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The dorsal horn of the spinal cord represents the first site in the central nervous

system (CNS) where nociceptive signals are integrated. As a result, there has

been a rapid growth in the number of studies investigating the ionic mechanisms

regulating the excitability of dorsal horn neurons under normal and pathological

conditions. We believe that it is time to look back and to critically examine

what picture emerges from this wealth of studies. What are the actual types

of neurons described in the literature based on electrophysiological criteria? Are

these electrophysiologically-defined subpopulations strongly linked to specific

morphological, functional, or molecular traits? Are these electrophysiological

properties stable, or can they change during development or in response to

peripheral injury? Here we provide an in-depth overview of both early and

recent publications that explore the factors influencing dorsal horn neuronal

excitability (including intrinsic membrane properties and synaptic transmission),

how these factors vary across distinct subtypes of dorsal horn neurons, and

how such factors are altered by peripheral nerve or tissue damage. The meta-

research presented below leads to the conclusion that the dorsal horn is

comprised of highly heterogeneous subpopulations in which the observed

electrophysiological properties of a given neuron often fail to easily predict other

properties such as biochemical phenotype or morphology. This highlights the

need for future studies which can more fully interrogate the properties of dorsal

horn neurons in a multi-modal manner.

KEYWORDS

spinal cord, nociception, electrophysiological techniques, ionic channels, action
potentials, dorsal horn neurons, firing pattern

1 Introduction

The spinal cord dorsal horn (DH) serves as the initial integration site where
somatosensory input is processed by the central nervous system. It is organized into distinct
laminae, each associated with specific types of sensory information. Primary afferent fibers
(PAFs) that transmit pain, touch, itch, and proprioceptive inputs are categorized into
different types (Aα, Aβ, Aδ, and C), each conveying distinct sensory modalities (Figure 1A).
In particular, myelinated Aβ and low threshold (LT) Aδ fibers, which mediate innocuous
mechanical sensitivity, primarily project to lamina II inner, III, and IV. In contrast, high
threshold (HT) myelinated Aδ and unmyelinated C fibers, which mediate pain, thermal
sensations, and itch, mainly terminate in lamina I and II (for review see Todd, 2010;
Merighi, 2018). Low-threshold mechanoreceptive fibers also include a specific group of
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C fibers that project to lamina II. These fibers transmit pleasant
touch and modulate unpleasant mechanical pain sensations (Liu
et al., 2007; Seal et al., 2009). Within DH laminae, PAFs synapse
onto both excitatory and inhibitory local interneurons as well as
projection neurons, that extend their axons to supraspinal centers.
In response to sensory stimulation, DH neurons may generate
action potentials (APs) with varying firing patterns. In addition to
stimulus-evoked activity, some DH neurons exhibit spontaneous
firing. DH neuron excitability is shaped not only by sensory input
but also by intrinsic electrical properties.

In this review, we provide an overview of early and
recent data related to the generation and modulation of
DH neuronal activity. In particular, we will review the
mechanisms underlying spontaneous and evoked AP firing
in DH neurons. Additionally, we will explore the intrinsic
membrane properties of specific DH neuron populations
and discuss how chronic pain can lead to modifications
in neuronal excitability within spinal nociceptive circuits.
While dorsal horn neurons can be classified via a multitude
of other properties such as their transcriptional profile and
functional role in somatosensation, these valid and informative
classification approaches nonetheless fall outside the scope
of the present review. Instead, we selectively focus on the
electrophysiological signatures of dorsal horn neurons, based
on the belief that further improving our understanding of the
mechanisms regulating DH neuron excitability is essential for
comprehending how DH networks operate under normal and
pathological conditions.

2 Overview of electrophysiological
and complementary methods to
study dorsal horn neurons

Several different technical approaches have been used to
gather information on the electrical behavior of spinal cord
neurons and their sensory coding capabilities. These include a
number of different animal preparations, recording techniques and
stimulation protocols.

In vivo preparations of cats and rats coupled to extracellular
single electrode techniques were commonly used in the past
century and produced very useful data regarding how neurons
respond to natural stimulation. Single neurons were recorded,
one at a time with glass micropipettes or metallic electrodes,
and their receptive fields explored. These experiments served
to define the main functional types of DH neurons and to
explore their general response properties thoroughly. Other in vivo
preparations included different methods of spinalization to enable
studies on descending modulation and in some exceptional cases,
recordings were obtained from awake animals to check the validity
of results obtained with anesthetized animals (Herrero et al.,
1993). In vivo recordings with intracellular electrodes have been
scarcely used due to technical difficulties related to mechanical
stability; however, some remarkable studies have been published
(Woolf et al., 1988). At present a few laboratories continue
to use in vivo preparations with different electrophysiological
approaches such as matrixes of electrodes which allow recordings
from several neurons simultaneously (Greenspon et al., 2019). This

technique opens the door to the study of circuits rather than single
neurons.

In vitro preparations using rats or mice started to become
popular toward the end of the last century, to solve the stability
problem and to facilitate intracellular recordings. Intracellular
current and voltage recordings are massively used but other
techniques like extracellular electrode matrixes and calcium
imaging are commonly reported coupled to in vitro preparations.
Meanwhile, technologies based on novel voltage-sensitive dyes
and genetically-encoded voltage indicators are currently under
development (Hiyoshi et al., 2021). In vitro preparations include
cell cultures as well as several ex vivo preparations developed
for specific purposes. The entire or hemisected spinal cord
preparations enable the use of simple techniques like dorsal root-
ventral root recordings that proved very useful for pharmacological
studies (Vicente-Baz et al., 2016). In addition, different slicing
procedures have also been used to facilitate the access of a
variety of electrodes to different laminae of the spinal cord.
Besides sharp intracellular electrodes, electrodes for whole cell
clamp, patch clamp and perforated patch electrodes are commonly
used to study ionic currents and ion channels underlying the
electrical behavior of dorsal horn neurons. Specialized preparations
like the spinal cord attached to the hindlimb, tail, skin and
brainstem have also been reported (King and Lopez-Garcia,
1993; Hachisuka et al., 2016; Lever et al., 2003). Under these
in vitro conditions, stimulation protocols often include electrical
stimulation of primary afferent pathways, intracellular current
injection and more recently, optogenetics. Electrical stimulation
of dorsal roots tends to recruit different afferent types in an
intensity-dependent fashion so that thick myelinated Aβ fibers
are activated by low-intensity currents whereas activation of thin
myelinated Aδ and unmyelinated C afferents require progressively
stronger stimuli. This procedure is simple and extensively used
but does not allow for true selective activation of afferent types.
Recently developed optogenetics and chemogenetics open the
possibility of stimulating specific primary afferents or specific
populations of secondary neurons contributing decisively to clarify
the role of specific populations at shaping behavioral responses
to somatosensory stimuli (Sharif et al., 2020; Harding et al., 2020;
Choi et al., 2020).

Historically, there has been an interest in relating a neuron’s
electrical behavior with its morphology, its position within
the spinal cord, and its relationship to the rest of the
somatosensory system. Intracellular and whole-cell recordings
allow for injection of markers like biocytin or lucifer yellow,
thereby enabling investigation of cell morphology at the end of an
electrophysiological study (Grudt and Perl, 2002). Similarly, the use
of genetic engineering in mice allows for the expression of green
fluorescent protein or other fluorophores in specific populations
of neurons, thereby allowing targeted electrophysiological studies
(Hantman et al., 2004). Other imaging techniques include the
use of anterograde markers to trace the destination of projecting
axons, or retrograde markers to find the somas of neurons
projecting to a particular brain region. These techniques have
enabled electrophysiological studies of specific projection neurons
(Li et al., 2023), which adds tremendous value to experimental
observations that historically were performed blind to the identity
of the recorded neuron.
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FIGURE 1

Spontaneous activity exhibited by dorsal horn neurons. (A) Schematic representation of the spinal cord dorsal horn and the primary afferent
projections to the different laminae. (B) Representative example of irregular spontaneous firing recorded in an adult mouse lamina I
spinoparabrachial (projection) neuron in an ex vivo spinal cord preparation. (C) Extracellular recordings were obtained in an ex vivo slice from a
neonatal mouse using a multielectrode array situated in the superficial laminae of the cord. Action potentials of each individual neuron are
represented as vertical lines and include representative examples of 6 neurons with different patterns recorded simultaneously. The right panel
shows the area indicated by the asterisk in an expanded time base. Firing patterns include both regular and irregular patterns, with spikes in isolation
as well as grouped in burst (RSB, regular slow burst; RFB, regular fast burst; RS, regular simple; ISB, irregular slow bursts; IFB, irregular fast burst; IS,
irregular simple firing).

3 Ionic currents involved in dorsal
horn electrical activity

Dorsal horn neurons and the central terminals of primary
afferents express a wide variety of ion channels representing all the
main families reported in the CNS, which are briefly summarized
in Table 1. Differences in the array of ion channels expressed by any
individual neuron, and the relative balance between them, allow

for an enormous variability in the electrical properties of a given
neuron.

3.1 Sodium currents

Neurons located in the DH express different functional types of
voltage-gated sodium currents with a particular spatial distribution.
The axon hillock concentrates inactivating sodium channels, with
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TABLE 1 Functional roles of the principal ionic currents expressed by dorsal horn neurons and their modulation in different animal pain models.

