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Characterize neuronal responses
to natural movies in the mouse
superior colliculus

Ya-tang Li*

Chinese Institute for Brain Research, Beijing, China

While artificial stimuli have been widely used in visual neuroscience and

have significantly advanced our understanding of visual processing, they di�er

dramatically from the natural scenes that animals encounter in the wild. How

natural stimuli are encoded in the superior colliculus (SC) and how neuronal

responses to artificial and natural stimuli are related remain poorly understood.

Here I applied two-photon calcium imaging to record neuronal activity in the

mouse superficial SC in response to natural movies. An unsupervised learning

algorithm grouped recorded neurons into 16 clusters based on their response

patterns. Each cluster exhibited distinct temporal profiles, which arose from

di�erences in both receptive field coverage and how neurons encode local visual

features. Interestingly, I found a strong correlation between neuronal responses

to natural movies and functional properties previously characterized using

artificial stimuli. This suggests that the SCmaintains a stable neural representation

of visual information that is largely independent of the types of visual stimuli.

Furthermore, neuronal responses to natural movies varied with depth within

the superficial SC and across genetically defined neuronal types. These findings

bridge the gap between our understanding of responses to artificial and natural

stimuli, providing new insights into visual processing in the SC.

KEYWORDS

superior collicullus, two-photon calcium imaging, natural movies, visual processing,
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1 Introduction

Characterizing neuronal responses to diverse visual stimuli is a classical approach

to understanding visual information processing in the brain. Theoretically, a neuron’s

functional properties could be fully described by analyzing its responses to every possible

visual stimulus. However, the sheer number of potential stimuli renders this approach

infeasible. Even a 10×10 pixel screen with 10 grayscale intensity levels per pixel yields

10100 possible combinations, a number 1020 times greater than the estimated number

of atoms in the universe (1080). For a standard 600×800 monitor displaying 256 RGB

colors, the number of combinations explodes to 2563∗600∗800 (∼6 ∗ 103,460,000). Note

that this calculation excludes temporal variations; considering continuous streams of

static images—i.e. video, as experienced in daily life—further increases the number of

possibilities. Practically, laboratory research typically employs reductionist approaches

using specifically designed artificial stimuli, such as flashing spots for the retina (Kuffler,

1953) and moving bars for the visual cortex (Hubel and Wiesel, 1962).

Examining how neurons respond to artificial stimuli has proven to be a powerful and

fruitful approach in neuroscience, significantly advancing our understanding of visual

information processing. This approach has provided insights into both the neuronal

encoding of visual information and the underlying neural circuits that implement these
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coding strategies. By isolating specific visual features, such as

orientation or motion direction, researchers can effectively dissect

the tuning properties of individual neurons. The efficacy of this

approach is illustrated in a recent study on retinal ganglion cells

(RGCs) (Baden et al., 2016). In this study, the authors employed

an unsupervised clustering algorithm to analyze RGC responses

to just four distinct visual stimuli. Surprisingly, they not only

confirmed the existence of previously identified RGC types based

on anatomical and molecular criteria, thus validating the approach,

but also discovered new RGC types with distinct functional

properties. Inspired by the success of this approach, we extended it

to investigate the functional organization of the superior colliculus

(SC), a midbrain structure evolutionarily conserved across all

vertebrates (May, 2006). The SC’s superficial layer receives direct

inputs from RGCs and the primary visual cortex (V1), while its

deeper layers play a crucial role in sensory integration and motor

execution (Cang et al., 2018). We identified 26 distinct functional

types (Li and Meister, 2023), a number comparable to the 43 cell

types identified by gene expression profiling (Liu et al., 2023).

While artificial stimuli have proven invaluable, they differ

substantially from the complex and dynamic natural scenes

encountered by animals in their natural environments. Notably,

the spectral power of natural images typically follows a power

law relationship with spatial frequency (f), approximating 1/f 2.

From an evolutionary perspective, the ultimate purpose of animal

visual systems is to enhance their survival and reproductive

success in natural environments. Therefore, understanding how

neurons process natural stimuli is important for a comprehensive

understanding of visual function. A substantial body of research

has recently emerged investigating neuronal responses to natural

stimuli. For instance, researchers have employed two-photon

calcium imaging to record neuronal responses to a large set

of natural images from the ImageNet database (Deng et al.,

2009) in visual cortex (Wang et al., 2024). This provides insights

into how cortical neurons represent complex natural scenes.

Electrophysiological recordings of neuronal responses to natural

movies have also been performed in the primate SC (White

et al., 2017; Bogadhi and Hafed, 2023), offering a further

understanding of how dynamic visual information is processed.

Despite these advancements, our understanding of neuronal

responses to natural scenes, particularly natural movies, in

mouse SC remains limited. Importantly, the relationship between

neuronal responses to natural movies and the well-established

functional properties derived from responses to artificial stimuli is

still poorly understood.

To address this gap, I recorded responses to four distinct

natural movies and a battery of artificial stimuli from the

same population of SC neurons. This approach enables a direct

comparison of responses to both stimulus types at the level of

individual cells, bridging the gap between these two important

lines of investigation. While our previous work revealed functional

properties based on artificial stimuli, the present study focuses

on responses to natural movies and their relationship to these

established functional properties.

I identified 16 distinct clusters of neuronal responses to natural

movies, each characterized by unique temporal profiles. These

profiles captured the rich diversity of evoked neuronal dynamics.

