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Editorial on the Research Topic

Glial cells in homeostasis, neurodevelopment, and repair

The widely accepted concept of the neurovascular unit suggests that proper brain

function relies on dynamic communication and homeostatic signaling among neurons,

glial cells, and vascular compartment. This Research Topic aims to deepen the

understanding of the molecular mechanisms and functional dynamics of these cells,

shedding light on brain homeostasis alterations caused by ischemic or traumatic injuries

and neurodegenerative diseases. Additionally, it seeks to give new insights into the

development of effective therapeutic strategies.

Glial cells, including astrocytes, microglia and oligodendrocytes, play crucial roles in

regulating synaptic function, providing metabolic support, forming myelin sheaths for

signal transduction, and contributing to the immune response of the central nervous

system (CNS) (Liu et al., 2023). Additionally, they are key players in disease and post-

traumatic recovery processes: microglia serve as the primary source of pro-inflammatory

cytokines (Conti et al., 2020), astrocytes regulate synaptic homeostasis, permeability of the

blood-brain-barrier to water and solutes and glial scar formation following injury (Chung

et al., 2024; Sofroniew, 2009; Pekny et al., 2019), while oligodendrocytes influence signal

conduction speed through changes in myelin thickness (Miyata, 2019).

The systematic review by Amlerova et al. summarizes the current knowledge on the

complex molecular and cellular processes of reactive gliosis following traumatic brain

injury (TBI), highlighting its dual role of providing neuroprotection but also being

potentially harmful due to the release of growth factors and cytokines by reactive glia.

Indeed, while reactive gliosis aids tissue repair, immune modulation and homeostasis,

it can also exacerbate neuroinflammation and neurological deficits. Given that current

therapies mainly address symptoms rather than targeting the molecular and cellular

mechanisms of damage, the ability to modulate neuroinflammatory processes would

be crucial to develop effective therapeutic approaches that balance their beneficial or

detrimental effects. Glia-targeted treatments are currently promising, such as senolytic

compounds that target senescent cells to improve cognition, and transcription factors used

to reprogram astrocytes or NG2 glia and support post-injury neurogenesis.

Microglia are the major population of immune cells resident in the CNS and play a

fundamental role in the response to injury, regulating neuroinflammation, clearing cellular
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debris and thereby providing neuroprotection (Kettenmann

et al., 2011). Dysregulation of microglial activity is associated

with several neurodevelopmental, neurological and psychiatric

disorders (Hickman et al., 2018). The review by Bobotis et al.

provides a comprehensive overview of established and emerging

technologies to characterize the complex morphological and

functional heterogeneity of microglia in homeostasis and disease.

Innovative technologies, including single-cell transcriptomic and

epigenomic analyses, have revealed that both astrocytes and

microglia comprise heterogeneous cellular subpopulations with

distinct genomic and functional characteristics that vary according

to the physiological and pathological context and play major

roles in neurodegeneration and neuroprotection. Depending

on the representation of specific glial subpopulations, tissue

damage, regenerative processes, or delayed neurodegeneration after

TBI may vary between nearby or remote areas and between

different brain structures. Parallel to advances in microglial

biology, the reviews by Bobotis et al. and by Amlerova et al.

offer a broad discussion of emerging techniques of depletion

and selective modulation of microglial activity as potential

therapeutic approaches for neurodegenerative, neuropsychiatric

and autoimmune diseases.

Since neuronal regeneration is mostly limited following

CNS injuries and diseases, glial cells have emerged as crucial

targets for the development of active pharmaceutical ingredients

(APIs) aimed at improving clinical outcomes (Madadi and Sohn,

2024). Although many of these APIs demonstrate potential in

vitro, when systemically delivered most APIs exhibit limited

penetration through the blood-brain barrier (BBB) or blood-spinal

cord barrier (BSCB), making them ineffective. To address this

Research Topic, nanomaterials have been engineered to transport

APIs to their target sites, extend the release timeframe, and

influence cellular behavior through their structural properties

(Ciciriello et al., 2022). The review by Saksena et al. explores the

latest advancements of both locally implanted nanomaterials and

systemically administered nanoparticles developed for the delivery

of APIs to CNS glia, highlights existing research gaps, and discusses

future developments that could sustain this approach toward

clinical applications. As many API-releasing nanomaterials remain

focused on targeting neurons, further advancements in material

engineering, BBB permeability, targeted delivery, controlled

release, and immune response management are essential to

establish nanomaterial-mediated API delivery to glia as a standard

clinical approach. This review summarizes emerging strategies

for delivering APIs to astrocytes, microglia, and oligodendrocytes

using nanomaterials. Nanoparticle-based therapies present a non-

invasive alternative for neurological conditions where direct

implantation is not feasible, with optimization of nanoparticle

composition, size, charge, and targeting mechanisms being crucial

for effective brain penetration and glial modulation. In surgical

interventions, nanomaterial-based therapies provide biophysical

and biochemical cues to glial cells, stimulating bioactive responses

that enhance neuronal repair and protection.

