Skip to main content

REVIEW article

Front. Cell. Neurosci.

Sec. Cellular Neuropathology

Volume 19 - 2025 | doi: 10.3389/fncel.2025.1536028

This article is part of the Research Topic Current Topics of Stem Cells and Cell Derivations to Treat Central Nervous System Injury View all 3 articles

Blood-brain barrier repair: Potential and challenges of stem cells and exosomes in stroke treatment

Provisionally accepted
  • 1 Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Hebei Province, China
  • 2 Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China

The final, formatted version of the article will be published soon.

    Stroke is characterized with high morbidity, mortality and disability all over the world, and one of its core pathologies is blood-brain barrier (BBB) dysfunction. BBB plays a crucial physiological role in protecting brain tissues and maintaining homeostasis in central nervous system (CNS). BBB dysfunction serves as a key factor in the development of cerebral edema, inflammation, and further neurological damage in stroke patients. Currently, stem cells and their derived exosomes have shown remarkable potential in repairing the damaged BBB and improving neurological function after stroke.Stem cells repair the integrity of BBB through anti-inflammatory, antioxidant, angiogenesis and regulation of intercellular signaling mechanisms, while stem cell-derived exosomes, as natural nanocarriers, further enhance the therapeutic effect by carrying active substances such as proteins, RNAs and miRNAs. This review will present the latest research advances in stem cells and their exosomes in stroke treatment, as well as the challenges of cell source, transplantation timing, dosage, and route of administration in clinical application, aiming to discuss their mechanisms of repairing BBB integrity and potential for clinical application, and proposes future research directions. Stem cells and exosomes are expected to provide new strategies for early diagnosis and precise treatment of stroke, and promote breakthroughs in the field of stroke.

    Keywords: blood brain barrier, Stroke, stem cell, Exosomes, cell therapy

    Received: 28 Nov 2024; Accepted: 12 Mar 2025.

    Copyright: © 2025 Fu, Li, Yang, Jing, Zheng, Zhang and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Zhuo Xu, Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Hebei Province, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more