Neurons within these clusters exhibited distinct receptive field

(RF) properties, including differences in the proportion of neurons

with clearly defined RFs and variations in the spatial extent of

RF coverage. The analysis revealed that RF properties partially

accounted for the clustering of neurons based on their temporal

responses to natural movies, indicating a link between spatial

tuning and temporal dynamics. Importantly, neuronal responses to

natural movies were strongly correlated with functional properties

based on artificial stimuli. This robust relationship provides

compelling evidence for a stable neural representation of visual

information in the SC. Lastly, I observed distinct response patterns

to natural movies across depth within the superficial SC and across

genetically defined neuronal types.

2 Results

2.1 Diverse neuronal responses to natural
movies in awake SC as revealed by
two-photon calcium imaging

To investigate how SC neurons encode information in natural

visual inputs, I used two-photon microscopy to image neuronal

calcium responses to natural movies (Figure 1A). To maintain

an intact cortex, the posterior-medial SC was exposed by gently

pushing forward the transverse sinus (Li et al., 2023) (Figure 1B). In

total, I imaged 3,414 neurons with reliable responses (SNR > 0.35)

from 41 image planes in 16 animals. These animals were from six

different mouse lines: wild-type, Vglut2-Cre (excitatory neurons),

Vgat-Cre (inhibitory neurons), Tac1-Cre, Rorb-Cre, and Ntsr1-Cre

(wide-field cells).

Neurons in SC exhibited robust and diverse responses to four

distinct natural movies (Figures 1C, D). This response diversity was

not attributable to animal locomotion, as the animals remained

largely stationary during visual stimulation, and locomotion has

minimal effects on SC neuronal responses (Savier et al., 2019).

2.2 Clustering neuronal responses to
natural movies into 16 groups

To quantify neuronal responses to natural movies, I applied

principal component analysis (PCA) to the raw response traces,

reducing the data to a 3,414 × 34 matrix in the feature space.

This feature matrix was then fitted with a Gaussian mixture model

(GMM) using varying numbers of clusters (Figure 2). The quality

of each clustering was assessed with the Bayesian information

criterion (BIC; Figure 2A). The BIC decreased monotonically until

the number of clusters reached 16, after which it increased slowly.

This indicates that a 16-component GMM provides the best fit

for the neuronal responses in feature space (Figure 2B), suggesting

that neuronal responses to natural movies are best characterized by

16 clusters.

Next, cluster stability was assessed using sub-sampling analysis.

I randomly sampled 90% of the data 100 times and fitted a

GMM with 16 components to each sub-sample. For every neuron

pair, I counted how often they were assigned to the same

cluster across these 100 sub-samples (Figure 2C). The average co-

clustering frequency for most clusters exceeded 0.5 (Figure 2D),

Frontiers inCellularNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncel.2025.1558504
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Li 10.3389/fncel.2025.1558504

5 s

PMT

Laser

A B

C

Anterior 

Posterior 

superior colliculus

transverse sinus

triangular transparent plug

5 s

10

9

8

7

6

5

4

3

2

1

D
time (s)

b
ri
g

h
tn

e
s
s

c
o

n
tr

a
s
t

m
o

ti
o
n

 e
n

e
rg

y

time (s) time (s) time (s)

FIGURE 1

Diverse neuronal responses to natural movies in awake mouse superior colliculus. (A) Schematic of the experimental setup. Mice were head-fixed and

free to run on a circular treadmill. Natural movies were presented on a screen. Neuronal calcium activity was imaged using two-photon microscopy.

PMT, photomultiplier tube. (B) Schematic of mouse brain anatomy after insertion of a triangular transparent plug to expose the posterior-medial SC

underneath the transverse sinus. The yellow triangle indicates the plug. The green color indicates the expression of GCaMP6. (C) The time-varying

brightness, contrast, and motion energy of each natural movie. (D) Response profiles of 10 example neurons to four natural movies. Each row is

scaled to the maximal response. Gray shading indicates the standard deviation. Vertical red dashed lines separate responses to di�erent movies.
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FIGURE 2

Cluster neuronal responses to natural movies into 16 groups. (A) Normalized Bayesian information criterion for Gaussian mixture models with

di�erent numbers of clusters. (B) Feature-weights for the 16 clusters. The color bar indicates the weights of features for each cluster. (C) Cell-wise

co-association matrix (see Section 4). The color bar indicates the co-clustering fraction. (D) Between-cluster rate, which is the cluster-wise average

of the co-association matrix. (E) Jaccard similarity coe�cient (JSC) between the full dataset and subsets (Mean ± SD). (F) Euclidean distance

between the original clusters and clusters identified on the subsets (Mean ± SD), black symbols. Gray symbols indicate the shortest Euclidean

distance between the original cluster and other clusters. (G) Histogram of median correlation coe�cients between the original clusters and clusters

identified on 100 subsets.

indicating consistent clustering across subsets. To further quantify

this stability, I calculated the Jaccard similarity coefficient (JSC),

defined as the ratio of the intersection to the union of the cluster

assignments. This analysis revealed high stability for all clusters

(Figure 2E).

Additional evidence of stability was provided by comparing

Euclidean distances between clusters. The distances between

corresponding clusters in the subsets and the original dataset were

smaller than the distances between distinct clusters within the

original dataset (Figure 2F). Stability was further validated by the

correlation between original clusters and clusters identified in the

subsets (Figure 2G). Collectively, these results demonstrate that

the observed cluster stability surpasses that reported in related

studies (Baden et al., 2016; Li and Meister, 2023).
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FIGURE 3

Temporal profiles of neuronal responses across the 16 clusters. (A) Dendrogram of 16 clusters based on their distance in feature space, with each

row showing the average temporal profiles of neuronal responses to four natural movies. Gray shading indicates the standard deviation. The vertical

scale is identical for all types and stimulus conditions. Vertical red dashed lines separate responses to di�erent movies. (B) Normalized average

temporal profiles.