Optogenetics is a cutting-edge technique that combines genetic

engineering with light-based stimulation to fine-tune neuronal

activity (Towne and Thompson, 2016). This method relies on

incorporating light-sensitive proteins, called opsins, into specific

neurons or brain regions, enabling precise activation or inhibition

through photostimulation. Through optogenetic manipulation,

researchers can precisely control neuronal activity in both space

and time, offering critical insights into neural circuits and brain

function (Fernandez-Ruiz et al., 2022). Moreover, optogenetic

treatment enhances neuronal excitability and synaptic responses,

contributing to the maintenance of nervous system health. As

a result, optogenetics holds significant potential for applications

in neuroscience research. Hyung et al. reviews the optogenetic

manipulation of different glial cell populations and its impact

on the reciprocal neuro-glial interaction in neural repair. Since

damaged neurons do not regenerate independently and rely on

glial cells for structural and trophic support, the application of

glial optogenetics appears to be a promising approach for nerve

repair. Current research aims to determine whether modulation

of glial cells via optogenetics can more effectively regulate neural

function than direct neuronal activation, as well as to identify the

optimal level of opsin gene expression required to stimulate glial

cells and sustain the excitatory activity of neurons. However, several

challenges remain, including assessing whether glial optogenetic

modulation can correct nervous system dysfunction and assessing

whether the effects of optogenetic activation are consistent in vitro,

in vivo, and ultimately in clinical settings.

Advancements in stroke research, combined with progress in

imaging technology, have paved the way for new approaches in

managing acute ischemic stroke patients. Researchers in the field

of stroke investigation are striving to uncover strategies that can

prevent episodes of focal ischemia, enhance the quality of life

for survivors, and mitigate premature mortality (Saceleanu et al.,

2023; Herpich and Rincon, 2020). To succeed in this effort, it

is imperative to broaden the perspective beyond the confines of

primary injury sites and adopt a holistic approach, viewing the

brain as an interconnected system where all components influence

each other. Therefore, as highlighted by Koukalova et al. it is crucial

to focus both on the ischemic core and on the adjacent, initially

undamaged regions, which are susceptible to the development of

secondary lesions that can manifest subtly and over time. In their

literature review, Koukalova et al. provide an exhaustive description

of the terms “ischemic core”, “penumbra” and “remote areas”

specifically emphasizing the structural and functional changes that

occur in regions distant from the primary site of focal ischemia

and on the involvement of glia and the extracellular matrix.

The processes that commonly affect the ischemic core and the

penumbra are compared and the causes analyzed. Special attention

is paid to the investigative approaches and the efficacy of therapies

used in recent years for their anti-ischemic effect in remote areas

of the lesion. Studying glial responses in these areas could lead to

a better understanding of the mechanisms underlying secondary

neurodegeneration and new strategies to counteract it.

Astrocytic Transient Receptor Potential Vanilloid 4 (TRPV4)

channels, along with Aquaporin 4 (AQP4), are believed to play a

crucial role in cellular volume regulation (Pivonkova et al., 2018;

Mola et al., 2021; Barile et al., 2023; Cibelli et al., 2024) and

may influence the onset and severity of cerebral edema during

ischemia (Chmelova et al., 2019; Sucha et al., 2022). The original

research article by Hermanova et al. investigates the impact of

AQP4 and TRPV4 channel deletion on astrocytic volume changes
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in response to three ischemia-mimicking insults. Their findings

revealed that cortical astrocytes exhibited heterogeneous volume

responses to pathological stimuli, with a high-responding astrocyte

(HRA) subpopulation being affected more by the loss of AQP4,

TRPV4, or both channels. While AQP4 deletion reduced swelling

during oxygen-glucose deprivation (OGD), TRPV4 deletion

delayed its onset. Surprisingly, simultaneous deletion had minimal

impact on volume regulation but impaired recovery after OGD.

Additionally, knockout of these channels altered the expression

of glutamate receptors and ion channels, suggesting broader

molecular effects on cerebral edema beyond their direct role in

volume regulation.

This Research Topic compiles new knowledge regarding the

strategic role of glial cells in brain homeostasis, development,

and recovery from neural injury while integrating optogenetic,

physiological, molecular, and engineering investigative approaches

to provide new insights into multiple areas of cellular neuroscience.

Despite significant advances, many fundamental neuroscientific

challenges remain unsolved. We hope that this Research Topic will

support researchers in challenging existing paradigms, expanding

the frontiers of neuroscience, and ultimately contributing to the

development of novel and effective therapies in neurology.
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