Ionic
current/channels

Role in
spontaneous
activity

Function in evoked
firing

Modulation in
animal models of
pain

References

INa persistent Generation of rhythmic burst
firing

Increases firing frequency,
reduces AP adaptation, and
promotes synaptic integration

Increase (spinal cord injury) Li and Baccei, 2011;
Lucas-Romero et al., 2018; Cho
et al., 2015; Prescott and De
Koninck, 2005; Lampert et al.,
2006

INALCN Resting Na+ leak
conductance
Enhances spontaneous
activity

Required for firing evoked by
substance P

Increase (nerve injury,
inflammation)

Ford et al., 2018; Zhang et al.,
2021; Li and Baccei, 2021

IH Generation of rhythmic
activity

Regulates firing and input
resistance
Involved in rebound firing

HCN2 upregulation
(oxaliplatin-induced
neuropathy)

Rivera-Arconada et al., 2013;
Rivera-Arconada and
Lopez-Garcia, 2015; Liu et al.,
2018

IKA – Modulation of neuron excitability
Involved in delayed, gap and
reluctant firing patterns

Altered voltage-dependent
inactivation (inflammation)
Reduction (capsaicin
injection)
Increase (LPS injection)

Hu et al., 2006; Melnick, 2011;
Ruscheweyh and Sandkühler,
2002; Ruscheweyh et al., 2004;
Graham et al., 2008;
Rivera-Arconada and
Lopez-Garcia, 2010; Zhang et al.,
2018; Tadros et al., 2018

IKDR Regulates spike duration Involved in AP repolarization and
fast AHP

Increase (inflammation) Legendre et al., 1985

KV7 channels – Regulate resting membrane
potential and promote adaptation
in tonic firing neurons 22

– Rivera-Arconada and
Lopez-Garcia, 2005

IKIR - GIRK channels
(Kir3)

Resting K+ leak conductance;
suppresses rhythmic bursting
activity (Kir2)
Decrease of rhythmic
bursting

Generation of plateau potentials
Contribute to adaptation in tonic
firing neurons

Increase (neonatal surgical
injury)
Enhancement (inflammation,
nerve injury)

Li et al., 2013; Ford and Baccei,
2016; Derjean et al., 2003; Li and
Baccei, 2014; Santos et al., 2004;
Ippolito et al., 2005

IKCa Promotes burst firing and
AHP at burst termination

Involved in AHP. Decreases
excitability and promotes
adaptation in tonic firing neurons

Reduction (nerve injury) Ma et al., 2023; Kim et al., 2008;
Yang, 2016; Chen et al., 2009

ICAN Facilitates pacemaker activity Generation of plateau potentials – Morisset and Nagy, 1999

this structure being fundamental for AP generation (Safronov
et al., 1997). Tetrodotoxin-sensitive channels containing the Nav1.2
and Nav1.3 isoforms predominate in superficial areas of the DH
(Hildebrand et al., 2011). Persistent sodium currents (INa,P) have
also been reported and may be important for the integration of
synaptic inputs and the generation of spontaneous firing (Prescott
and De Koninck, 2005; Li and Baccei, 2011; Lucas-Romero et al.,
2018).

3.2 Potassium currents

Dorsal horn neurons express several types of potassium
channels belonging to all known functional classes. Among the
voltage-dependent channels, both inactivating and delayed rectifier
currents are present in DH neurons (Wolff et al., 1998; Rivera-
Arconada and Lopez-Garcia, 2010). For the inactivating type, the
contribution of Kv4.2 subunits may be of particular importance
in pathological conditions (Hu et al., 2006). The sustained
component may involve several different Kv subunits, including

delayed rectifier and Kv7/M-currents that can regulate the resting
potential and the excitability of DH neurons (Murase et al., 1986;
Nowak and Macdonald, 1983; Rivera-Arconada and Lopez-Garcia,
2005). Inward rectifier currents, as well as two-pore domain K+

channels, are also expressed by DH neurons and contribute to leak
conductance (Li et al., 2013; Sano et al., 2003). Calcium-activated
potassium currents of the SK and BK families are also present in DH
neurons and modulate afterhyperpolarization and repetitive firing
(Li and Baccei, 2011; Ma et al., 2023; Yang, 2016).

3.3 Calcium currents

Calcium currents expressed by DH neurons include transient
and sustained types of voltage-gated calcium currents with
different properties and pharmacology (Huang, 1989; Ryu and
Randic, 1990), as well as persistent calcium currents (Prescott
and De Koninck, 2005). For example, N-type calcium channels
predominate in lamina I neurons, which also express L- and T-type
currents (Heinke et al., 2004a). L-type currents are implicated in
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the acceleration and prolongation of firing upon depolarization
in some DH neurons (Morisset and Nagy, 1998). T-type currents
participates in burst firing and helps to adjust the firing after
hyperpolarization (Sinha et al., 2021; Rivera-Arconada and Lopez-
Garcia, 2015). Calcium entry is implicated in spontaneous firing of
DH neurons and necessary for the regulation of calcium-dependent
currents (Li and Baccei, 2011).

3.4 Mixed currents

Finally, other ionic currents are present in DH neurons,
including the hyperpolarization-activated current (Ih), which
is responsible for the anomalous rectification in response to
hyperpolarization and helps to set the resting membrane potential
and adjust the timing of rebound firing (Rivera-Arconada
et al., 2013; Rivera-Arconada and Lopez-Garcia, 2015; Yoshimura
and Jessell, 1989a). The calcium-activated non-specific cationic
conductance (ICAN ) and the non-selective sodium leak channel
(NALCN) mediate non-selective currents that are also expressed
in DH neurons and may contribute to the regulation of neuronal
excitability (Ford et al., 2018; Morisset and Nagy, 1999; Li and
Baccei, 2011).

4 Spontaneous firing in the spinal
dorsal horn

Spontaneous activity (SA) has been documented in both the
superficial (Lucas-Romero et al., 2018; Li et al., 2013; Li and
Baccei, 2011; Roza et al., 2016; Medrano et al., 2016) and deeper
(Fernandes et al., 2018; McGaraughty et al., 2018; Quinn et al.,
2010; Monteiro et al., 2006; Jiang et al., 1995) laminae of the DH,
where it can be driven by the intrinsic membrane properties of
the dorsal horn neurons and/or synaptic inputs activated in the
absence of sensory stimulation. For example, 72% of neurons in
the deep DH generated spontaneous action potentials triggered by
suprathreshold EPSPs, resulting in a firing rate that ranged from 0.2
to 50 Hz (Woolf and King, 1989). While a high prevalence of SA was
also observed in deep DH neurons receiving sensory input from
the ankle and knee joints (Martindale et al., 2007), other studies
reported that SA in the deeper laminae was rare in the absence of
injury (Suzuki and Dickenson, 2006; Cata et al., 2006) and occurred
at a relatively low (< 2 Hz) frequency (Palecek et al., 1992; Weng
et al., 2003; Quinn et al., 2010; McGaraughty et al., 2018). A subset
(4%) of deep DH neurons can reportedly undergo a rapid transition
between low- and high-frequency modes of spontaneous discharge,
which can be triggered by stimulation of their sensory receptive
field (Monteiro et al., 2006). In vitro extracellular recordings from
the mouse sacral spinal cord also revealed a relationship between
the pattern of sensory input-evoked firing and the rate of SA
(Thaweerattanasinp et al., 2016). Furthermore, the level of SA in
the deep DH can be controlled in a cell type-dependent manner
by the tonic release of neuromodulators, as suggested by the
finding that blocking nitric oxide synthesis elevates SA in high-
threshold mechanoreceptive neurons but not in the low-threshold
mechanoreceptive population (Hoheisel et al., 2000).

While additional studies are needed to fully elucidate the degree
to which the prevalence and rate of SA differ across distinct laminae
of the spinal cord, available evidence suggests a similar frequency of
SA between nociceptive neurons in lamina I and lamina V (Eckert
et al., 2006). Nonetheless, prior in vivo extracellular recordings
suggest that the presence of laminar differences may depend on
the functional subtype of DH neuron. Notably, deep DH neurons
that respond transiently to colorectal distension (CRD) exhibit a
higher rate of spontaneous firing compared to their counterparts
located in the superficial laminae, while those neurons that respond
in a sustained manner to CRD (or are inhibited by CRD) display
similar levels of SA across laminae (Ness and Gebhart, 1989). The
use of multielectrode array (MEA) recordings in the rodent DH
(Greenspon et al., 2019; Yu et al., 2017; Lucas-Romero et al., 2024)
will undoubtedly facilitate a better understanding of the laminar
differences in SA occurring within the DH network.

The observed patterns of SA have been variously described
using terms which include irregular, regular, clock-like, rhythmic,
bursting and pacemaker (Lucas-Romero et al., 2024) (see
Figures 1B, C). Irregular fast-burst (IFB) neurons are characterized
by brief, high-frequency bursts of action potentials (2–5 spikes
at ∼100 Hz) that occur at irregular intervals (Roza et al., 2016).
A particular case of the latter pattern is “double-spiking,” in which
cells fire two action potentials (APs) with interspike intervals as low
as 2 ms (Rojas-Piloni et al., 2007). Other DH neurons exhibit burst-
firing at regular intervals and can be classified as either Regular
Slow Burst (RSB) neurons, whose intraburst firing is either regular
or irregular, or Regular Fast Burst (RFB) neurons which commonly
display regular firing within the burst (Lucas-Romero et al., 2018).
Pacemaker neurons previously described in the superficial DH (Li
et al., 2013; Li and Baccei, 2011) likely correspond to the RSB
subtype described above. Meanwhile, regular simple (RS) neurons,
also known as clock-like (CL) neurons, discharge single APs at
∼6 Hz with regular interspike intervals (Roza et al., 2016; Luz et al.,
2014).

Spontaneous firing can originate from synaptic activity or the
intrinsic membrane properties of a given neuron. Notably, while
antagonists of fast synaptic transmission (including blockers of
AMPA and NMDA subtypes of glutamate receptors) abolish SA
within irregular firing neurons, most neurons (∼82%) exhibiting
a regular pattern of SA were found to be insensitive to these
antagonists (Lucas-Romero et al., 2018; Luz et al., 2014). Similarly,
the defining feature of pacemaker neurons is their intrinsic ability
to generate rhythmic burst-firing, and therefore such bursting
persists following the block of fast synaptic transmission both
in the ex vivo spinal cord preparation (Li and Baccei, 2011)
and in culture (Legendre et al., 1985). Pacemakers also exhibit a
slow depolarization underlying the burst-firing which essentially
endows the neuron with a bistable membrane potential (Li and
Baccei, 2011) that is reminiscent of a subset of cells in the deep
DH (Monteiro et al., 2006; Morisset and Nagy, 1998). Generally,
DH neurons displaying SA exhibit a more depolarized resting
membrane potential, a more hyperpolarized spike threshold and
lower AP duration compared to neurons that lack SA (Lucas-
Romero et al., 2018). Furthermore, pacemaker interneurons in the
newborn superficial DH are characterized by a lower membrane
capacitance and higher membrane resistance compared to adjacent,
non-pacemakers in the same ex vivo spinal cord slices (Li and
Baccei, 2011).
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While SA has been documented in multiple cell types within
the DH, including both excitatory and inhibitory interneurons
residing in the superficial laminae (Li and Baccei, 2014), emerging
evidence supports the existence of cell type-dependent variations
in SA within the DH network. For example, within the neonatal
spinal cord, SA is more common within lamina I projection
neurons targeting the parabrachial nucleus (PB) compared to
those innervating the periaqueductal gray (Li and Baccei, 2012),
although in vivo recordings suggest that the level of SA within
adult spinoparabrachial neurons is low (Bester et al., 2000). In
addition, most pacemaker neurons in the newborn superficial DH
correspond to glutamatergic interneurons located within lamina
I, with an absence of intrinsic burst-firing within lamina II (Li
and Baccei, 2011). This observation generally agrees with other
work showing that rhythmic SA is more commonly found in
local interneurons than spinal projection neurons (Sandkühler and
Eblen-Zajjur, 1994; Fernandes et al., 2016). Nonetheless, recordings
from lamina I projection neurons in an ex vivo intact spinal cord
preparation revealed the existence of pacemaker activity in both the
spino-PB and spino-PAG subpopulations (Li et al., 2015).

