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Introduction

Non-static Neuron identity emerges from the complementary synaptic transcriptional

architecture shaped by neuron signaling and surrounding non-neuronal cells. When

signals from a series of neurons are combined, they form circuits through which

information flows, and brain functioning occurs as a superposition of these neural

circuits. To ensure proper communication and function, neurons develop complementary

phenotypes of axonal projections and electrophysiological behaviors, creating gradients

that define brain regions and allocate neurochemical functions (Vogel et al., 2024).

In the mature nervous system, axonal projections extend over long distances and

communicate with different well-established regions (Pal et al., 2024) in both peripheral

nervous systems (PNS) and central nervous systems (CNS). Information flows inside each

axon despite the great distance, resulting in immediate responses.

The mechanism involved in such responses has been described as a soma-centric

notion, where the neuronal soma provides total molecular information through the

axon (Dalla Costa et al., 2021). However, Nijssen et al. (2018) showed evidence of

differences between the axonal transcriptome and the soma transcriptome from Spinal

Motor Neurons (MNs).

Several authors suggest that, given these differences, the soma alonemay not provide all

transcriptomic information. Instead, surrounding glial cells accompanying the axon along

its pathway may supply some transcriptomic information. These glial cells play an essential

role in proper brain function (Dalla Costa et al., 2021; Giuditta et al., 2008).

The described glia-to-axon relationship becomes particularly significant in the

CNS, where different brain regions have distinct molecular, cellular, and functional

characteristics (Vogel et al., 2024; Siletti et al., 2023). As axons extend through various

brain areas, their transcriptome profiles differ from their soma’s (Nijssen et al., 2018). This

molecular variation suggests that axons adapt their transcriptomic identity to match their

local cellular environment as they traverse different brain regions. The local glial cells

provide specific transcriptional resources to the axon in each area. We term this space-

dependent, dynamic identity adaptation of neuronal axons the “neuronal continuum.”
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Axonal identity di�er from neuronal
soma

Modern neuroscience has produced high-resolution cell

classifications of the brain based on expression profiles from single-

cell sequencing techniques such as Single-Nucleus RNA sequencing

(snRNA-seq) (Siletti et al., 2023). This technique focuses on the

transcriptional cell identity from the cell nuclei (Hodge et al.,

2019). These atlases provide us with CNS cellular cartography

for most brain regions of some species (Siletti et al., 2023; Yao

et al., 2023; Chen et al., 2023), and they typically report two main

groups of neurons—glutamatergic and GABAergic—together with

a third non-neuronal cell lineage known as glia, which plays critical

regulatory roles throughout the brain (Liu et al., 2023).

Different cognitive functions are region-associated and require

specific configurations of axon-dendrite junctions (Dalla Costa

et al., 2021), which determine how information flows. These

physical pathways, where dendrite and axon morphology can

change, are crucial for neural communication. Recent research has

shown that changes in these junctions often accompany regulation

in local gene expression (Gao et al., 2023).

Nijssen et al. (2018), developed a method for sequencing the

transcriptome from a single axon, similar to snRNA-seq, called

Axon-seq. They sequenced axons from MNs, finding that the

axonal transcriptomic profile differs from its soma in a single

neuron. More interestingly, a unique transcription factor signature

was found in distal axons that was not found in any of the soma

reported, leading us to some questions: Who is responsible for this

transcriptomic identity switch, and why does this happen?

Glia-to-axon communication

Glial cells constitute half of the cell population in the

mammalian nervous system. The glia-to-neuron ratio varies across

brain structures and species (Liu et al., 2023). They are classified

into different types: astrocytes, microglia, synantocytes (Tizabi

et al., 2024), oligodendrocytes, and Schwann cells, the last two

being the myelin cells of the nervous system. Similar scenarios

exist in PNS and the CNS, where glial cells and neurons maintain

a close relationship. Glial cells residing at neuronal junctions or

within axonal segments play crucial roles in providing fundamental

communication support for neuronal survival (Liu et al., 2023).

Recent findings have highlighted the fundamental contribution

of glial cells to brain function. Glial cells show shifting

characteristics in the myelin sheaths (Xin and Chan, 2020). Glial

cells are also very diverse, with varying and specific subtypes and

proportions of cellular neighborhoods along brain regions; each

neighborhood has its own types of neurons and glia (Siletti et al.,

2023).

Giuditta et al. (2008) described glia-to-axon mechanisms

from direct evidence with the squid giant axon, showing that

beyond simple communication between the glia surrounding the

soma/axon, the glia provides the molecular content to the PNS

axon. Studies have also reported glia-to-axon communication with

Schwann cells that interact with axons to support and deliver

genetic material and machinery (Das et al., 2021). Court et al.

(2008) and later, Cada and Mizuno (2024), demonstrated the flow

of ribosomes from the glia into the axon. Recently, other authors

(Krämer-Albers and Werner, 2023) have explained the glia-to-

axon communication mechanism between oligodendrocytes and

axons, describing themechanism of exosome (cargo withmolecular

information) exchange oligodendrocyte-to-axon.

Neuron and glia transcription

Besides PNS neurons, where axons can reach up to a meter

in humans (Twiss and Fainzilber, 2009), CNS axons can travel

long distances through the layers and regions of the brain. The

frontotemporal arcuate fasciculus (AF) is a well-studied pathway

that connects different brain regions. This white matter bundle

involved in language processing is 4–5 cm long (Basile et al., 2024).

