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Riboflavin transporter deficiency syndrome (RTD) is a rare childhood-onset 
neurodegenerative disorder caused by mutations in SLC52A2 and SLC52A3 genes, 
encoding the riboflavin (RF) transporters hRFVT2 and hRFVT3. In the present study 
we focused on RTD Type 2, which is due to variants in SLC52A2 gene. There is no 
cure for RTD patients and, although studies have reported clinical improvements 
with administration of RF, an effective treatment is still unavailable. Here we tested 
gene augmentation therapy on RTD type 2 patient-derived motoneurons using 
an adeno-associated viral vector 2/9 (AAV9) carrying the human codon optimized 
SLC52A2 cDNA. We optimized the in vitro transduction of motoneurons using 
sialidase treatment. Treated RTD motoneurons showed a significant increase in 
neurite’s length when compared to untreated samples demonstrating that AAV9-
SLC52A2 gene therapy can rescue RTD motoneurons. This leads the path towards 
in vivo studies offering a potential treatment for RTD patients.
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Introduction

Riboflavin transporter deficiency (RTD), formerly known as Brown-Vialetto Van Laere 
syndrome, is a rare recessive neurologic condition. The disorder is a motor neuron disease 
characterized by defective motoneurons controlling speech, walking, swallowing, breathing 
and general body movements (Amir et al., 2020; O’Callaghan et al., 2019).

The syndrome is characterized by a phenotypic spectrum of motor, sensory, and cranial 
nerve neuropathy, resulting in muscle weakness, respiratory compromise, vision loss, 
sensorineural hearing loss, and sensory ataxia (Bosch et al., 2012; Foley et al., 2014; Manole 
et al., 2017). RTD type 2 specifically is caused by biallelic pathogenic variants in SLC52A2 gene 
(Jaeger and Bosch, 2016; Johnson et al., 2012), encoding the riboflavin transporters, hRFVT2 
(Foley et al., 2014; Haack et al., 2012). Riboflavin (RF) is a precursor of flavin mononucleotide 
(FMN) and flavin adenine dinucleotide (FAD) and reduction of its intracellular availability, 
through defective transporters, compromises several vital processes. RF cannot be synthesized 
de novo and is taken from the diet through riboflavin transporters hRFVT1, 2, 3, which have 
different tissue distribution. Specifically, hRFVT1 is preferentially expressed in the intestinal 
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epithelium and in placenta, hRFVT2 is localized in the central and 
peripheral nervous system, while hRFVT3 is mainly localized in the 
testis, small intestine, kidney, and placenta (Jin and Yonezawa, 2022). 
Albeit empirical studies reported clinical improvement with the 
administration of RF, an effective cure is still lacking (Marioli et al., 
2020; Rizzo et al., 2017).

Over the last two decades, AAV gene therapy has showed 
substantial improvements and benefits to patients. AAV vectors have 
emerged as one of the safest and most used vectors for gene replacement 
(Kantor et al., 2014). Specific targeting capabilities conferring a variety 
of capsid choice have made recombinant AAV the ideal vector used for 
gene delivery to many tissues and organs, including the central nervous 
system (CNS) (Hocquemiller et  al., 2016; Ling et  al., 2023). 
Furthermore, AAV exhibit a stable transgene expression in post-
mitotic cells, neuronal tropism, low immunogenicity (Murlidharan 
et al., 2014). The serotype 9 (AAV9) is able to cross the blood–brain 
barrier with high transduction efficacy, representing a good vector for 
intravascular administration (Saraiva et al., 2016). The FDA approved 
Onasemnogene abeparvovec (Zolgensma) as a AAV9 gene therapy for 
infants with spinal muscular atrophy (SMA) (Ogbonmide et al., 2023).

Recombinant AAV9 vectors display widespread transduction in 
animals, from mice to larger animal models (Choudhury et al., 2017; 
Karumuthil-Melethil et al., 2016; Federici et al., 2012; Gray et al., 2013; 
Snyder et al., 2011; Masamizu et al., 2011; Bucher et al., 2013; Haurigot 
et al., 2013; Samaranch et al., 2013), but often present low transduction 
efficiency in cells in vitro (Gao et al., 2004; Zincarelli et al., 2008).