Interestingly, the ionic mechanisms underlying this intrinsic,
rhythmic burst-firing also appear to vary across cell types.
In contrast to lamina I interneurons (Li and Baccei, 2011),
spinoparabrachial neurons showing pacemaker activity possessed
higher membrane capacitance, lower membrane resistance, and a
greater inward-rectifying K+ conductance compared to adjacent
spinoparabrachial neurons that lacked intrinsic burst-firing (Li
and Baccei, 2021). Age is also an important factor shaping the
level of SA within the DH network, as the overall prevalence of
SA and pacemaker activity is significantly downregulated between
postnatal day (P)2 and P9 (Li and Baccei, 2011). Developmental
alterations in passive membrane properties likely play a role, since
superficial DH neurons show an age-dependent hyperpolarization
of the resting potential and reduction in membrane resistance
(Walsh et al., 2009). In addition, a developmental increase in the
density of the rapid A-type voltage-gated K+ currents has been
reported in the DH (Melnick, 2011). Finally, it should be noted
that SA can also be synchronized across multiple subgroups of DH
neurons, manifested as “population bursts” occurring at irregular
intervals (Lucas-Romero et al., 2022), which can span several
segmental levels in the lumbosacral spinal cord (Manjarrez et al.,
2003).

While the above studies on SA in dorsal horn neurons
were predominantly conducted using ex vivo electrophysiological
recordings from spinal cord slices, the use of calcium imaging
techniques has allowed investigators to document the existence
of SA within the in vivo dorsal horn in both anesthetized
(Sullivan and Sdrulla, 2022; Johannssen and Helmchen, 2010)
and freely behaving (Sekiguchi et al., 2016; Shekhtmeyster et al.,
2023) mice. The percentage of dorsal horn neurons exhibiting
spontaneous Ca2+ transients in anesthetized mice in vivo is
reportedly lower (5%) compared to prior estimates of SA obtained
from spinal cord slices (62%; Doolen et al., 2012). The rate
of spontaneous firing is significantly reduced by the use of
anesthesia, with one study reporting a reduction from 0.52 to
0.08 Hz (Sekiguchi et al., 2016), which occurs in a dose-dependent
manner (Sullivan and Sdrulla, 2022). Interestingly, there was
no significant difference in the level SA between excitatory and
inhibitory dorsal horn neurons regardless of the dose of anesthetic

used (Sullivan and Sdrulla, 2022). While technical limitations have
generally restricted such analysis to the superficial laminae of
the spinal cord, recent methodological advances permitting the
imaging of neuronal activity within deeper laminae (Shekhtmeyster
et al., 2023) promise to further increase our understanding of the
patterns of SA occurring within the complex dorsal horn network
under both normal and pathological conditions.

4.1 Ion channels shaping spontaneous
activity in the dorsal horn

Mounting evidence supports a key role for persistent, voltage-
gated Na+ currents (INa,P) in the generation of SA within
the DH (Lucas-Romero et al., 2018; Li and Baccei, 2011; Cho
et al., 2015). Interestingly, INa,P currents could be facilitated by
reductions in external Ca2+ levels during repetitive firing, as
previously reported in the ventral horn (Brocard et al., 2013;
Tazerart et al., 2008). It is also clear that the level of leak
(i.e., voltage-independent) membrane conductance profoundly
regulates the level of SA within the DH network. Indeed, a
high ratio of INa,P to leak conductance represents a hallmark
feature of pacemaker neurons in the DH at P2–P3 (Li and
Baccei, 2011). A major contributor to leak membrane conductance
is the family of classic inward-rectifying K+ (Kir2) channels
(Hibino et al., 2010). Blocking Kir2 channels in the neonatal
DH unmasks rhythmic burst firing in ∼42% of non-bursting
lamina I neurons (Li et al., 2013) and robustly enhances the
firing of multiple subpopulations of lamina I projection neurons
(Ford and Baccei, 2016). Activity-dependent elevations in the
concentrations of extracellular K+ could also contribute to a
reduction in constitutive K+ efflux during rhythmic burst-firing
(Brocard et al., 2013). In contrast, tonic Na+ influx through
NALCN channels, which are responsible for the vast majority of
leak Na+ conductance in CNS neurons (Lu et al., 2007; Shi et al.,
2016), constitutively enhances the spontaneous firing of lamina
I spinoparabrachial neurons (Ford et al., 2018). A low level of
resting Cl− conductance could also facilitate SA in the DH (Keller
et al., 2007), which can occur secondarily to weaker tonic synaptic
inhibition mediated by GABAAR and glycine receptors (Takazawa
and MacDermott, 2010). Furthermore, G protein-coupled inward-
rectifying K+ (Kir3) channels (i.e., GIRK channels) are subject to
tonic modulation by metabotropic glutamate (mGluR) and GABAB
receptors which can modulate endogenous burst-firing in the deep
DH (Derjean et al., 2003).

L-type and N-type voltage-gated calcium channels (VGCC)
are known to contribute to intrinsic burst-firing in the immature
DH (Li and Baccei, 2011). Pacemaker activity can also be
facilitated by the Ca2+-activated non-selective cationic current
(ICAN ) (Li and Baccei, 2011), which does not inactivate in
the presence of elevated [Ca2+]int (Partridge et al., 1994) and
drives plateau potentials in other CNS neurons (Sheroziya et al.,
2009). Meanwhile, although low-threshold T-type VGCC are
dispensable for pacemaker activity in the neonatal DH (Li and
Baccei, 2011), these channels are important for the generation
of rebound depolarizations in deeper laminae (Rivera-Arconada
and Lopez-Garcia, 2015). Hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels can cooperate with T-type
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VGCC to accelerate recovery from spike afterhyperpolarization
and promote rebound firing (Li and Baccei, 2011; Rivera-
Arconada and Lopez-Garcia, 2015) in addition to their
contributions to leak conductance (Rivera-Arconada et al.,
2013). Finally, multiple subtypes of voltage-gated K+ channels
and Ca2+-activated K+ (KCa) channels shape the different
components of spontaneous burst-firing, including delayed-
rectifier voltage-gated K+ channels which control spike duration
and small-conductance KCa (i.e., SK) channels that are involved
in burst termination (Li and Baccei, 2011; Legendre et al.,
1985).

4.2 Functional significance of
spontaneous activity within the dorsal
horn network

It is well documented that SA contributes to neuronal
survival as well as the formation and refinement of neuronal
circuits throughout the CNS during early development (Shatz and
Stryker, 1988; Tritsch et al., 2007). In the newborn superficial
DH, it has been proposed that pacemaker activity could serve
as a surrogate for noxious sensory experience by promoting
the activity-dependent wiring of spinal nociceptive networks (Li
and Baccei, 2011). The observation that pacemaker interneurons
in the superficial DH connect to flexor and extensor motor
pathways in the ventral horn (Li et al., 2015) raises the
intriguing possibility that pacemakers might provide endogenous
excitatory drive to developing sensorimotor networks that underlie
nociceptive withdrawal reflexes. Meanwhile, the existence of
intrinsic burst-firing in identified spinoparabrachial and spino-
periaqueductal gray neurons (Li et al., 2015) suggests that
pacemaker activity (or other forms of SA) could also provide
endogenous glutamatergic drive to supraspinal pain circuits.
Indeed, spontaneous firing in the DH has been linked to the
generation of SA in the somatosensory cortex (Manjarrez et al.,
2002), and spontaneous neuronal bursts have been observed in
the human cortex during the neonatal period (Fabrizi et al.,
2011).

5 Responses of dorsal horn neurons
to natural stimuli

Classical studies performed in cats and rats in vivo allowed
the study of DH neuron responses to natural stimulation of
the skin and deep tissues. An in-depth discussion of this issue
can be found elsewhere (Willis and Coggeshall, 2004; Price and
Dubner, 1977). Many functional classifications were proposed for
DH neurons but perhaps the most popular includes three types
based on the nature of the stimulus driving the neuron (Mendell,
1966; Handwerker et al., 1975; Cervero et al., 1976). Low-threshold
or type 1 neurons respond to light touch (or the electrical activation
of thick myelinated afferents of cutaneous origin) and are found
mostly in deep laminae. Wide dynamic range (WDR) or type
2 neurons respond to both touch and pinch of the skin and
again are mostly reported in deep laminae but also in superficial

LI. Finally, nociceptive-specific or type 3 neurons respond to
nociceptive stimuli only (or the activation of nociceptive afferents
from the skin, muscle or viscera) and are most commonly found
in LI. Low threshold neurons tend to show little spontaneous
activity, respond with brief trains of action potentials to natural
stimuli such as touch and hair movement and may respond to
cooling in the non-nociceptive range (Collins, 1984). Nociceptive
specific neurons show also little spontaneous activity responding
to intense mechanical stimulation of the skin and a proportion
of them to noxious heating with a certain capacity for intensity
coding within the nociceptive range (Christensen and Perl, 1970).
In contrast, many wide dynamic range neurons tend to show
spontaneous activity, non- or slowly-adapting responses to natural
stimuli, and their firing frequency encodes stimulus intensity very
well (Medrano et al., 2016; Wall et al., 1979). In addition to
mechanical sensitivity, many dorsal horn neurons are sensitive to
thermal stimuli including cooling and warming as well as noxious
cold and heat. Some of these neurons are nociceptive-specific
whereas others are of the WDR type (Gieré et al., 2021). Yet
another class of neurons reported mainly in LII shows spontaneous
activity that was inhibited by natural stimuli (Cervero et al.,
1979).

An interesting concept emerging from these studies is that
of “convergence,” by which one single DH neuron receives
information from many primary afferents. In fact, careful
examination of neuronal responses to specific classes of peripheral
receptors, has allowed for identification of up to 19 different
response profiles in WDR neurons, each one with a specific
range of sensitivities (for example hair movement and pinch,
or hair movement and pressure) (Heavner and De Jong, 1973).
Additionally, intracellular studies demonstrate that neurons
may display subthreshold responses to peripheral stimuli,
further complicating the basic functional classification built on
extracellular data (Woolf et al., 1988). Another derivative of the
concept of convergence is that dorsal horn neurons have “receptive
fields” with different sizes and shapes, but always larger than
those of single afferents. Studies focusing on the properties of
the receptive fields of these neurons demonstrated a somatotopic
organization as well as the crucial influence of descending
modulation which dynamically shapes their boundaries (Wall,
1967).