Despite the long distance, a soma-centric delivery was the

primary proposed mechanism for mRNA transport (Dalla Costa

et al., 2021). However, Twiss and Fainzilber (2009) reported an

anterograde mRNA transport rate of only 16 mm/h, suggesting that

relying solely on the nuclear transcription mechanism or any other

mechanisms from nuclei only as mRNA synthesis is insufficient due

to anterograde and retrograde pathway that information needed

to travel. These observations highlight the limitations of single

transcriptional machinery in the nucleus to support long axons.

Gradients and scales

Gene expression gradients were initially described in a rostral-

caudal direction (Fornito et al., 2019). Lau et al. (2021) shows a

gradual decay of gene expression according to physical distance in

the mouse cortex. Furthermore, Vogel et al. (2024), described three

principal axes of gene expression gradients aligned with the brain’s

anatomical architecture.

In addition, snRNA-seq studies showed continuity for major

neuronal populations in the adult human and mouse brains (Siletti

et al., 2023; Hodge et al., 2019), describing gradients of local cell

type identity within each brain region.

Current neuroscience explores the brain across multiple scales

(micro-meso-macro scales), each defined by its informational

unit. For example, at the mesoscale, the unit would be a set of

neighboring cells with locally similar gene expression. From this

shared expression, other characteristics emerge, i.e., morphology,

function, and interconnectivity (Poulin et al., 2016). Each cellular

neighborhood is fuzzily self-defined in a physical space in the brain,

and neighborhood interconnectivity will require those boundaries

to shift dynamically their gene expression in microgradients.

Individual axons whose segments cross different neighborhoods

will require multiple local transcriptional sources to thrive.

Neuronal continuum

Since continuity has been reported across different scales, it

is plausible that this phenomenon also occurs within individual

neurons. Each brain region is molecularly, cellularly, and

functionally distinct and has gene expression patterns necessary for

proper cerebral function.
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FIGURE 1

The identity of an axonal compartment switches in the function of the physical location through which it moves, resembling the identity of the local
cellular neighborhood. (A) Each brain region is molecularly, cellularly, and functionally distinct. (B) Axonal pathways may be longer. The
frontotemporal arcuate fasciculus is a well-studied pathway connecting di�erent brain regions. (C) At the beginning of the axonal path, the neuronal
body is in a specific brain region as its axon begins its pathway. On the way, the axon is accompanied by oligodendrocytes (and other glial cells), and
a very close relationship is maintained. (D) Due to their relationship, a glia-to-axon communication occurs, where, through the mechanism of
exosome transfer (Krämer-Albers and Werner, 2023), the oligodendrocyte provides the necessary information and molecular machinery to the
axonal segment, which depends on the cellular neighborhood in which it is located. Giving rise to the local synthesis of proteins that, combined with
the molecular content coming from the soma (Dalla Costa et al., 2021), produces a switch of identity resembling the cellular neighborhood. (E) at the
end of the axonal pathway, each axonal compartment has an identity distinct from the neuronal soma and other axonal compartments, creating a
non-static identity space-dependent that we term “Neuronal Continuum.”

While information flows along the axons that travel long

distances, they visit different brain regions and change their

morphology and gene expression. Each axonal segment acquires

a distinct transcriptional identity from the soma, combining

the nuclear molecular content with the one supplied by the

surrounding glial cells in their neighborhood (Farias et al., 2020).

Such neuronal continuum means neurons do not show a single

identity but a continuous molecular profile collectively established

by axonal segments and the soma, dependent on the cellular

neighborhood (Figure 1).

We propose that oligodendrocytes, and secondarily other

glial cells, serve as multiple transcriptional sources glia-

to-axon, providing molecular machinery and content to

axonal compartments in the CNS, similar to the role of

Schwann cells in the PNS. Recent findings demonstrate that

oligodendrocytes play a leading role in regulating neural

synapse development, synaptic transmission, and plasticity

(Liu et al., 2023; Xin and Chan, 2020).

Discussion

The neuronal continuum impacts myelin-associated diseases

and other neuronal disorders. Nijssen et al. (2018) compared

the axonal transcriptomic profile from healthy and amyotrophic

lateral sclerosis MNs, demonstrating a differential expression of
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121 mRNAs necessary for the property neuron function. Also,

oligodendrocyte heterogeneity is implicated in conditions such

as Multiple Sclerosis. In this typical demyelination disease, it

was shown that differences in oligodendrocyte subtypes between

control and patients could contribute to inflammation (Jäkel

et al., 2019), possibly due to a disruption of molecular supply

at certain axon segments derived from missing oligodendrocyte

subtypes. Recent studies have also reported that myelin-related cells

impact conditions commonly associated with neuronal disorders

(Murdock and Tsai, 2023). By acknowledging the essential role of

glia-to-axon for spatially dependent molecular resources, we can

better understand the complex interplay between neurons and glia

in health and disease.

The traditional view of neurons possessing a fixed identity

defined solely by their intrinsic properties is being challenged by

emerging evidence of a neuronal continuum. Recognizing that

neuron identity is not static but spatially dynamic, influenced by

surrounding glial cells within a cellular neighborhood, offers a

new understanding of how neuronal identity is established and

maintained. By exploring the neuronal continuum, we can improve

our understanding of various conditions, such as axon-related

diseases, to design novel interventions for neurodegenerative

diseases. It also opens new avenues for research into neural

development, regeneration, and therapeutic strategies targeting

glial-neuronal interactions.
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