2.3 Characterize neuronal responses to
natural movies across the 16 clusters

To uncover the specific information about the natural movies

conveyed by the 16 clusters, I analyzed the average temporal

profiles of each cluster (Figure 3). A dendrogram, based on feature-

space distances between cluster centers, illustrated the hierarchical

relationships among these clusters.

Certain clusters exhibited strong preferences for specific

movies. For example, Clusters 1 and 2 responded robustly to the

Frontiers inCellularNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncel.2025.1558504
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Li 10.3389/fncel.2025.1558504

Cluster

)
% ( 

F
R r

a
el

c 
h ti

w s
n

o r
u

e
N

Cluster

R
F

 S
iz

e
 (

d
e
g

2
)

Azimuth (deg)

)
g

e
d( 

n
oit

a
v

el
E

BA

C

D F

Cluster

P
o
s
te

ri
o

r-
A

n
te

ri
o
r  

(μ
m

)

Medial-Lateral (μm) Distance (μm)

C
lu

s
te

r

g
e

d( 
e

g
ar

e v
oc 

F
R

2
)

E

Group 1 Group 2

FIGURE 4

Receptive field properties and anatomical organization across clusters. (A) Percentage of neurons in each cluster that show clear RFs to flash stimuli.

The blue dashed line marks 80%. (B) RF size for each cluster (mean ± SD). (C) RF positions of all clusters plotted in three panels based on their RF

coverage. (D) Sorted RF coverage for all clusters. The vertical red dashed line separates clusters into two groups, and the blue dashed line marks 900

deg2. (E) Anatomical locations of di�erent clusters of neurons in an example imaging field. (F) Neuron density within each functional cluster as a

function of distance from a neuron of the same cluster. Red stars indicate the smallest radius at which the neuron density exceeds half of the peak

density.

“running cat” movie with distinct temporal profiles while showing

weaker responses to other movies. Similarly, Cluster 4 preferred

the “foraging” movie, Cluster 6 the “optical flow” movie, and

Cluster 7 the “baby owl” movie. This movie selectivity indicates

that SC neurons contribute to encoding visual categories. Such

high-level processing by the SC is further supported by findings

in primates, where SC neurons exhibit a preference for faces with

short latency (Yu et al., 2024).

Most other clusters displayed robust yet transient responses to

all natural movies, except for Cluster 12, which showed sustained

activity throughout each movie. The transient responses likely

reflect the RF properties of individual neurons, as each neuron’s RF

covers only a small portion of the visual stimulus.

To determine how RF properties contribute to responses to

natural movies, I mapped the RFs of individual neurons using

flashing sparse noise. Only about 67% of SC neurons were found

to have clearly defined RFs, and this percentage varied substantially

across clusters, ranging from 19% in Cluster 1 to 99% in Cluster 10

(Figure 4A). RF size ranged from 84 deg2 to 162 deg2 (Figure 4B),

and RF coverage also varied (Figures 4C, D). Based on RF coverage,

the clusters were divided into two groups (Figure 4D). Group

1 comprised eight clusters with RF coverage below 900 deg2.
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These clusters occupied distinct parts of the visual field, suggesting

their responses primarily reflected local features of the movies.

Clusters with the smallest spatial coverage (e.g., Clusters 8, 9, 13,

and 14) exhibited distinct temporal profiles (Figure 3B), largely

because their RFs covered different regions of the natural movies.

The difference between Clusters 3 and 15 was more pronounced

than that between Clusters 13 and 14, as their RFs were spatially

more distant. On the other hand, although the RFs of Cluster

10 overlapped with those of Clusters 8, 9, and 14, their temporal

profiles were distinct, suggesting that they encoded different aspects

of local features within a larger visual field. This role in local feature

encoding is supported by the high proportion of neurons with well-

defined RFs in these clusters (Figure 4A). Conversely, Cluster 1,

with only 10 of 54 neurons having clear RFs, likely did not encode

local features, and its small RF coverage may be attributed to this

low sampling number.

Group 2 included clusters with larger and largely overlapping

RF coverage. Clusters 2, 5, 11, and 12 exhibited the largest spatial

coverage, with RFs spanning nearly the entire recorded visual field.

Clusters 4, 6, and 16 also exhibited large spatial coverage and had

few neurons with clear RFs, except for Cluster 7. Over 80% of the

neurons in Cluster 7 showed clear RFs, and this cluster covered

a visual region distinct from those covered by Group 1 clusters,

suggesting a role in encoding local visual features.

The influence of RF properties on clustering was further

supported by the anatomical organization of each cluster. Clusters

with smaller RF coverage occupied more compact anatomical

regions (Figure 4E). Density recovery profile analysis (Rodieck,

1991; Zhang et al., 2012) showed that neuron density decreased

with distance for most clusters (Figure 4F), indicating that neurons

within the same cluster form localized patches, similar to previously

identified functional types (Li and Meister, 2023). For Group 1

clusters, neuron density dropped to half its peak value at a radius

of ∼ 100 µ m (∼ 25◦ diameter in visual space), consistent with RF

coverage and reinforcing the role of RF properties in the clustering

process. In Group 2, neurons in most clusters also form patches,

though with larger patch sizes, reflecting their broader RF coverage.