We previously generated and characterized several induced 
pluripotent stem cells (iPSCs) lines generated from RTD patients with 
different variants in the SLC52A2 gene. Specifically, we assessed their 
molecular (i.e., antioxidant response), morphological (i.e., neurite’s 
length) and functional (i.e., calcium metabolism) features (Niceforo 
et  al., 2021; Colasuonno et  al., 2020). Data collected in previous 
studies suggest that RF supplementation partially rescues the RTD 
phenotype, and the combined treatment of RF plus antioxidants 
provides further improvements of these biomarkers.

In this study we confirmed the morphological phenotype of RTD 
iPSC-derived motoneurons showing a shorter neurite’s length. In 
parallel we demonstrated that sialidase treatment increased in vitro 
transduction of AAVs. Finally, we demonstrated the potential of gene 
therapy to rescue RTD neurodegeneration. Since all aspects of RTD 
type 2 disease stem from the loss of SLC52A2 gene function, gene 
replacement therapy represents a reasonable and promising approach 
to provide a meaningful benefit for RTD patients.

Materials and methods

Clinical information

Clinical features of RTD P1 (carrying the variants c.155C > T 
(p.Ser52Phe) and c.935 T > C (p.Leu312Pro)) had been previously 
reported (Niceforo et al., 2021). In particular, thanks to the timely 
treatment with riboflavin (75 mg/kg QID) and antioxidant therapy at 
2.5 years of age she has remained neurologically stable.

RTD P2 (carrying the variants c.505C > T (p.Arg169Cys) and 
c.1030_1031del (p.Leu344Alafs*100)) is a girl presenting the first 
symptoms (arm weakness and dysphagia) at 8 months of age. At 
12 months old she was diagnosed reporting severe optic atrophy, 

bilateral sensorineural deafness, sensory neuropathy and complete 
diaphragm paralysis (Magliocca et al., 2024).

Patient-derived iPSCs

The studies were conducted in compliance with the Code of Ethics 
of the World Medical Association (Declaration of Helsinki), and with 
national legislation and institutional guidelines (local institutional 
ethical committee, Ref. 1410_OPBG_2021, date of approval 11 
February 2019). Informed consent was obtained from the subjects 
involved in the study. Patient skin fibroblasts were cultured in 
Dulbecco’s Modified Eagle Medium (Sigma Aldrich, Cod D5671), 
supplemented with 10% of Fetal Bovine Serum (Gibco Cod 10082-
147) and penicillin/streptomycin (Gibco, Cod 15140148) at 37°C, 5% 
CO2 and 21% O2. When the cells reached 80% of confluence, they were 
reprogrammed as described (Okita et al., 2011).

Pluripotency characterization of RTD P1 and RTD P2 iPSC lines 
had been previously reported (Rizzo et al., 2017; Okita et al., 2011). 
Clinical features and characterization of RTD P1 and P2 iPSC lines 
had previously been reported (Rizzo et al., 2017; Okita et al., 2011). 
Control iPSCs (CTRL iPSCs) were obtained from healthy individual 
from System Biosciences Coriell (GM23338 and AG28869) and were 
derived from fibroblasts of a healthy individual using non-integrating 
episomal technology. Both control lines were used for experiments 
shown in Figures 1, 2, while for the transduction experiments only one 
control line (GM23338) was used.

Maintenance and differentiation of induced 
pluripotent stem cells (iPSCs) into 
embryoid bodies (EBs) to develop 
motoneurons

RTD iPSCs and CTRL iPSCs (DIV 6–8) were detached with 
Accutase (Sigma-Aldrich, Cod SCR005) for 5 min at 37°C. Then, single 
cells were cultured on ultra-low attachment dishes, using the Basal 
Medium N2/B27 consisting of: DMEM/F12 (Sigma Aldrich, Cod 
D0697), Neurobasal (Gibco, Cod 21103049), Glutamax (Gibco, Cod 
35050061), Pen-strep (Gibco, Cod 15140122), B27 supplement minus 
Vit A, (Life technologies, Cod 12587010), N2 supplement (Life 
technologies, Cod 17502-048) and 2-ME (Gibco, Cod 21985-023). At 
Day 0, the medium was supplemented with Y27632 (10 uM) (Cell 
Signaling, Cod 13624) LDN193189 (0.1 uM) (StemCell, Cod 72149), 
SB431542 (20uM) (StemCell, Cod S4317) and CHIR 99021 (3 uM) 
(Sigma-Aldrich, Cod SML1046). At Day 2, the EBs were resuspended 
in the previous medium plus RA (100 nM) (Sigma Aldrich, Cod 
R2625) and no Y27632 was added. Then, at day 4, SAG (500 nM) 
(Sigma-Aldrich, Cod 566660) was added; at day 7, the EBs were 
resuspended in N2B27 plus RA and SAG. At day 9, DAPT (10 uM) 
(StemCell, Cod 72082) was added and at day 11 the EBs were 
resuspended in N2B27 plus RA, SAG, DAPT, BDNF (10 ng/mL), 
GDNF (10 ng/mL), and CNTF (10 ng/mL) (Sigma-Aldrich, Cod 
C3710). At day 15, the EBs were collected in a tube, washed in PBS and 
rinsed with Trypsin–EDTA 1X (Euroclone, Cod ECB3052) plus DNAse 
(20 ug/mL) (Thermo Fisher Scientific, Cod AM2235). Tubes were then 
placed in warm bath for 15 min and then EBs were dissociated to 
become a single cell suspension and FBS was added to neutralize the 
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FIGURE 1

