
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
MINI REVIEW article
Front. Cell. Neurosci.
Sec. Cellular Neuropathology
Volume 19 - 2025 | doi: 10.3389/fncel.2025.1575022
This article is part of the Research Topic Intercellular communication in chronic neuroinflammatory diseases View all articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Neuroinflammation is a fundamental feature of many chronic neurodegenerative diseases, where it contributes to disease onset, progression, and severity. This persistent inflammatory state arises from the activation of innate and adaptive immune responses within the central nervous system (CNS), orchestrated by a complex interplay of resident immune cells, infiltrating peripheral immune cells, and an array of molecular mediators such as cytokines, chemokines, and extracellular vesicles. Among CNS-resident cells, microglia play a central role, exhibiting a dynamic spectrum of phenotypes ranging from neuroprotective to neurotoxic. In chronic neurodegenerative diseases, sustained microglial activation often leads to the amplification of inflammatory cascades, reinforcing a pathogenic cycle of immune-mediated damage. Intercellular communication within the inflamed CNS is central to the persistence and progression of neuroinflammation. Microglia engage in extensive crosstalk with astrocytes, neurons, oligodendrocytes, and infiltrating immune cells, shaping both local and systemic inflammatory responses. These interactions influence key processes such as synaptic pruning, phagocytosis, blood-brain barrier integrity, and cytokine-mediated signaling. Understanding the mechanisms of cell-cell signaling in this context is critical for identifying therapeutic strategies to modulate the immune response and restore homeostasis. This review explores the key players in CNS neuroinflammation, with a focus on the role of microglia, the molecular pathways underlying intercellular communication, and potential therapeutic approaches to mitigate neuroinflammatory damage in chronic neurodegenerative diseases.
Keywords: neuroimmune crosstalk, Neuroinflammation, Microglia, Astrocytes, Neurons, immune cells, Cytokines, Neurodegenerative Diseases
Received: 11 Feb 2025; Accepted: 25 Mar 2025.
Copyright: © 2025 Müller and Di Benedetto. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Ludmila Müller, Max Planck Institute for Human Development, Berlin, Germany
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.