6 Firing patterns of dorsal horn
neurons in response to intracellular
current injection

Intracellular recordings allow for current injection through the
electrode in the form of pulses, ramps or sinusoids, which can
be used to transiently alter the membrane potential and elicit AP
firing. This type of stimulation constitutes a widely used strategy
in single neuron studies to test for basic electrophysiological
properties (membrane resistance, capacitance, etc.) as well as
the intrinsic excitability of neurons, understood as the ability to
generate action potentials. Current injection enables the analysis of
changes in electrophysiological properties of neurons due to certain
treatments or to the application of drugs.
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6.1 Firing patterns

Spinal cord neurons exhibit a wide variety of firing patterns.
The most studied region within the spinal cord is probably the
superficial DH (laminae I and II) because of its involvement
in nociceptive signal processing, and most, if not all, of the
documented firing patterns have been reported in neurons
located within this area (see, for example, Grudt and Perl, 2002;
Ruscheweyh and Sandkühler, 2002; Prescott and De Koninck,
2002). The firing pattern of action potentials in response to
depolarizing current pulses has been widely used as a classification
system, with responses to hyperpolarizing pulses also considered
on occasion (Lopez-Garcia and King, 1994; Graham et al., 2004).
A major classifying criterion is firing adaptation during current
injection pulses (see Figure 2).

Tonic neurons are those that maintain the firing throughout
the depolarization. Neurons that show firing adaptation with spikes
restricted to the first part of the pulse have been referred to as
phasic, initial bursting, transient or adapting firing neurons (Grudt
and Perl, 2002; Ruscheweyh and Sandkühler, 2002; Prescott and De
Koninck, 2002; Melnick et al., 2004a; but see Sinha et al., 2021).
Perhaps an extreme case of adaptation could be the single spike
pattern, where only one or two action potentials are evoked by
depolarization. Temporary refractoriness to fire is the other basic
feature for classification. Delayed firing neurons are those that
show a delay in firing from pulse onset, gap firing neurons show
periods of absence of firing after an initial discharge, and some
neurons do not fire at all and are classified as reluctant firing
neurons. In addition, some groups have extended the range of
firing patterns (Grudt and Perl, 2002; Ruscheweyh et al., 2004)
and defined special features associated to depolarization induced
firing (e.g., plateaus; Morisset and Nagy, 1999). A more detailed
study of firing patterns by analyzing firing latency allowed to Sinha
et al. (2021) to separate delayed firing neurons into short and long-
latency types. However, for some neurons the classification is not
so straightforward. A mixture of firing characteristics can make the
classification difficult. For example, some neurons may only fire
a burst at the onset of low-amplitude pulses, and show sustained
firing at large intensity pulses (e.g., bursting firing pattern from
Ruscheweyh et al., 2004; initial bursting firing from Sinha et al.,
2021). In addition, the expression of certain firing patterns is very
dependent on the membrane potential at the initiation of the pulse
(Ruscheweyh and Sandkühler, 2002).

Some studies have shown that excitatory neurons tend to
show delayed firing, whereas tonic or initial burst firing is
common in inhibitory neurons (Yasaka et al., 2010; Punnakkal
et al., 2014; Heinke et al., 2004b). However other work has
reported the opposite (Santos et al., 2007). Therefore, an accurate
identification of neurotransmitter phenotype may require the
analysis of additional features such as morphology (Grudt and Perl,
2002; Yasaka et al., 2010).

6.2 Ionic currents contributing to define
the firing patterns

The expression of a particular firing pattern is dependent on
the array of ionic currents expressed by a neuron (as summarized in

Table 1). A small subset of defined ionic currents have been strongly
related to the expression of specific firing patterns (Figure 3), but
other additional channels are also important for finely shaping the
output of a given neuron.

6.2.1 Firing patterns related to A-type potassium
currents

The A-type potassium current (IA) is the dominant
conductance in the soma of delayed firing neurons (Melnick,
2011), whereas it is small or absent in tonic neurons (Ruscheweyh
and Sandkühler, 2002; Melnick et al., 2004b). Blockade of IA with
4-AP abolishes the delay in firing (Melnick, 2011; Ruscheweyh
and Sandkühler, 2002). The presence of IA with different kinetics
can produce delayed firing with different latencies (Sinha et al.,
2021). A slower IA may be involved in gap firing. In addition, the
proportion of reluctant versus delayed firing neurons may change
with temperature and this difference may be explained by the
sensitivity of IA to the temperature (Graham et al., 2008).

6.2.2 Ionic currents present in tonic firing
neurons

Tonic firing neurons express slow-activating potassium
currents of the delayed rectifier type (IKDR) (Melnick et al.,
2004b). The Kv7 channel opener retigabine hyperpolarizes deep
DH neurons and promotes spike frequency adaptation in tonic
neurons (Rivera-Arconada and Lopez-Garcia, 2005). Similarly,
the activation of GIRK channels by the µ-opioid receptor in
tonic neurons changes the tonic firing pattern to adapting (Santos
et al., 2004). Tonic neurons can maintain firing even with a low
percentage of inactivating sodium channels available (Melnick
et al., 2004b) and also express persistent sodium currents (Prescott
and De Koninck, 2005). Blocking persistent sodium currents with
riluzole abolishes tonic firing and promotes adaptation (Lucas-
Romero et al., 2018). Calcium-dependent potassium channels may
also regulate the firing of tonic neurons. Activation of SK channels
changes the pattern from tonic to adaptive, whereas its blockade
with apamin increases firing frequency (Ma et al., 2023; Yang, 2016;
Melnick et al., 2004b; Kim et al., 2008).

6.2.3 Characteristics of ionic currents expressed
by adapting firing neurons

Adapting firing neurons may express a lower density of
both delayed rectifier potassium currents and inactivating sodium
currents compared to tonic neurons, with the latter being a
determinant of firing adaptation (Melnick et al., 2004a). T-type
calcium currents have also been reported in a proportion of tonic
neurons from lamina I and II, although their involvement in this
firing pattern is not clear (Prescott and De Koninck, 2002; Wu
et al., 2018; Candelas et al., 2019). In hamsters, neurons with
strong adapting firing patterns, presumably single spike, showed
large T-type currents (Ku and Schneider, 2011). Sinha et al. (2021)
showed that initial bursting neurons consistently expressed T-type
calcium currents. Hyperpolarization-activated currents (Ih) may
also be important for regulating firing. This current is widely
expressed in DH neurons and its block can increase input resistance
and firing (Lucas-Romero et al., 2018; Rivera-Arconada et al.,
2013). The Ih is not specific for any firing pattern, but it has been
reported more often in tonic and initial bursting neurons than
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FIGURE 2

Action potential firing patterns evoked by intracellular current injection. Representative examples of firing patterns recorded from postnatal mouse
lamina II neurons in ex vivo slice preparations. Action potentials were evoked by injecting depolarizing current steps using the patch-clamp
technique. Initial membrane potentials and current step amplitudes are indicated near each panel.

in neurons displaying firing patterns implying the expression of
A-type potassium currents (Hu et al., 2016; Yasaka et al., 2010; Boyle
et al., 2019; Hughes et al., 2012; Zhu et al., 2021).

6.2.4 Ionic currents responsible of plateau
potentials

Dorsal horn neurons located in the superficial and deep dorsal
horn may also produce voltage-dependent plateau potentials,
consisting of prolonged depolarizations observed after the
termination of the depolarizing current pulse injection in both
tonic firing and adapting neurons (Morisset and Nagy, 1998;
Fernandes et al., 2016). Generation of plateau potentials has been
primarily linked to the expression of L-type calcium channels
(Morisset and Nagy, 1999; Fernandes et al., 2016), together with
the ICAN current and Kir channels (Morisset and Nagy, 1999;
Derjean et al., 2003). The intense discharges and long-lasting
after-discharges associated with plateau potentials represent an
important intrinsic mechanism of input-output amplification,
involved in the generation of wind-up (Morisset and Nagy, 2000).

6.3 Considerations in firing pattern
analysis

The proportion of firing patterns under in vitro and in vivo
conditions, as well as across different stages of postnatal
development, is highly stable (Walsh et al., 2009; Baccei and
Fitzgerald, 2005). The temperature is a factor that affect the kinetic

of the ionic channels (for an exhaustive analysis on the effects of
temperature on voltage dependent potassium currents see Ranjan
et al., 2019), and hence temperature constitutes a potential factor
that may influence the expression of firing patterns. Some reports
have shown a changes in the distribution of firing patterns at
different recording temperatures (Graham et al., 2008; Smith et al.,
2015), but changing the temperature during the recording does not
seem to affect the firing pattern (Santos et al., 2007), suggesting that
differences may be due to a bias toward recording from certain
types of neurons. The same is true when considering different
orientations of the slices used for ex vivo recordings (Smith et al.,
2015).

The firing pattern constitute an important parameter to
characterize the excitability of dorsal horn neurons using a
simple and reliable method, it is also a useful system for
neuronal classification when applied under adequate conditions
and considering additional features.

7 Firing induced by synaptic
stimulation

Stimulation of PAFs, either by natural or electrical stimuli,
results in the release of excitatory neurotransmitters, primarily
glutamate. This, in turn, excites DH neurons, leading to the
generation of excitatory postsynaptic potentials (EPSPs). Single
or repetitive stimulation of glutamatergic synapses can produce
suprathreshold mono- or polysynaptic responses, primarily
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FIGURE 3

Regulation of the firing patterns by several voltage-dependent currents. Schematic drawing showing the influence of several subthreshold currents
on the firing pattern of a model neuron. A tonic firing neuron may become adapting by the action of a slow subthreshold outward potassium
current (Ik), and can regain the tonic pattern by persistent sodium currents (INa,p). The transient A-type potassium current (IA) is fundamental for the
delayed firing pattern. The Ih may adjust the resting potential and determine the occurrence of pulse sag and rebound depolarization, but its role in
defining the firing pattern is minor.

mediated by AMPA and NMDA receptors. The firing pattern of
APs in DH neurons depends on several factors, including the type
and number of synaptic inputs, intrinsic properties of the neuron,
recruitment of polysynaptic circuits, co-activation of inhibitory
inputs, and ongoing neuronal activity.

In most interneurons located in lamina I and outer lamina
II, single or repetitive electrical stimulation of nociceptive Aδ

and C fibers in ex vivo preparations elicits suprathreshold
EPSPs. Firing patterns can range from weak AP discharge to
prolonged firing superimposed on slow depolarizations (Jeftinija,
1988; Yoshimura and Jessell, 1989b; Bardoni et al., 2000; see
Figure 4). Lamina I projection neurons exhibit diverse responses
to PAF stimulation. A study conducted on rat spinoparabrachial
neurons identified three distinct groups of cells based on
their responses to low-threshold fiber activation: (1) low-output
neurons, typically responding with a single spike; (2) medium-
output neurons (including both WDR and nociceptive-specific
neurons), generating short AP bursts; (3) high-output neurons,
firing prolonged AP discharges. Based on these properties, high
output neurons, which represent only 20% of the spinoparabrachial
neuron population, generate most of the output spiking activity
(Agashkov et al., 2019).