2.4 Functional properties of the 16 clusters
of neurons

In our previous work, we identified 24 functional cell types

based on neuronal responses to artificial stimuli in the superficial

SC (Li andMeister, 2023).We quantified their functional properties

(see Materials and methods) and demonstrated functional diversity

across these types. Thus, the clustering of neuronal responses to

natural movies likely reflects not only differences in RF properties

but also functional diversity. Supporting this idea, the results

revealed diverse functional properties across clusters (Figures 5A,

B). For example, although Clusters 8 and 9 spatially overlapped

with Cluster 10, they exhibited distinct functional properties,

including greater habituation to looming stimuli, sharper size

tuning, and stronger surrounding suppression. Similarly, despite

covering large and overlapping visual regions, Clusters 5 and 12

displayed different functional properties. Compared to Cluster 5,

Cluster 12 showed stronger direction selectivity and smaller RF

size. Functional differences were also observed among clusters with

largely non-overlapping RF coverage. For example, Cluster 15,

with its large RFs, exhibited higher orientation selectivity and a

preference for large, moving stimuli, whereas neurons in Cluster

7, with smaller RFs, preferred small, flashing stimuli.

Next, I analyzed the relationship between these clusters and

functional cell types. Surprisingly, despite the distinct nature

of these two stimulus sets, a strong correlation emerged. The

contribution of functional cell types to each cluster differed

significantly from random expectations and varied dramatically

across clusters (Figures 5C, D). In 14 of the 16 clusters, half of the

functional types accounted for 80% of the contribution. Moreover,

in 11 of the 16 clusters, five functional types accounted for over 50%

of the contribution, with the largest contribution reaching 89%.

Clusters with small RF coverage were predominantly composed of

functional cell types from Group 1 (1–10), whereas other clusters

were primarily associated with functional types from Group 2

(Figure 5C). These findings suggest a strong correlation between

clusters defined by responses to natural movies and functional types

identified through artificial stimuli. This relationship points to a

stimulus-independent internal representation of visual information

in the SC.

2.5 Natural movie elicited responses across
depth and in genetically labeled neurons

Our previous work has revealed depth-dependent variations

in the functional properties of SC neurons (Li and Meister,

2023). Here, I explored whether such depth dependence also

extends to neuronal responses to natural movies. Neurons in

the upper 100 µm showed stronger responses to natural movies,

particularly to the “baby owl” and “foraging” movies (Figure 6A),

although their temporal profiles were largely consistent across

depth. Compared with deeper neurons, superficial neurons were

more strongly associated with clusters with smaller visual field

coverage (Figure 6C).

I further compared responses to natural movies in genetically

labeled neurons across five mouse Cre-lines (see Section 4).

These neurons displayed distinct temporal profiles based on their

genetic identity (Figure 6B). For example, excitatory (Vglut2+) and

inhibitory (Vgat+) neurons exhibited different response patterns

to the “baby owl” and “foraging” movies, with inhibitory neurons

showing larger initial response amplitudes to both. Tac1+ and

Rorb+ neurons displayed more sustained responses, whereas

Ntsr1+ neurons, characterized by wide-field dendritic arbors,

responded transiently to the “baby owl” movie and strongly to

the “running cat” movie. This suggests that Ntsr1+ neurons may

function as approach detectors.

The contribution of the 16 clusters to genetic lines also

varied (Figure 6D). Ntsr1+ neurons were primarily associated with

Clusters 5 and 16, which contained fewer neurons with clearly

defined RFs and covered large visual regions. In contrast, Vgat+

neurons were more associated with clusters with small RF coverage.

Meanwhile, Vglut2+, Tac1+, and Rorb+ neurons were contributed

by clusters covering larger visual fields, though their specific

contributions varied. Finally, I observed similarities in responses
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FIGURE 5

Functional properties of each cluster. (A) Violin plots or histograms of various response indices: motion selectivity index (MSI), direction selectivity

index (DSI), orientation selectivity index (OSI), habituation index (HI), looming selectivity index (LSI), contrast selectivity index (CSI), best stimulus size

(BSS), surround suppression index (SSI), blue-green index (BGI), and receptive field size (RFS). (B) Selectivity index (SI, normalized for each column) for

functional properties across di�erent clusters (see Section 4). RtM, response to motion; PFSI, peak-final selectivity index; FSI, frequency selectivity

index; RaFM, response after frequency modulation; RaAM, response after amplitude modulation. The gray color indicates values that are not

significantly di�erent from 0 (p ≥ .05, one-sample t-test). (C) Contributions of di�erent functional types to each cluster. The red dashed line divides

cell types into two groups, as shown in the right panel. (D) Cumulative percentage of contributions of di�erent functional types to each cluster.

between Vgat+ neurons and neurons located in the upper 100 µm

(D1), consistent with previous findings that Vgat+ neurons are

more abundant in the upper portion of the superficial SC (Liu et al.,

2023).

3 Discussion

In the wild, animals are exposed to natural scenes; however,

in the laboratory, artificial stimuli are widely employed. Although
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FIGURE 6

Natural movie elicited responses in genetically labeled populations and across depth. (A) Average temporal profiles of neuronal responses to natural

movies of five genetically labeled cell types plotted as in Figure 3A. (B) Average temporal response across depth. (C) The percentage of each cluster

across depth. (D) The percentage of each cluster in mice with di�erent genetic backgrounds.

such stimuli have provided insights into the neural processing

of visual information, there is a gap between these laboratory

findings and the processing of ecologically relevant natural scenes.

This remians Bridging this gap is a central question in visual

neuroscience. Our previous work quantified neuronal functional

properties based on responses to artificial stimuli and revealed

distinct functional cell types (Li and Meister, 2023). Building

on this, the present study investigates how SC neurons respond

to natural movies. By comparing responses to both natural and

artificial stimuli within the same neuronal population, I aim to

bridge the gap.

