Figure 4E) showed that the complex can be used for direct
injections into tumors (Levina et al., 2020; Levina et al., 2022),
but that the complex will be most effective in tumors that are low
in albumin and Fe(III) concentrations. Furthermore, such
inactivation suggests that the complex that escapes into the
blood stream and will then be rapidly inactivated by albumin
and not show significant toxicity (Levina et al., 2020; Levina et al.,
2022). Similar conclusions can be reached for previous studies
with T. cruzi trypomastigotes (Scalese et al., 2021). In contrast,
the activation by apo-Tf, which is opposite to that observed for
other vanadium complexes (Levina and Lay, 2020; Levina et al.,
2023), can be explained by Tf chelation of the vanadium to
accelerate the release of the Fe chelating ligands. These
ligands, in turn, are known to have anti-proliferative activities
by interfering with Fe metabolism in the cancer cells.

5 Conclusion

These studies have demonstrated the anti-proliferative
activity of the intact and decomposition products of a mixed-
ligand V(V) complex, [VOL1L2], on human glioblastoma cancer
cells. The intact mixed-ligand V(V) complex is known for its
anti-trypanosomal activity reported previously (Scalese et al.,
2021). These studies were done to investigate if a compound
exhibiting potent effects as an anti-trypanosomal agent also will
have activity as an anti cancer agent. In these studies L1H2 is
Iron Chelator 311 (or NIH, CAS 796-42-9) and L2 is 5-chloro-7-
iodo-8-hydroxyquinoline, also referred to as clioquinol.
Speciation studies in aqueous assay solutions are important
(Crans et al., 2013; Levina et al., 2017; Levina and Lay, 2017;
Nunes et al., 2021; Levina et al., 2023), even when the complex
may have limited solubility, or is insoluble in an aqueous assay
solution. In the latter cases studies are done in a mixture of
organic-aqueous solvents at mM concentration and in aqueous
solution at lower concentration. The latter are done using
methods that may not be as quantitative as 51V NMR
spectroscopy such as UV-vis-NIR and ESI-MS spectroscopy.
This work has led to the demonstration of the potent anti-
proliferative activities of the intact mixed-ligand V(V) complex
([V(O) L1L2]), the free ligand (L1H2 L2H) and the precursor
complex ([V(O)2(L

1H)]). These data showed that free ligands
and the precursor complex were more efficacious than the
mixed-ligand V(V) ternary complex ([V(O) L1L2]) against
human glioblastoma cancer cells.
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