3D/2D neural differentiation and characterization of iPSC-derived motoneurons. (A) Schematic showing a stepwise differentiation of motoneurons 
using the optimized 3D/2D protocol, showing EBs formation and the mature 2D motoneurons. Created with Biorender.com. (B) Day 20 
immunofluorescence confocal image analysis for the neural marker TUJ1 (in red) and SMI-32 (in green). (C) High-magnification confocal image of 
control motoneurons co-stained for TUJ1 and SMI32 with images showing separate color channels (C′, C″, C″’). (D) Representative image of neurons 

(Continued)
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positive for TUJ1 (in red) and HB9 (in green). (E) High-magnification confocal image of TUJ1 and HB9positive control motoneurons with images 
showing separate color channels (E’, E,” E”’). Nuclei counterstained with DAPI. Scale bar = 50um.

FIGURE 1 (Continued)

FIGURE 2

Morphological characterization of RTD motoneurons. (A–C) Representative images of control and RTD motoneurons positive for TUJ1 (in red) and 
SMI32 (in green). (D) Quantification of TUJ1 and SMI32 fluorescent signals demonstrated a significant decrease in fluorescence intensity in RTD iPSC-
derived motoneurons (****p < 0.0001, one-way ANOVA; mean ± SEM; N = 3 independent experiments). (E–G) Neurites’ length measurement of RTD 
and control motoneurons positive for Neurolight red lentivirus in the Incucyte system at day 28. (H) Quantification confirmed a significant reduction of 
neurite extension in both lines of RTD motoneurons (*p < 0.05, **p < 0.01, one-way ANOVA; mean ± SEM; N = 3 independent experiments). Nuclei 
co-stained with DAPI in (A–C). The CTRL bar includes data points from two CTRL cell lines (one represented by black dots, the other by white dots). 
Scale bar = 50 um in (A–C). Scale bar = 400 um in (E–G).
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trypsin. Cells were then centrifuged for 5 min at 300 g and, after the 
removal of the supernatant, they were passed through a 70-um strainer. 
After the dissociation process, MNs were plated for further analyses.

AAV vectors

The AAV9-GFP vector design has been previously described 
(Gray et  al., 2011). The AAV9-SLC52A2 vector was developed 
similarly, but with a moderate strong UsP promoter (Chen et al., 2023) 
and bovine growth hormone (BGH) polyadenylation signal to drive 
expression of a codon-optimized human SLC52A2 sequence. Codon 
optimization was carried out by ATUM (Menlo Park, CA, USA). Both 
AAV vectors used a self-complementary genome configuration. The 
AAV vectors were manufactured by the University of North Carolina 
Vector core, according to published methods (Grieger et al., 2016).

Pre-treatment with Sialidase and AAV9 
transduction

To increase the infectivity of the virus, Sialidase (Roche, cod. 
10269611001) was used. After the EBs dissociation, motoneurons were 
left to adhere on a precoated plates with poly-O-ornithine (50 ug/mL) and 
laminin (20 ug/mL) for two days. Then, cells were washed 3 times with 
PBS and pretreated with Sialidase at 2 different concentrations: 0.125 U/
mL and 1.25 U/mL for 3 h at 37°C. Following washing with PBS (three 
times), cells were transduced with AAV9-GFP or AAV9-SLC52A2 in a 
concentration of 107 m.o.i for 24 h. The following day, the cell media was 
completely removed and replaced with the fresh media. Then, cell media 
was changed every other day until day 40 (Figure 3).