3.1 Main findings

I summarize the main findings as follows. Neurons in the

superficial SC show diverse responses to four natural movies

(Figure 1). Based on their temporal response profiles, these neurons

are grouped into 16 clusters (Figure 2), each displaying distinct

response patterns (Figure 3). The differences in temporal profiles

are partially attributed to the RF properties of neurons in each

cluster, and neurons in some clusters form clear patchy structures in

both visual and anatomical spaces (Figure 4). Responses to natural

movies are highly correlated with functional properties based on
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responses to artificial stimuli, indicating that the dimensionality

of the neuronal response space is much lower compared to the

stimulus space (Figure 5). Furthermore, the diversity in neuronal

responses is observed across different depths and genetically

defined cell types (Figure 6).

3.2 Interpretation of neuronal responses to
natural movies

How do we interpret the neuronal responses to natural movies?

The average RF size of SC neurons is about 100 deg2 (Figure 4B),

covering around 1/30 of the visual area spanned by all recorded

neurons (Figure 4C). In our previous study, artificial visual stimuli

were centered at the RF center of each neuron, ensuring that

differences in their responses reflected how they encode different

visual features within the same input. In the present work, different

neurons “see” distinct 1/30 portions of natural movies, meaning

that differences in their responses reflect both encoding differences

and distinct visual inputs. Indeed, neurons in some clusters

occupied only small localized visual regions. However, a close look

reveals that this explanation does not fully capture the observed

response patterns.

First, several clusters respond preferentially to specific movies,

including Clusters 1, 2, 4, 5, and 7. These neurons account for about

13% of the total recorded population and are mainly located in the

deeper part of the superficial SC. This finding is consistent with the

notion of a depth-dependent sifting of visual information within

the SC (Lee et al., 2020).

Second, even for clusters with largely overlapping RF coverage

(Figure 4C), they can respond very differently to the same stimulus.

This reflects variations in their functional properties, such as

orientation selectivity, motion direction selectivity, and size tuning.

Therefore, a neuron’s responses to natural movies can be largely

explained by its RF location and functional properties.

3.3 Functional significance and the
underlying neural mechanism

The diverse responses to natural movies observed in the

superficial SC align with the parallel processing of visual

information that begins in the retina, where more than 30 types of

RGCs have been identified (Baden et al., 2016; Sanes and Masland,

2015). This diversity suggests the SC not only inherits but also

transforms retinal inputs. For example, most clusters in Group 1

(Figures 4C, D) consist of neurons with small, well-defined RFs

that cover localized visual regions, suggesting they encode low-level

features inherited from the retina, such as orientation selectivity,

direction selectivity, and surround suppression. In contrast, several

clusters respond preferentially to specific movies, indicating a role

in high-level visual processing, such as categorizing visual stimuli.

Furthermore, neurons in Cluster 12 show persistent activity after

switching to a new movie, suggesting their potential involvement

in encoding brain states or working memory.

Additionally, the superficial SC is known to play a critical role

in encoding stimulus-driven visual saliency, a key component of

bottom-up attention (Barchini et al., 2018; Yan et al., 2018; White

et al., 2017;Wu et al., 2024; Ahmadlou et al., 2017; Knierim and van

Essen, 1992). Thus, neuronal responses to natural movies may not

only reflect specific visual features or categories but also the saliency

of visual locations. This saliency encoding is essential for guiding

attention and gaze shifts, enabling animals to navigate and survive

in complex natural environments.

The diverse responses to natural movies in the SC may arise

from an integration of retinal, collicular, and cortical circuits,

further influenced by neuromodulators. As noted, some response

properties likely originate directly from the retina. However,

retinal inputs are not passively relayed; they are integrated with

collicular inputs from local excitatory and inhibitory neurons.

Excitatory and inhibitory neurons show distinct temporal response

profiles (Figure 6B) and contribute to different clusters (Figure 6D),

suggesting they play complementary roles in shaping neuronal

responses. The observation that some clusters contain both

excitatory and inhibitory neurons may be attributed to two

factors. First, because both types of neurons may receive direct

retinal inputs or relayed inputs from local collicular neurons, the

observation likely reflects their shared inputs. Second, the number

and diversity of natural movies used in this study were limited.

While retinal inputs dominate low-level feature encoding, cortical

inputs likely drive higher-order functions. In the primate SC, face

preference requires cortical inputs (Yu et al., 2024). Similarly, the

category-specific responses observed here may also depend on

inputs from V1. Furthermore, the persistent activity in Cluster 12

suggests contributions from neuromodulators like dopamine and

serotonin (Bolton et al., 2015; Mooney et al., 1996), which regulate

brain state and working memory.

3.4 From artificial to natural: bridging the
gap in visual encoding

One way to probe the dimensionality of neural space in visual

processing is to measure neuronal responses to a diverse set of

visual stimuli. However, the number of possible visual stimuli

is enormous, and even carefully selected natural movies with

diverse content and style require a fairly long time to display.

Moreover, the same natural movies must be displayed multiple

times to elicit reliable neuronal responses. To further examine

whether these responses are ethologically relevant, additional

manipulations—such as rotating the movies or playing them in

reverse—are necessary. These requirements collectively increase

the recording time substantially. In the present study, imaging

neuronal responses to the current set of stimuli took over

two hours, during which the mice’s eyes occasionally became

blurred due to eye discharge. Prolonged imaging sessions would

further increase this likelihood and lead to photo-bleaching of

the fluorescence.

Therefore, the smaller number of clusters identified in this

study, compared to the number of functional cell types reported

before (Li and Meister, 2023), does not necessarily imply that

natural movies are less effective in revealing the functional diversity

of SC neurons, nor does it suggest that the neuronal representations

of visual information are unstable. Instead, the discrepancy may

simply reflect the limited number of natural movies used in

the experiment.