Action potential firing can be induced in DH neurons not
only by PAF stimulation, but also by activation of neighboring
excitatory interneurons. Paired recording experiments in the rat
isolated spinal cord have demonstrated that single stimuli delivered
to lamina II excitatory interneurons evoke APs in approximately
one-third of nearby postsynaptic neurons (Luz et al., 2010). In
lamina I, excitatory inputs from neighboring neurons are sufficient
to generate single or multiple spikes in about 50% of neurons
projecting through the anterolateral system (Luz et al., 2010).

In the deep dorsal horn (laminae III-IV), most neurons receive
low-threshold A fiber-mediated monosynaptic inputs, which elicit
short bursts of APs. However, subpopulations of these neurons
exhibit prolonged EPSPs with repetitive AP, likely due to the
activation of polysynaptic circuits (King et al., 1988; Schneider,
2005). WDR neurons of the “antenna type,” located in lamina III
and extending their dendrites to both superficial and deep DH,
generate short AP bursts in response to low threshold inputs, while
high-threshold C fibers evoke sustained firing (Fernandes et al.,
2018). Similarly, WDR neurons in lamina V fire either a single
spike or brief bursts in response to low threshold inputs, while
nociceptive fibers tend to evoke long-lasting AP discharges that
outlast the EPSP (Morisset and Nagy, 1998).

7.1 Modulation of firing by synaptic
inhibition

Gamma-aminobutyric acid (GABA)- and glycine-mediated
inhibitory postsynaptic potentials (IPSPs) are commonly observed
in superficial DH neurons following stimulation of PAFs. These
IPSPs arise from the activation of polysynaptic circuits involving
inhibitory interneurons. In both the rat and mouse, these
interneurons make up about 25% of the neurons in laminae
I-II and 40% in lamina III (Polgár et al., 2013; Hughes
and Todd, 2020). Recent studies have shown that in laminae
I-III, about one third of inhibitory interneurons are exclusively
GABAergic, while the remaining two-thirds release both GABA
and glycine, with GABA being the predominant neurotransmitter.
In deeper laminae, most neurons (about 90%) are also both
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GABA- and glycinergic, with a strong dominance of glycine
(Miranda et al., 2022; Miranda et al., 2023).

Depending on the postsynaptic receptor involved (glycine or
GABAA), IPSPs can exhibit fast or slow kinetics, respectively.
Additionally, their latency can be short or long, in relation to
the length of the polysynaptic chain involved (Luz et al., 2014;
Yoshimura and Nishi, 1995). PAF-induced IPSPs exert different
effects on AP firing: fast and/or short latency IPSPs can shunt
monosynaptic EPSPs and limit their ability to generate APs, thereby
preventing spike initiation; slow and/or long latency inhibitory
responses may effectively prevent long-lasting repetitive firing
and/or after-discharges (Yoshimura and Nishi, 1995). In addition
to their role in mediating fast synaptic inhibition, GABA and
glycine also mediate tonic inhibitory currents in the spinal cord
DH (Takahashi et al., 2006; Takazawa and MacDermott, 2010;
Gradwell et al., 2017). These tonic inhibitory currents modulate
neuronal excitability by altering neuronal input resistance,
action potential threshold, firing pattern, and input/output gain
(Semyanov et al., 2004). Indeed, blocking GABA and/or glycine
receptors in inhibitory interneurons has been shown to alter
neuronal excitability by enhancing action potential discharge
(Takazawa and MacDermott, 2010; Gradwell et al., 2017).

The degree of inhibition onto the postsynaptic neuron
plays a crucial role in determining the involvement of specific
glutamatergic receptors in EPSPs and subsequent firing. Fast EPSPs,
evoked by single stimuli, primarily rely on AMPA receptors,
including both Ca2+-permeable and Ca2+-impermeable subtypes
(Luz et al., 2010; Tong and MacDermott, 2006; Yoshimura and
Jessell, 1990; Santos et al., 2009). NMDA receptors can be recruited
during repetitive stimulation of presynaptic inputs and prolonged
postsynaptic discharges (Bardoni et al., 2000; Agashkov et al.,
2019). The removal of inhibition through GABAA and glycine
receptor antagonists enhances the depolarization of lamina I and
II neurons, leading to more robust activation of NMDA receptors.
Consequently, this promotes the temporal summation of EPSPs,
facilitates the generation of prolonged AP discharges, and activates
reverberating polysynaptic circuits (Bardoni et al., 2000; Agashkov
et al., 2019; Torsney and MacDermott, 2006).

In deep DH neurons, stimulation of low threshold PAFs
results in inhibitory responses with variable latencies (Schneider,
2005). In a manner similar to what has been observed in
the superficial DH, the removal of postsynaptic inhibition also
increases neuronal excitability in laminae III-IV and promotes
synaptic summation during repetitive stimulation (Betelli et al.,
2015). In the same DH region, presynaptic GABAA receptors
expressed on A fiber terminals regulate afferent-induced firing by
decreasing the number of APs evoked during repetitive A fiber
stimulation (Betelli et al., 2015).

7.2 Modulation of firing by intrinsic
membrane properties and spontaneous
activity

Firing pattern analysis has been used as a simple method to
infer how a given neuron might respond to a synaptic input,
even though this stimulation does not reproduce the temporal
characteristics of a real synaptic response (Graham et al., 2007). In

an ex vivo preparation of the adult rat spinal cord, A-fiber electrical
stimulation evoked APs only in tonic firing neurons (Thomson
et al., 1989). In the hemisected cord-hindlimb preparation, WDR
neurons often exhibited a tonic firing pattern in response to current
injection, whereas neurons specific to tactile or nociceptive inputs
displayed phasic patterns (Lopez-Garcia and King, 1994). In the
whole spinal cord preparation, neurons firing with a phasic or
single spike pattern responded to afferent stimulation with either
a single spike or a short burst of APs. In contrast, tonic cells
were more likely to generate prolonged EPSPs and sustained AP
discharges (Fernandes et al., 2016; Agashkov et al., 2019; Dougherty
and Chen, 2016). From a functional perspective, tonic-firing
neurons that respond to PAF stimulation with prolonged EPSPs
and firing could operate as integrators of synaptic inputs, faithfully
transmitting sensory inputs in terms of duration and intensity. In
contrast, rapidly adapting phasic neurons are optimally excited by
short stimuli and do not rely on temporal summation for spike
generation. Lastly, single spike neurons demonstrate the ability to
follow high frequency trains, acting as precise coincidence detectors
(Prescott and De Koninck, 2002).

Voltage-dependent ionic currents significantly influence the
response to synaptic inputs in both excitatory and inhibitory
interneurons. The A-type potassium current (IA) has been
extensively studied in this context (reviewed in Clerc and Moqrich,
2022). Research on DH GAD67-GFP + (inhibitory) and GFP-
(excitatory) interneurons in mouse spinal cord slices revealed that
IA densities are higher in GFP- cells compared to GFP + cells (Yoo
et al., 2021). In excitatory neurons, a large IA is necessary to reduce
excitability under naïve conditions, whereas a small IA in inhibitory
interneurons leads to high excitability, aligning with the tonic
firing pattern prevalent in these neurons (as described in section
“8 Firing properties of identified subpopulations of dorsal horn
neurons” and Table 2). In subpopulations of nociceptive excitatory
interneurons, IA prevents action potentials triggered by Aβ fiber
stimulation in these neurons (Zhang et al., 2018). Blocking IA with
intracellular 4-aminopyridine permits Aβ fiber-mediated firing in
nociceptive interneurons, resulting in the condition of allodynia
(Zhang et al., 2018).

Finally, the processing of sensory transmission in the superficial
DH can be significantly influenced by the ability of a subset
of neurons to generate spontaneous intrinsic burst-firing. Recent
work has demonstrated that adult mouse spinoparabrachial
neurons displaying spontaneous burst-firing also exhibit higher
levels of primary afferent-evoked AP discharge compared to
those lacking such activity (Li et al., 2023). Additionally, the
magnitude of afferent-evoked AP firing significantly correlates
with the resting potential and membrane resistance, rather than
the overall level of glutamatergic synaptic drive. This finding
confirms the importance of the intrinsic membrane properties
of DH neurons in shaping the input-output relationship at
sensory synapses. In the deep DH, spontaneous bursting capability
is associated with accelerated firing rates and enhanced spike
afterdischarges (Morisset and Nagy, 1998; Russo and Hounsgaard,
1996). Nonetheless, the effect of spontaneous burst-firing on the
gain of nociceptive signaling in the DH is likely to depend on
the timing of the afferent input in relation to the phase of
spontaneous activity, as pacemaker activity can filter out sensory
inputs arriving during the generation of a spontaneous burst
(Li and Baccei, 2011).
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TABLE 2 Electrophysiological profiles observed in subpopulations of dorsal horn interneurons as identified by molecular markers.

Molecular
marker

Primary afferents Firing patterns Characterized ionic
currents

Neuronal class Morphology References

Vglut2 – Delayed/Tonic (resting potential)
Delayed (hyperpolarized
potentials)

IA Excitatory Vertical
(radial, central)

Maxwell et al., 2007;
Yasaka et al., 2010;
Yasaka et al., 2014;
Punnakkal et al., 2014

GAD67 LI-II:
C >> Aβ and
Aδ

SDH: Tonic (immature)
Phasic (adult)
DDH: Tonic

– Inhibitory Islet
(central, vertical)

Takazawa and MacDermott, 2010;
Daniele and MacDermott, 2009;
Punnakkal et al., 2014;
Heinke et al., 2004b;
Gassner et al., 2013;
Punnakkal et al., 2014

GlyT2 Aβ > > Aδ > C Tonic – Inhibitory Islet (central, vertical) Punnakkal et al., 2014;
He et al., 2021

Somatostatin
(SOM)

LII:
Aβ and C > Aδ

Delayed (majority)
Single spike

IA

ICaT

Excitatory (majority)
(Inhibitory∼5%)

Central, radial, vertical Yasaka et al., 2010; Duan et al.,
2014;
Zhi et al., 2022

NPY receptor Aδ and C Phasic (resting potential)
Delayed (hyperpolarized
potentials)

IA

ICaT

Excitatory – Sinha et al., 2021

Substance P
(SP)

– Delayed (majority)
Single spike, gap, phasic, reluctant

IA

Ih

Excitatory Radial Dickie et al., 2019

GRP – Phasic/single spike (majority)
Tonic, reluctant, delayed

IA

ICaT

Excitatory (majority)
(inhibitory < 10%)

Central Dickie et al., 2019

Calretinin
(CR)

Inhibitory neurons:
C >> Aδ > Aβ

Excitatory: delayed (majority),
single spike
Inhibitory: tonic (majority),
phasic

IA (excitatory neurons)
Ih and ICaT (inhibitory
neurons)

Excitatory (majority)
Inhibitory (minority)

Vertical, radial, central
(excitatory)
Islet (inhibitory)