Immunofluorescence assay

Mature RTD and control MNs were plated on coverslips placed in a 
pre-coated 24-well plate with poly-O-ornithine (50 ug/mL) and laminin 
(20 ug/mL). After 5 days, MNs were fixed with 4% paraformaldehyde 
for 10 min at RT. BSA 5% blocking solution was used and a 0.1% Triton 
X-100 was added (Sigma) for permeabilization. Incubation was 
performed with the primary antibody against TUJ1 (Sigma Aldrich, Cod 
8578) diluted 1:500 and maintained at RT for 2 h, anti-SMI32 (Sigma 
Aldrich, Cod N4142) diluted 1:200 O/N at 4°C and anti HB-9 
(Invitrogen, Cod PA5-23407). AlexaFluor 555 (Thermo Fisher Scientific, 
Cod A21425) and AlexaFluor 488 (Thermo Fisher Scientific, Cod 
A11070) were used as secondary antibodies, diluted 1:500 and incubated 
at RT for 1 h. Nuclei were counterstained using DAPI (Thermo Fisher 
Scientific, Cod. D1306). Finally, the cells were observed with a confocal 
Leica Dmi8 fluorescence microscope (Leica Microsystems, Germany) 
and acquired images were digitally elaborated with a modular image 
processing and analysis software (LasX Software, Leica).

Neurites’ length assay with the Incucyte 
system

Motoneurons were plated at a density of 5′000 cells/well in a Matrigel 
precoated 96-well plate (TPP, Cod 92696) and neurites’ length was 

measured using the IncuCyte System (Sartorius, Essen BioScience) with 
the Neurite Analysis application for Neurolight labeled cells. Cells were 
transduced with a lentiviral-based vector encoding the Incucyte 
Neurolight Lentivirus (Sartorius, Essen BioScience, Cod 4807) following 
manufacturer’s instructions (Figure 4). Live imaging experiments (in 
Figure 5) were performed by acquiring every 4 h for 15 days, from the 
25th to the 40th day of the neural differentiation process. Phase-contrast 
and fluorescent images were acquired for every experiment. Analysis 
parameters for NeuroTrack software module-processing definitions were 
optimized individually for each experiment according to the workflow 
outlined in the manufacturer’s manual. Microplate graphs were generated 
using the time plot feature in the graph/export menu of the Incucyte SX5 
software. Raw data of neurites’ lengths were exported to Microsoft Excel 
and GraphPad Prism to calculate mean values ± SEM.

Statistical analysis

Raw data were collected from each individual experiment of three 
independent biological replicates. The data were analyzed as the 
mean ± the standard deviation (SD) or the standard error of the mean 
(SEM). Significance was tested using ordinary unpaired t test (when 
two sample groups were compared) or one-way ANOVA (parametric 
test) (when more than two sample groups were compared) for 
normally distributed data. For data that do not passed the normality 
test, Kruskal Wallis (non parametric) test has been used to calculate 
statistical significance. GraphPad-Prism software (v9.3.1, GraphPad 
Software) was used to statistically analyze the data.

Results

Characterization of motoneurons derived 
from 3D/2D neural differentiation protocol

We first tested two protocols for the generation of mature 
motoneurons using a control iPSC line (Corti et al., 2012). Using a 2D 
adherent differentiation protocol neurons expressed the pan-neural 
marker TUJ1 but failed to show the mature motoneuron marker HB9 
(Supplementary Figures S1C,D) even at day 30 in culture. iPSCs were 
successfully differentiated into motoneurons using an adapted 3D/2D 
protocol (Figure 1A; Maury et al., 2014). This directed differentiation 
protocol is based on the generation of embryoid bodies (EBs), which 
at later stages are dissociated to obtain pure cultures of motoneurons 
(90 ± 1.49%) (Supplementary Figure S1E).

At day 20 in  vitro neural differentiation was confirmed by 
immunopositivity of the pan-neural marker TUJ1 and SMI32 
(Figures 1B,C). We further assessed for motoneuron maturation using 
the post-mitotic motoneuronal marker HB9 (Figures 1D,E). Results 
confirmed the ability of the 3D/2D protocol to generate mature 
motoneurons being positive for the markers TUJ1, SMI32 and HB9.