Frontiers inCellularNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncel.2025.1558504
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Li 10.3389/fncel.2025.1558504

A critical test for the relevance of artificial stimuli to natural

visual processing is the ability to predict neuronal responses to

natural movies based on their functional properties derived from

responses to artificial stimuli. If such predictions are successful,

it would strongly support the idea that what we have learned

from artificial stimuli is valuable for understanding how the brain

processes natural scenes. This would bridge the gap between

controlled experimental paradigms and the complexity of real-

world visual processing, offering a generalizable framework for

studying neural representations of visual information.

4 Materials and methods

4.1 Animal

Six strains of laboratory mice of both sexes were used

at ages 2–4 months: C57BL/6J (wild-type), Vglut2-ires-Cre

(B6J.129S6(FVB)-Slc17a6 tm2(cre)Lowl/MwarJ, JAX: 028863),

Vgat-ires-Cre (B6J.129S6(FVB)-Slc32a1tm2(cre)Lowl/MwarJ, JAX:

028862), Tac1-IRES2-Cre-D (B6; 129S-Tac1tm1.1(cre)Hze/J, JAX:

021877) (Harris et al., 2014), Rorb-IRES2-Cre-D (B6;129S-

Rorbtm1.1(cre)Hze/J, JAX: 023526) (Harris et al., 2014), and

Ntsr1–GN209–Cre (Genset: 030780-UCD) (Gerfen et al., 2013).

All animal procedures were performed according to the relevant

guidelines and approved by the Caltech IACUC.

4.2 Viral injection

Adeno-associated virus (AAV) expressing non-floxed GCaMP6

(AAV2/1.hSyn1.GCaMP6f.WPRE.SV40, 1012 gc/ml) was injected

into the SC of wild-type mice, while AAV expressing floxed

GCaMP6 (AAV2/1.Syn.Flex.GCaMP6f.WPRE.SV40, 1012 gc/ml)

was injected into the SC of Vglut2-ires-Cre, Vgat-ires-Cre, Tac1-

IRES2-Cre-D, Rorb-IRES2-Cre-D, and Ntsr1–GN209–Cre mice.

The injection site was 0.5 mm lateral and 0.42 mm anterior to the

lambda, with injections performed at depths of 1 and 1.6 mm. After

2–3 weeks, a cranial window coupled to a transparent silicone plug

was implanted to expose the posterior-medial portion of SC, which

corresponds to the upper-temporal part of the visual field (Li et al.,

2023). Two-photon microscopy was used to image calcium signals

in the SC of head-fixed awake mice between 3 weeks and 2 months

after viral injection.

4.3 In vivo two-photon calcium imaging

For imaging experiments, the mouse was head-fixed and free to

move on a rotating treadmill. Two-photon imaging was performed

on a custom-built microscope with a 16× objective lens, 0.8 NA,

3 mm WD (Nikon). A Ti-Sapphire laser (Spectra-Physics Mai Tai

HP DeepSee) was scanned by two galvanometers (Cambridge).

GCaMP6f was excited at 920 nm, with laser power at the sample

plane ranging from 20 to 80 mW. A 600 µm × 600 µm field of

view was scanned at 4.8 Hz with a spatial resolution of 24µm/pixel.

The imaging depth was up to 350 µm. Emitted light was collected

with a T600/200dcrb dichroic mirror (Chroma), passed through

an HQ575/250m-2p bandpass filter (Chroma), and detected by a

photomultiplier tube (R3896, Hamamatsu). Artifacts of the strobed

stimulus (see below) were eliminated by discarding eight pixels on

either end of each line. The animal’s locomotion on the treadmill

and pupil positions were recorded and synchronized to the image

acquisition. The animal exhibited only rare eye movements and

locomotion (Li et al., 2020).

4.4 Visual stimulation

An LED-backlit LCD screen was placed 18 cm away from

the mouse’s right eye. The center of the monitor was at 95◦

azimuth and 25◦ elevation to the eye, and the monitor covered

a visual field of 106◦ × 79◦. The monitor’s LED illuminator was

strobed for 12 µs at the end of each laser scan line to minimize

interference from visual stimulation with fluorescence detection.

The monitor was gamma-corrected. Four distinct natural movies,

including “baby owl,” “running cat,” “foraging,” and “optical flow,”

were presented to probe how collicular neurons responded to

natural stimuli. The characteristics of natural movies were analyzed

by calculating brightness, root mean square (RMS) contrast, and

motion energy (Nishimoto et al., 2011).

Functional properties of the same neurons were characterized

based on their neuronal response to six types of artificial visual

stimuli (Li and Meister, 2023), including (1) A full-field moving

black bar (5◦ width at 50◦/s) in 12 directions to measure the

orientation selectivity and direction selectivity. (2) An expanding

black disc (diameter 2◦ to 60◦ at a speed of 60◦/s, stationary at 60◦

for 0.25 s, followed by a gray background for 2 s) and a receding

white disc (60◦ to 2◦ at a speed of 60◦/s) to measure looming-

related responses. (3) Sparse (one at a time) 5◦ × 5◦ flashing squares

(11×11 squares, 1 s black or white + 1 s gray) to map the receptive

field (RF); (4) A 10◦ × 10◦ square modulated by a “chirp” in

frequency or amplitude [3 s black + 3 s white + 3 s black + 3 s gray

+ 8 s frequency modulation (2−1 : 3 Hz) + 3 s gray + 8 s amplitude

modulation (0 : 1) + 3 s gray + 3 s black] centered on the RF to

measure temporal properties (Baden et al., 2016); (5) A 10◦ × 10◦

square flashing blue or green (1 s black + 3 s blue + 4 s black +

3 s green + 3 s black) centered on the RF to measure the color

preference; (6) A flashing disc (2 s black + 2 s gray) with different

size (2◦, 4◦, 8◦, 16◦, 32◦) centered on the RF to measure the size

tuning. All stimuli were displayed for 10 repetitions.