Smith et al., 2015
Davis et al., 2023

PKCγ Laminae I-IIo:
HT Aδ and C
Laminae IIi–III: Aβ and Aδ

Phasic (rat)
Delayed, phasic (mouse)

– Excitatory (majority)
(Inhibitory < 5%)

Radial, central Alba-Delgado et al., 2015;
Abraira et al., 2017
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TABLE 2 (Continued)

Molecular
marker

Primary afferents Firing patterns Characterized ionic
currents

Neuronal class Morphology References

GRP receptor
(GRPR)

C > Aβ and Aδ Delayed (majority)
Tonic, phasic, single spike

IA

Ih

Excitatory Vertical Bardoni et al., 2019
Polgár et al., 2023

NPFF – Delayed (majority)
Tonic, phasic

IA Excitatory Vertical Quillet et al., 2023

NMB receptor – Delayed (majority)
Phasic, tonic, single spike

– Excitatory (majority) – Wan et al., 2017

NKB (Tac2 gene) Lamina II:
C > Ad > Aδ

Lamina III:
Aβ > Aδ and C

Delayed (LII)
Phasic (LIII)

– Excitatory (majority) – Chen et al., 2020

Dynorphin
(DYN)

Aβ, Aδ

(HT C, LT C)
Phasic (neonatal)
Tonic/Delayed (adult)

– Inhibitory (majority)
(excitatory∼10%)

Vertical Brewer et al., 2020;
Duan et al., 2014

Parvalbumin
(PV)

Inhibitory neurons:
Aβ and LT Aδ

Tonic (majority)
Phasic

Ih

IK(Ca)

Inhibitory (majority) Islet (majority), central Boyle et al., 2019:
Gradwell et al., 2022a;
Gradwell et al., 2022b;
Ma et al., 2023

Inhibitory nNOS/Galanin
(PrP-GFP)

C > Aδ > Aβ Tonic (majority)
Phasic, single spike

– Inhibitory “Unclassified type” Ganley et al., 2015

Cholinergic
(ACh)

– Tonic – Inhibitory Islet Mesnage et al., 2011

Early RET
(Deep DH)

HT C + A fibers (“C type
neurons”)
A fibers only (“A type”
neurons)

Tonic (majority)
Delayed, phasic, single spike

– Inhibitory Islet
(radial, vertical)

Cui et al., 2016

NPY C > Aδ and Aβ Tonic (majority)
Intermittent bursting
Tonic firing with gap

– Inhibitory (majority) Heterogeneous, not islet Iwagaki et al., 2016
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7.3 Short-term plasticity of dorsal horn
neuronal excitability

Repetitive low-frequency stimulation of C-fiber inputs induces
short-term synaptic facilitation, resulting in a progressive increase
of the number of APs evoked by each stimulus, which eventually
results in a prolonged after-discharge. This phenomenon, termed
wind-up, was originally observed in lamina IV spinocervical
neurons in vivo (Mendell and Wall, 1965; Mendell, 1966).
Since then, numerous studies, both in vitro and in vivo, have
characterized wind-up in various spinal neurons, including those
in the superficial DH, deep DH, and motoneurons (for reviews, see
Baranauskas and Nistri, 1998; Herrero et al., 2000). Experiments
performed ex vivo on rat spinal cord have demonstrated that
low-frequency activation of C fibers (0.2–2 Hz) is essential for
inducing wind-up in DH neurons (Zieglgänsberger and Sutor,
1983; Jeftinija and Urban, 1994; Morisset and Nagy, 2000). In
lamina I spinoparabrachial neurons, a subpopulation of excitatory
interneurons contributes to wind-up by promoting reverberating
network activity (Hachisuka et al., 2018). Under physiological
conditions, synaptic inhibition reduces the activity of these
polysynaptic circuits.

The generation of plateau potentials has been linked to the
expression of wind-up in adult rats in vivo (Reali et al., 2011).
Accordingly, wind-up is suppressed by blockers of L-type voltage-
dependent calcium channels and ICAN , the two main depolarizing
currents underlying plateau potentials (Morisset and Nagy, 2000;
Fossat et al., 2007). Wind-up also involves a synaptic component,
including both NMDA (Jeftinija and Urban, 1994; Dickenson
and Sullivan, 1987; Woolf and Thompson, 1991) and tackykinin
receptors (Baranauskas et al., 1995).

8 Firing properties of identified
subpopulations of dorsal horn
neurons

The extensive heterogeneity of firing patterns observed in DH
neurons poses an obstacle to the use of this parameter to rigorously
identify the neurotransmitter phenotype (i.e., glutamatergic vs.
GABAergic) of the sampled neuron. The strongest association
demonstrated to date is that inhibitory DH neurons commonly
display a tonic pattern of repetitive AP discharge in response to
prolonged depolarization, with no delay in the onset of firing
and little evidence of spike frequency adaption or the expression
of hyperpolarization-activated cation currents reported in the rat
DH (Yasaka et al., 2010; Maxwell et al., 2007). Similarly, studies
recording from GABAergic neurons in the immature mouse DH
(identified via GAD67-EGFP expression) consistently reported a
predominance of tonic firing within this population, with delayed
and phasic patterns of discharge also observed to a lower extent
(Takazawa and MacDermott, 2010; Punnakkal et al., 2014; Daniele
and MacDermott, 2009). Meanwhile, GAD67-EGFP neurons in
the adult DH commonly exhibited an initial bursting pattern of
repetitive firing with a lower prevalence of tonic and gap firing
observed (Heinke et al., 2004b), suggesting the possibility that
age-dependent changes in the intrinsic firing properties of spinal
GABAergic neurons may occur during later stages of development.

The close relationship between GABAergic neurons and tonic
firing also appears to extend to the deep DH (Punnakkal et al.,
2014; Gassner et al., 2013; Cui et al., 2016). In addition, glycinergic
neurons residing in both the superficial and deep laminae of the
DH (identified via the GlyT2 promoter) mostly show tonic firing
(∼80%) with phasic discharge also reported (Punnakkal et al., 2014;
He et al., 2021). In contrast, glutamatergic neurons in the DH
(often identified via the expression of VGLUT2) commonly display
a delayed firing phenotype, with gap and reluctant firing patterns
also reported in this population, along with strong spike frequency
adaptation (Yasaka et al., 2010; Maxwell et al., 2007; Yasaka et al.,
2014). The prevalence of reluctant firing neurons within the
population of excitatory neurons is in general agreement with prior
observations that glutamatergic neurons generally possess higher
rheobase levels and lower repetitive firing frequencies compared to
inhibitory neurons in the DH (Punnakkal et al., 2014).

Firing patterns have also been shown to vary across different
morphological subtypes of DH neurons, identified according to the
location, size of the soma, and dendritic and axonal arborizations
(Grudt and Perl, 2002). Islet cells commonly display tonic firing
in response to persistent depolarization, which might be expected
since they are predominantly inhibitory in nature (Yasaka et al.,
2010; Maxwell et al., 2007). The relatively smaller subsets of
GABAergic neurons showing other morphologies (such as radial
and vertical) reportedly exhibit more variable firing properties
(Maxwell et al., 2007). Meanwhile, other studies have demonstrated
an association between tonic firing and a fusiform dendritic
morphology, while pyramidal neurons in the DH often display
phasic discharge and multipolar neurons exhibit both delayed
firing and single-spiking patterns of repetitive firing (Prescott and
De Koninck, 2002). Finally, vertical neurons (which include both
excitatory and inhibitory subpopulations) commonly show delayed
firing patterns, while transient central cells in the DH have been
suggested to fire in a phasic manner (Yasaka et al., 2010; Yasaka
et al., 2014; Lu and Perl, 2005). Little is known regarding the degree
to which the firing properties of a given morphological cell type
varies depending on laminar location within the DH.

8.1 Genetically identified subtypes of
excitatory neurons

Glutamatergic neurons can be classified into distinct
subpopulations based on their expression of biochemical markers
such as neuropeptides (for review see Peirs et al., 2020), and
the proliferation of available Cre mouse lines in recent years
has afforded the opportunity to characterize the intrinsic firing
properties of these discrete (albeit overlapping) subtypes of
excitatory DH neurons (see Table 2 and Figure 5). For example,
somatostatin-lineage neurons in the DH, which have been linked
to the transmission of mechanical pain (Duan et al., 2014),
predominantly show a delayed firing pattern (Yasaka et al.,
2010) and discharge action potentials in response to Aβ-fiber or
Aδ/C-fiber input depending on their dorsoventral location (Duan
et al., 2014). Excitatory neurons expressing the Y1 receptor for
neuropeptide Y (NPY), which have been implicated in neuropathic
pain (Nelson et al., 2023), also predominantly show a delayed
onset of firing in response to prolonged depolarization, which
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FIGURE 4

Primary afferent-evoked firing in rodent superficial dorsal horn
neurons. Examples of action potential discharge in the same
projection neuron shown in Figure 1B, in response to increasing
intensities of dorsal root stimulation sufficient to recruit low (top
panel) and high threshold fibers (center and bottom panels).

is accompanied by high expression of A-type voltage-gated K+

currents (Sinha et al., 2021). These cells also commonly exhibit
rebound firing upon termination of membrane hyperpolarization
(Sinha et al., 2021). Similarly, a high percentage (∼79%) of
substance P-expressing DH neurons showed delayed firing and,
as might be expected, expression of A-type K+ currents (Dickie
et al., 2019). The calretinin-positive subpopulation of mouse
DH neurons, which amplify nociceptive signaling in the DH
and directly excite ascending projection neurons (Smith et al.,
2019), also mostly showed a delayed firing pattern and large
A-type K+ currents, with tonic and initial bursting patterns of
repetitive firing also observed which may correspond to the small
percentage (∼12%) of calretinin neurons that are predicted to
be GABAergic (Smith et al., 2015). It should be noted that the
calretinin population is not unique in being comprised of both
excitatory and inhibitory interneurons, as this has also been
observed in other neuronal populations including (but not limited
to) those expressing nNOS, dynorphin and galanin (Sardella et al.,
2011; Duan et al., 2014; Abraira et al., 2017). This complexity
must be considered when attempting to associate biochemically-
or genetically-identified subpopulations of DH neurons with a
specific neurotransmitter phenotype.

Meanwhile, DH neurons expressing gastrin-releasing peptide
(GRP), which have been implicated in spinal pruriceptive
transmission, commonly display transient (∼50%) or single-
spiking (∼33%) firing patterns (Dickie et al., 2019). Cells expressing
the GRP receptor GRPR, which represent a subset of the
postsynaptic targets of GRP-expressing neurons, also show a high
prevalence of delayed firing (56%) with a sizeable number of
cells displaying tonic (23%) and phasic (15%) firing also reported
(Bardoni et al., 2019). GRPR+ neurons have also been shown

to exhibit a high prevalence of single-spiking and correspond to
vertical cells in terms of their morphology (Polgár et al., 2023).
Another subpopulation of glutamatergic neurons implicated in itch
signaling expresses the receptor for neuromedin B (NMBR) and
features comparable numbers of delayed and phasic firing neurons
(Wan et al., 2017). Finally, neurons expressing the tachykinin 2
(Tac2) gene (encoding neurokinin B) show a mix of delayed, tonic,
initial burst and phasic firing within lamina II of the mouse DH,
although Tac2+ cells in lamina III are nearly all phasic (Chen et al.,
2020).

8.2 Genetically identified subtypes of
inhibitory neurons

Like their glutamatergic counterparts, GABAergic neurons
within the spinal DH can also be subdivided based on their
expression of distinct biochemical markers, as summarized in
Table 2 (for review see Peirs et al., 2020). Neurons derived from
the prodynorphin (DYN) lineage, which suppress mechanical pain
and itch (Duan et al., 2014; Kardon et al., 2014), predominantly
exhibit tonic or delayed firing within the adult (P49-P63) superficial
DH, while these cells show a high prevalence of phasic discharge
during the neonatal period (P6-P7) (Brewer et al., 2020), thus
highlighting the importance of considering age when attempting to
relate the repetitive firing patterns to neurotransmitter phenotype.
Meanwhile, parvalbumin-lineage neurons, which are important
for the inhibition of mechanical sensitivity (Qiu et al., 2024),
commonly exhibit islet or central morphology and reside in
laminae IIinner – III, were found to be mostly tonic firing with some
initial bursting also reported with a high incidence of Ih (Boyle et al.,
2019; Gradwell et al., 2022a; Gradwell et al., 2022b). Interestingly,
parvalbumin DH neurons can switch from tonic to phasic firing
(with increased spike frequency adaptation) under neuropathic
conditions, which likely contributes to the overall hyperexcitability
of the spinal nociceptive network after peripheral nerve damage
(Ma et al., 2023).

The subpopulations of neurons expressing nitric oxide synthase
(nNOS) or galanin (identified via the expression of the prion
promoter; PrP) predominantly showed tonic firing (∼72%) with
initial burst-firing the next most prevalent pattern observed
(Ganley et al., 2015). As expected from their GABAergic nature,
cholinergic DH neurons (which partially overlap with the
nNOS+ population) mostly exhibited tonic AP discharge with
strong rebound firing (Mesnage et al., 2011). Similarly, genetic
strategies that permitted the selective recording from the inhibitory
subset of calretinin neurons in the DH showed these were
overwhelmingly islet cells that fired in a tonic manner (Davis et al.,
2023).

8.3 Intrinsic firing properties of
ascending spinal projection neurons

Despite their glutamatergic nature, extrapolating the above
findings to the output neurons of the spinal nociceptive circuit
is difficult given that projection neurons comprise less than
5% of the overall neuronal population within the spinal DH
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FIGURE 5

Localization of specific classes of neurons in the dorsal horn. Schematic diagram illustrating the localization of various neuronal classes described in
section “8 Firing properties of identified subpopulations of dorsal horn neurons” and in Table 2 (refer to this table for abbreviations and references).
Arrows indicate the regions where different neurons have been detected. The same class has been reported twice if two distinct subpopulations
have been identified for the same neuron type, based on the their morphology and functional properties.

(Spike et al., 2003; Cameron et al., 2015) and thus are commonly
identified via retrograde labeling from the brain, although
the recent development of Phox2a-Cre mice allows for the
genetic identification of a subset of ascending spinal projection
neurons (Roome et al., 2020). Rat spinoparabrachial and spino-
PAG neurons show almost exclusively tonic firing during early
life (i.e., P2–P5) but phasic, delayed and bursting patterns of
repetitive discharge become evident by adolescence (P30–P32)
(Li and Baccei, 2012). Other studies conducted in the rat DH
reported that the gap and bursting firing patterns were mostly
restricted to projection neurons (as opposed to unidentified DH
neurons) and were commonly found in the spinoparabrachial
and spino-PAG populations, respectively (Ruscheweyh et al.,
2004). The gap and bursting firing patterns were attributed
to the expression of A-type K+ currents and T-type voltage-
gated Ca2+ currents, respectively (Ruscheweyh et al., 2004).
Meanwhile, adult mouse spino-PAG neurons show spontaneous
burst-firing (as well as irregular discharge) and predominantly
displayed tonic or initial burst patterns of firing in response
to prolonged current injection, with spontaneously bursting
cells also showing high levels of primary afferent-evoked firing
(Li et al., 2023).

Other studies revealed that mouse spinoparabrachial neurons
can be clustered into four distinct subpopulations based on
their electrophysiological properties, and those neurons located
in the deep DH (i.e., laminae III-V) exhibited higher repetitive
firing frequencies compared to the lamina I spinoparabrachial
population (Browne et al., 2021). In comparison to interneurons
in the DH, projection neurons are reportedly more excitable
compared to unidentified cells (> 95% of which are expected to
correspond to interneurons) which showed mostly tonic firing
(Graham et al., 2008).

9 Changes in neuronal activity
induced by chronic pain

There is mounting evidence indicating that peripheral lesions
can change the electrical behavior of DH neurons. Peripheral
lesions may affect the skin, muscles, joints or viscera leading to
inflammation as well as lesions affecting sensory nerves that lead to
neuropathy. Central changes in nociceptive processing are usually
referred to as central sensitization (Woolf, 1983), a phenomenon
different from (and dependent on) peripheral sensitization. Central
sensitization occurs as a consequence of the arrival of a sustained
barrage of action potentials to the spinal cord and the brain through
nociceptive pathways.

Many observations using different preclinical models have
established that nociceptive DH neurons, particularly wide
dynamic range neurons, can increase their spontaneous firing,
responses to natural stimuli and the size of their receptive
fields under conditions of persistent pain. For example, a recent
study using a model of chemotherapy-induced neuropathic pain
shows that WDR neurons acquire spontaneous activity and a
wider sensitivity to stimuli of different modalities (Meesawatsom
et al., 2020). In addition, some of these neurons generate post-
discharges to innocuous stimuli. Similarly, observations from a
model of joint inflammation show that DH neurons enhance
their preexisting responses, lower their response threshold, and
expand their receptive fields, responding even to movement
in the contralateral joint (Neugebauer and Schaible, 1990).
The behavior of high-threshold neurons is also affected by
peripheral lesions in similar ways (Hylden et al., 1989). It is
interesting to note that different pain models tend to produce
central changes with particular traits (Zain and Bonin, 2019).
Different mechanisms are under discussion to explain changes
in the DH that follow a peripheral injury. At the cellular level,
these mechanisms can be reduced to synaptic plasticity and
alterations in intrinsic membrane excitability (see Figure 6).
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Synaptic and intrinsic mechanisms are not mutually exclusive, and
in fact may interact to generate the final hyperalgesic phenotype
(Rivera-Arconada and Lopez-Garcia, 2010).

9.1 Synaptic changes in the dorsal horn
following peripheral injury

The synapses between primary afferents and DH neurons
have been under intense scrutiny because they are the first
relay of sensory information. These synapses can be regulated
at the presynaptic level to modulate neurotransmitter release
from primary afferents or at the postsynaptic level to modulate
receptor sensitivity.

A presynaptic mechanism discussed at large in the literature
is that of primary afferent depolarization (PAD). PAD was
first described as a physiological means to produce presynaptic
inhibition in muscle afferents (Eccles et al., 1962). PAD is produced
by release of GABA and subsequent depolarization due to the
outward movement of chloride from the afferent terminals which
contain relatively high internal Cl− levels. Inflammatory stimuli
can enhance PAD to reach firing threshold, thereby converting
an inhibitory mechanism to an excitatory one (Pitcher and
Cervero, 2010). Action potentials generated at central branches
of the afferents are then transmitted antidromically to contribute
to peripheral neurogenic inflammation and orthodromically to
produce allodynia (Willis, 1999). Recent data suggest that PAD
may also serve to facilitate AP conduction through branching
points at central terminals of primary afferents (Hari et al., 2022).
Thus, inflammation-induced enhancement of PAD could lead to
increased excitation in the DH and enlargement of receptive fields.

Experimental evidence shows that synchronous firing of DH
neurons associated with activity in primary afferents increases
significantly after inflammation (Lucas-Romero et al., 2022).
Interestingly, population bursts in the DH (i.e., the synchronous
firing of multiple neurons) have been related to the generation of
PAD and the backfiring of sensory neurons (Lucas-Romero et al.,
2022), which are important for gating sensory inputs in the spinal
cord (Boyle et al., 2019) as well as promoting the peripheral release
of neuropeptides and subsequent neurogenic inflammation (Willis,
1999). Other presynaptic mechanisms include phenotypic changes
in primary afferents. Substance P release may be increased under
inflammatory conditions as a result of peripheral NGF-induced
phenotypic modification of primary afferents (Woolf, 1996). Other
phenotypic changes, associated mainly with neuropathy, have been
reported to include the release of CCL2 and CSF1 by primary
afferents (Gosselin et al., 2005).

Amino acid-mediated transmission has been intensively
studied in connection with central sensitization. Changes in NMDA
receptors on their own, or in combination with changes in subunit
composition of AMPA receptors, may work as final effectors
to increase excitability of DH neurons in inflamed animals by
increasing postsynaptic glutamate-induced depolarizations and
allowing calcium entry into neurons that promote further changes
in excitability (Park et al., 2009). Many other molecules may
modulate excitability of DH neurons through interaction with
glutamate receptors. For example, dynorphin, substance P and
CGRP released from nociceptive primary afferents may trigger

intracellular signals that impinge on NMDA receptors to generate
hyperexcitability of DH neurons (Dubner and Ruda, 1992; Bird
et al., 2006).

Inhibitory synapses mediated by GABA and glycine are also
subjected to plasticity during inflammatory and neuropathic
conditions. Key mediators of inflammation like prostaglandin
E2 have been shown to increase excitatory transmission and
block inhibitory transmission mediated by glycine in DH neurons
(Zeilhofer, 2008). A loss of inhibition through GABAergic synapses
has been reported in models of neuropathic pain as well (Coull
et al., 2003). This mechanism involves downregulation of KCC2
in superficial dorsal horn neurons which in turn causes a shift in
the reversal potential of chloride ions such that GABA can have a
depolarizing effect. A decrease of the spinal inhibitory tone, which
frequently occurs following nerve injury, could enhance the activity
of the excitatory network, giving rise to the abnormally elevated
wind-up that is observed in some pathological conditions (Herrero
et al., 2000).

Descending systems can release serotonin, noradrenaline and
GABA from axons originating in brainstem nuclei. Monoamines
interact with a variety of membrane receptors located at central
terminals of primary afferents and/or DH neurons to produce
either inhibitory or excitatory effects on nociceptive transmission
via presynaptic and postsynaptic actions (Lopez-Garcia, 2006).
Following peripheral inflammation, excitatory effects may be
increased (Carr et al., 2014) and/or inhibitory effects may be
decreased (Cervero et al., 1991) to cause an imbalance between
excitation and inhibition.