4.5 Analysis of calcium responses

4.5.1 Measurement of calcium responses
Brain motion during imaging was corrected using

SIMA (Kaifosh et al., 2014) or NoRMCorre (Pnevmatikakis

and Giovannucci, 2017). Regions of interest (ROIs) were drawn

manually using the Cell Magic Wand Tool (ImageJ) and fitted

with an ellipse in MATLAB. Fluorescence traces of each ROI

were extracted after estimating and removing contamination from

surrounding neuropil signals as described previously (Li et al.,

2020; G’́obel and Helmchen, 2007; Kerlin et al., 2010). The true

fluorescence signal of a neuron is Ftrue = Fraw − (r · Fneuropil),
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where r is the out-of-focus neuropil contamination factor, with an

estimated value of ∼ 0.7 for this setup. Slow baseline fluctuations

were removed by subtracting the eighth percentile value from a

15-s window centered on each frame (Dombeck et al., 2007).

For any given stimulus, a neuron’s response was defined by the

fluorescence trace in its ROI during the stimulus period:

R =
F − F0

F0
(1)

where F is the instantaneous fluorescence intensity, and F0 is

the mean fluorescence intensity, without visual stimulation.

Two criteria were applied to interpret ROIs as neurons: (1) The

size of the ROI was limited to 10–20 µm to match the size of a

neuron; (2) The response from the ROI had to pass a signal-to-noise

ratio (SNR) of 0.35 (Li and Meister, 2023),

SNR =
Var[〈C〉r]t
〈Var[C]r〉t

(2)

where C is the Nt (time samples) × Nr (stimulus repetitions)

response matrix, with t = 1, . . . ,Nt and r = 1, . . . ,Nr ; 〈·〉r and 〈·〉t
are the means over repetitions and time respectively, while Var[·]r
and Var[·]t are the corresponding variances. All ROIs meeting

these criteria were selected for further analysis, yielding a total of

3,414 neurons, including 490 neurons from four wild-type mice,

337 neurons from one Vglut2-ires-Cre mouse, 1,085 neurons from

three Vgat-ires-Cre mice, 720 neurons from three Tac1-IRES2-Cre-

D mice, 485 neurons from four Rorb-IRES2-Cre-D mice, and 297

neurons from one Ntsr1–GN209–Cre mouse.

4.5.2 Quantification of functional properties
The functional properties introduced in Figure 4 are defined

as follows.

The response to motion (RtM) is defined as the largest absolute

response amplitude during moving-bar stimulation. For neurons

suppressed by motion, this will be negative.

To quantify the tuning of a neuron to motion directions and

orientations, the direction selectivity index (DSI) and orientation

selectivity index (OSI) were defined as the normalized amplitude

of the response-weighted vector sum of all directions and

orientations, respectively:

DSI =
|
∑

k R(ρk)× eiρk |
∑

k R(ρk)
(3)

OSI =
|
∑

k R(θk)× e2iθk |
∑

k R(θk)
(4)

where ρk and θk are the kth direction and orientation in radians,

and R(ρk) and R(θk) are the corresponding peak responses.

To quantify habituation to the expanding black disc, the

habituation index (HI) was calculated:

HI =
R1 − R10

R1 + R10
(5)

where R1 and R10 are the peak response to the first and tenth

looming stimulus, respectively.

To quantify the preference for expanding black discs

vs. receding white discs, the looming selectivity index (LSI)

was calculated:

LSI =
Rk − Rw

Rk + Rw
(6)

where Rk is the peak response to the black expanding disc, and

Rw is the peak response to the white receding disc.

To quantify the preference for moving stimuli over flashing

stimuli, the motion selectivity index (MSI) was calculated:

MSI =
Rm − Rf

Rm + Rf
(7)

where Rm is the peak response to the moving bar at the

preferred direction and Rf is the peak response to the flashing

chirp stimulus.

To quantify contrast preference, the contrast selectivity index

(CSI) was calculated:

CSI =
ROn − ROff

ROn + ROff
(8)

where ROn is the peak response to the flashing white square and

ROff is the peak response to the flashing black square.

To quantify whether neurons show transient or sustained

responses to flash stimuli, the peak-final selectivity index (PFSI)

was calculated:

PFSI =
Rpeak − Rfinal

Rpeak + Rfinal
(9)

where Rpeak is the peak response to the flashing white/black

square that elicited larger responses, and Rfinal is the final response

to that stimulus.

To quantify preference for the flashing frequency, the frequency

selectivity index (FSI) was calculated:

FSI =
Rlow − Rhigh

Rlow + Rhigh
(10)

where Rlow is the peak response in the first 3 s to the flashing

frequency modulation, and Rhigh is the peak response in the last 2 s

to the frequency modulation.

The response after frequency modulation (RaFM) was

measured as the difference between the response amplitude at 1.6

s after the stop of the frequency modulation and the baseline.

Similarly, the response after amplitude modulation (RaAM) was

measured as the difference between the response amplitude at 1.6

s after the stop of the amplitude modulation and the baseline.

The best stimulation size (BSS) was defined as the size of the

flashing black disc that elicited the largest responses.

To quantify the surround suppression, the surround

suppression index (SSI) was calculated:

SSI =
Rsmall − Rlarge

Rsmall + Rlarge
(11)

where Rsmall is the peak response to the flashing black disc

with a diameter of 2 degrees, and Rlarge is the peak response to the

flashing black disc with a diameter of 32 degrees.
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To quantify the color preference, the blue-green index (BGI)

was calculated:

BGI =
Rb − Rg

Rb + Rg
(12)

where Rb is the response to the flashing blue stimulus, and Rg is

the response to the flashing green stimulus.

To quantify the receptive field size (RFS), the calcium responses

at 11×11 locations were fitted with a 2-D Gaussian function

(Equation 13),

f = A · e−
((x−E) cos(D)−(y−F) sin(D))2

2B2
− ((x−E) sin(D)+(y−F) cos(D))2

2C2 + G (13)

The RF size is defined as the area at the half of maximum, which

equals π · 2 ln 2 · B · C. The analysis of the RF was performed

only if the coefficient of determination for this fit was below 0.5

(Figure 4A). The RF size and position of neurons with a coefficient

of determination larger than 0.5 are shown in Figures 4B, C.

4.5.3 Construction of the feature matrix
The dimensionality of the calcium response traces was reduced

by approximating them with a weighted sum of features. For each

neuron, the responses to all four natural movies was normalized to

[0, 1], and then the optimal features were extracted with principal

components analysis (PCA) from the response matrix.

D = XF (14)

where D (Nneuron × Ntime) is the matrix of neuronal responses

to natural movies, F(Nfeature × Ntime) is the correlation matrix with

the time course corresponding to each feature, and X(Nneuron ×
Nfeature) is the featurematrix that carries weight coefficients for each

feature.

Sixteen features, which explain 70% of the variance in the data,

were extracted from the responses to natural movies. Each feature

was normalized so that the mean was 0 and the standard deviation

was 1.

4.5.4 Clustering of the feature matrix
Neuronal responses were clustered by applying a Gaussian

mixture model (GMM) to the feature matrix X.

p(x) =
K

∑

i=1

φiN(x|µi, σi) (15)

N(x|µi, σi) =
1

σi
√
2π

exp

(

−
(x− µi)

2

2σ 2
i

)

(16)

K
∑

i=1

φi = 1 (17)

where p(x) is the probability density of the feature vector

x, K is the number of component Gaussian functions, and

φi is the weight for ith Gaussian function N(x|µi, σi) in the

feature space. Parameters were optimized using the EM algorithm

(sklearn.mixture.GaussianMixture in the package scikit-learn). The

number of components was varied from 2 to 50, and the quality was

evaluated with the Bayesian information criterion (BIC) (Kass and

Raftery, 1995):

BIC = −2 ln L+ k ln n (18)

where L = p(x|θ ,M), is the maximized likelihood of model

M, x is the observed data, θ are the parameters that maximize the

likelihood, k is the number of parameters in the model, and n is

the number of neurons. The smallest BIC was chosen from the EM

fit with 1,000 random initial states, which was plotted against the

number of components in Figure 2A.

To evaluate the stability of clusters, 90% of the dataset was

sub-sampled 1,000 times and fitted with a GMM using the best

cluster number determined from the full dataset (Hennig, 2007).

For each original cluster, its Jaccard similarity coefficient (JSC) with

the subsets was calculated,

JSC =
1

N

N
∑

i=1

max
j

{

|Cfull ∪ C
j

sub
|

|Cfull ∩ C
j

sub
|

}

(19)

where N is the number of subsets, Cfull is the cluster in the

full dataset, and C
j

sub
is the jth cluster in one subset. Clusters with

JSC below 0.5 were considered unstable. All clusters were stable

(Figure 2E).

To assess the robustness of clustering, the probability that

a pair of cells are classified into the same cluster in different

subsets was measured, and the co-association matrix (CAM) was

calculated (Fred and Jain, 2005):

CAM(i, j) =
ni,j

N
(20)

where ni,j is the number of times that the pair (i, j) is assigned

to the same cluster inN subsets. The between-cluster rate is defined

as the cluster-wise average of the co-association matrix.

To plot the dendrogram, a linkage algorithm

(scipy.cluster.hierarchy.linkage) to the means of different clusters

in the feature space was applied, with the distance between two

clusters defined as the Euclidean distance with Ward’s minimum

variance method.

4.5.5 Relative selectivity index
Relative selectivity index (RSI) is defined as the difference of

functional property between one type and a reference number.

RSI(i, j) = Fi,j − Fi,ref (21)

where Fi,j is functional property i of type j and Fi,ref is the

reference of functional property i. The reference numbers are RtM:

0, DSI: 0.15, OSI: 0.15, HI: 0, LSI: 0, MSI: 0, CSI: 0, PFSI: 0.5, FSI: 0,

RaFM: 0, RaAM: 0, BSS: 8, SSI: 0, BGI: 0, RFS: 90 deg2.

4.5.6 Analysis of the anatomical arrangement of
functional cell types

For the results on anatomical arrangement (Figure 4), only

recording sessions with >5 neurons in a field of view were included.
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The density recovery profile (DRP) plots the probability of finding

a cell per unit area as a function of distance from a cell of the same

type (Rodieck, 1991). First, the ROI was defined as the convex hull

of all neurons in an image, within which, the distances from each

reference cell to all of the other cells were histogrammed:

N(r)1r = average number of cells at radii between r and r + 1r

(22)

Then the average area A(r)1r at the distance between r and

r + 1r from any reference point in the window was measured, and

the DRP was calculated as

ρ(r) =
N(r)

A(r)
(23)
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