Neuroinflammation and the intervention of glial cells
constitutes a novel player in central sensitization related to both
inflammatory and neuropathic pain as well as diffuse chronic
pain syndromes similar to fibromyalgia. CCL2 and CSF1 together
with ATP released from primary afferents activate microglia
which in turn release proinflammatory interleukins and probably
BDNF (Gosselin et al., 2005; Denk et al., 2016). BDNF released
from microglia or primary afferent neurons has been shown to
increase NMDA-mediated responses (Kerr et al., 1999), induce
the anion shift in dorsal horn neurons (Coull et al., 2005), evoke
micro-structural changes in synaptic elements (Bareyre et al., 2002)
and promote other complex changes in neuronal metabolism
(Pezet et al., 2002) which may contribute to the maintenance of
hyperalgesia.

9.2 Modifications in intrinsic excitability
and ion channel expression following
peripheral injury

Prior studies comparing the basic electrophysiological
properties of spinal neurons in naïve (or sham) vs. neuropathic
animals reported no differences in resting potential, membrane
resistance or in the proportion of neurons with different firing
patterns (Gassner et al., 2013; Balasubramanyan et al., 2006;
Schoffnegger et al., 2006). However, recent work reveals subtle
changes in the excitability of inhibitory parvalbumin neurons in
the DH. Tonic-firing parvalbumin neurons located ipsilateral to
the lesion may require a higher current amplitude to maintain tonic
firing and produce a lower firing frequency compared to neurons
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FIGURE 6

Modifications of synaptic transmission following peripheral injury. Cartoon depicting synaptic changes in dorsal horn occurring following peripheral
injury. Role of descending system excluded for clarity. See main text for details. (1). Enhancement of presynaptic primary afferent depolarization and
subsequent firing in orthodromic- and antidromic directions plus facilitation of conduction across branching points (arrows); (2). Presynaptic release
of mediators by afferents following an NGF phenotipic change of primary afferents (Substance P, BDNF, ATP, CCL2, CSF1); (3). Enhancement of
excitatory aminoacid receptor function (AMPAR and/or NMDAR following activation of other receptors (Neurokinin receptors and others). (4).
Neuron-glia interactions: Microglia activation by inflammatory mediators (prostaglandins) and mediators released from primary afferents (ATP, CCL2,
CSF1). (5). Modulators from glia and primary afferents (like BDNF) or byproducts of inflammation (Prostaglandins) act on second order dorsal horn
neurons to depress or alter inhibitory transmission.

on the contralateral side in response to the same current injection
(Boyle et al., 2019). Alternatively, these neurons may undergo a
change in firing pattern from tonic to adaptive after nerve lesion
(Ma et al., 2023). These differences in excitability could be relevant
for the expression of allodynia after neuropathy. In this line, the
neonatal treatment with the chemotherapeutic drug vincristine
enhance the excitability of spinoparabrachial neurons located in
lamina I (Schappacher et al., 2019). However, in a model of chronic
spinal cord injury, inhibitory lamina I neurons with tonic and
initial burst patterns show higher excitability as demonstrated by
a depolarized membrane potential, lower rheobase and higher
firing frequency. This mechanism may serve as a compensatory
homeostatic response to the state of hyperexcitability in DH
circuits (Dougherty and Hochman, 2008).

Changes suggestive of a reduced excitability of spinal neurons
have also been reported in different animal models of pain (Li
and Baccei, 2014; Farrell et al., 2017). Certain types of excitatory
and inhibitory neurons show a lower membrane resistance and
more hyperpolarized resting potentials, together with reduced
firing frequency, in adult animals subjected to paw incision at
3 days after birth (Li and Baccei, 2014). In a model of colitis,
more hyperpolarized membrane potentials and an alteration in
AP firing adaptation have been described in certain DH neurons
(Farrell et al., 2017). In a model of paw inflammation, an increase
in excitability in the early stages of the inflammatory process was
followed by a decrease in the longer term (Rivera-Arconada and
Lopez-Garcia, 2010). In a recent report, the axon initial segment
has been shown to shift distally away from the soma in inhibitory

neurons after peripheral inflammation, which could be responsible
for decreased excitability (Caspi et al., 2023).

Most of the studies highlighted above show that the excitability
of spinal neurons may be altered in specific cell types during
pathological processes. The mechanisms responsible for these
changes are not fully understood, although changes in the
expression of genes encoding sodium, calcium and potassium
channels have been shown under pain states (Yang et al., 2004)
(see Table 1). An increase in delayed rectifier currents could be
responsible for a reduction in firing frequency during inflammation
(Rivera-Arconada and Lopez-Garcia, 2010). Transient potassium
currents (A-type current) may also be important in models of
inflammation. Alterations in the voltage-dependent inactivation of
this current may contribute to increased excitability in the early
stages of an inflammatory process (Rivera-Arconada and Lopez-
Garcia, 2010). Following capsaicin injection, this current may be
reduced, allowing normally subthreshold inputs from Aβ fibers to
reach firing threshold in neurons located in the superficial DH
(Zhang et al., 2018). Interestingly, an enhancement of A-current
may serve as a compensatory mechanism to reduce excitability once
potentiation of synaptic strength has been established following
the lesion (Tadros et al., 2018). Inward-rectifier potassium currents
can also be altered after a neonatal insult thereby decreasing
spinal neuronal excitability (Li and Baccei, 2014). Other potassium
channels may also change their expression or modulation in models
of neuropathy and inflammation (BK: Chen et al., 2009; Kir3:
Ippolito et al., 2005), but in other studies no changes have been
found (Mongan et al., 2005).
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Regarding voltage-gated sodium channels, changes in the
expression of alpha and beta subunits have been shown in models
of neuropathy (Blackburn-Munro and Fleetwood-Walker, 1999;
Hains et al., 2004; Lampert et al., 2006). Leak sodium channels
are increased in both inflammatory and neuropathic models and
are important regulators of membrane potential and excitability
(Zhang et al., 2021; Li and Baccei, 2021). Meanwhile, increased
activity of L- and N-type calcium channels has been reported in
an animal model of streptozotocin-induced diabetes (Voitenko
et al., 2000). In models of neuropathy caused by nerve injury,
Cav1.2 and Cav1.3 channels (L-type) are up- and downregulated,
respectively (Dobremez et al., 2005). These changes can be related
to an increase in the expression of plateau potentials, but they
may also be involved in both the reduction of wind-up in wide
dynamic range neurons due to the decrease in Cav1.3 channels
and the hyperexcitability of spinal neurons due to the increase
in Cav1.2 (Reali et al., 2011; Radwani et al., 2016). Alterations in
N-type channels may be involved in sensitization at the presynaptic
level, with both increases and decreases described depending on the
injury model (Cizkova et al., 2002; Rycroft et al., 2007). Changes
in the expression of the α2/δ1 regulatory subunit have also been
described and may contribute to increased calcium currents in
models of peripheral neuropathy (Li et al., 2004; Alles et al., 2018)
and chemotherapy-induced neuropathic pain (Chen et al., 2019;
Xiao et al., 2007; Gauchan et al., 2009). Finally, peripheral lesion has
been shown to regulate expression of several other channels. For
example, the CNGA3 subunit of cyclic nucleotide-gated channels
(Heine et al., 2011), HCN2 channels (Liu et al., 2018) and acid-
sensing ion channels (Wu et al., 2004; Duan et al., 2007) are
upregulated in DH neurons and their contribution to nociceptive
processing is under investigation.

The modulation of ion channel expression provides a powerful
mechanism to regulate the excitability of DH neurons by adjusting
their input-output relationship. Changes directed to increase the
excitability have been reported, but homeostatic compensation
may also have a profound influence on the processing of
nociceptive information.

10 Concluding remarks and future
perspectives

In this review, we have described a wide range of activity
patterns associated with both spontaneous and evoked action
potential firing in the superficial and deep DH. This wide
heterogeneity likely reflects the large variety of neuronal subtypes
present in the DH.

A molecular characterization of the different DH populations
has recently been provided by several studies employing RNA
sequencing along with other molecular and functional approaches.
By using the single-cell RNA sequencing technique, Häring
et al. (2018) identified 15 excitatory and 15 inhibitory molecular
subtypes located in the mouse DH. More recently, using single-
nucleus RNA sequencing (snRNA-seq), five distinct populations of
projection neurons belonging to the anterolateral system have been
described (Bell et al., 2024). These neuronal clusters were found
in specific locations within the mouse DH laminae and exhibited
different functional roles in processing pain, itch, and thermal

stimuli. Similarly, the use of snRNA-seq, spatial transcriptomics,
and immunohistochemistry in the adult human spinal cord has
enabled the identification of 64 different cell clusters (29 of glial cells
and 35 of neurons), organized primarily by anatomical location
(Yadav et al., 2023).

Hierarchical cluster analysis combining electrophysiological
and morphological properties has revealed the presence of
5 relatively distinct clusters in the mouse superficial DH:
two groups of excitatory interneurons and three groups of
inhibitory interneurons (Browne et al., 2020). Interestingly,
electrophysiological properties more effectively distinguished
excitatory and inhibitory phenotypes than morphological-based
clustering, showing that inhibitory interneurons are generally
more excitable, tend to fire in a tonic pattern, and have a weak
excitatory drive. Conversely, excitatory interneurons are typically
less excitable, commonly exhibit delayed and phasic firing profiles,
and are subject to a strong excitatory synaptic drive.

The molecular characterization of DH neurons, combined
with the study of animal behavior, provide important insights for
targeting specific neuronal populations and understanding their
functional role in sensory processing. However, this classification
alone is insufficient to differentiate the numerous subtypes of
DH neurons. Given that electrophysiological, morphological,
functional (excitatory vs inhibitory; interneuron vs. projection
neuron), and molecular traits often do not cluster together, and that
none of these single properties can predict the others within a single
neuron, more complex analytic procedures should be employed.
These procedures should include a comprehensive collection of
electrophysiological characteristics, identification of morphological
and molecular traits, analysis of excitatory and inhibitory
inputs, assessment of neuronal connectivity, and evaluation of
the functional role of the neuron in nociceptive behavior.
The Patch-seq technique, which integrates electrophysiological,
transcriptomic, and morphological characterization of individual
neurons, could provide significant insights into understanding
the functional properties of DH neurons. Moreover, to classify
the subpopulations of DH neurons that play unique roles in
somatosensation, the analysis should also consider other important
variables, such as animal species, age, sex, and the specific pain
models employed. Taking all these factors into account, it becomes
clear that each DH neuron operates as an individual entity,
adjusting and modulating its activity in response to the functional
state of the DH network.
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