Characterization of RTD-derived 
motoneurons

Next, we  differentiated two iPSC lines from healthy donors 
(CTRL) and two iPSC lines from RTD patients, carrying different 
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FIGURE 3

Sialidase treatment and the effect on AAV9-GFP vector transduction. (A) Schematic of sialidase mechanism. Removal of siliac acids from the cells 
surface, might increase the infectivity of the virus. (B) Schematic drawing of AAV9-CBh-GFP viral vector construct. (A,B) Created with Biorender.com. 
(C) Representative images of day 30 motoneurons after sialidase treatment and after transduction with 10 (O’Callaghan et al., 2019); 104 and 107 vg/cell 
MOI GFP expression shows cells that have been transduced. (D) Graph showing the percentage of GFP transduced motoneurons (****p < 0.0318, 
Kruskal-Wallis; mean ± SEM; N = 3 independent experiments). (E) Representative images of motoneurons pre-treated with sialidase and then transduced 
with the AAV9-GFP vector. (F) Graphs showing the percentage of GFP-positive cells demonstrate a significant increase in transduced cells with 1.25 U/
mL sialidase treatment (*** p < 0.0001, **p < 0.001, unpaired t test; mean ± SEM, N = 3 independent experiments). Scale bar 400 um in (C,E).
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FIGURE 4

SLC52A2 gene therapy rescues RTD motoneurons neurites morphology. (A) Schematic of gene therapy construct. Created with Biorender.com. 
(B) Representative Incucyte image of the neural network formation of CTRL and RTD motoneurons (positive for Neurolight lentivirus in red) following 
gene therapy. (C–E) Graphs depicting the quantification of neurites’ length at day 45 of differentiation in treated and untreated motoneurons 
(****p < 0.0001, *p < 0.01, one-way ANOVA; mean ± SEM; N = 3 independent experiments). Scale bar 400 um.
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mutations (RTD P1 155C > T;935 T > C and RTD P2 1030_31 
del;505C > T) in the SLC52A2 gene. RTD motoneurons expressed 
TUJ1 and SMI32 proteins, however formation of neuronal networks 
was less evident (Figures  2A–C). A significant decrease in 
fluorescence intensity was observed in RTD iPSC-derived 
motoneurons (Figure  2D, **** p < 0.0001, one-way ANOVA; 
mean ± SEM; N = 3 independent experiments, N = 3 images per 
independent experiment per sample), confirming the impaired 
neuronal differentiation demonstrated using a different 
methodology (see Conclusions). Next, we  sought to confirm if 
neuronal networks were impaired in diseased motoneurons. Day 20 
motoneurons were cultured on 96-well plates for live imaging and 
transduced using a Neurolight Red Lentivirus (Incucyte SX5 
system) which enabled highly efficient and non-disruptive labeling 
of iPSC-derived neurons (Figures 2E–G). Fourteen days following 
transduction RTD motoneurons showed a significant reduction in 
neurite extension (Figure 2H, ****p = <0.0001, one-way ANOVA; 
mean ± SEM; N = 3 independent experiments, N = 4 for each 
independent experiment per sample). These data demonstrate that 
using 3D/2D neural differentiation RTD motoneurons exhibit 
disrupted neurite extension starting to elucidate characteristics of 
disease in vitro.

Sialidase treatment increases transduction 
efficiency of AAV9 in iPSC-derived 
motoneurons

Efficient gene transfer by AAV9 vectors requires an atypical 
interaction with non-sialylated cell surface glycans (Shen et al., 
2011; Bell et al., 2011). We sought to develop an effective AAV 
gene therapy for RTD by testing whether sialidase treatment, 
which removes the siliac acid from the cell surface increases AAV9 
transduction (Figure  3A). Different multiplicity of infection 
(MOI) of a control AAV9-CBh-GFP vector (Figure 3B) was used 
to assess transduction efficiency in motoneurons following 
sialidase treatment at various concentrations (Figure  3C). 
Transduction efficiency was analyzed 5 days post-transduction at 
day 30 in culture. MOI 102 was too low to detect any GFP positive 
cells even in both untreated and sialidase treated cells. However, 
treatment at both 0.125 and 1.25 units/mL significantly increase 
transduction when compared to untreated control at moi 104 
(****p < 0.0001, Kruskal-Wallis; mean ± SEM; N = 3 independent 
experiments, N = 4 images per independent experiment per 
sample). AAV9 vector at 107 moi significantly outperformed all 
other treatments (Figure  3D, ****p < 0.0318, Kruskal-Wallis; 
mean ± SEM; n = 3 images, N = 3 independent experiments). 
Finally, to evaluate if transduction varies between control and 
RTD motoneurons we tested the transduction efficiency of the 
AAV9-CBh-GFP vector in control and RTD motoneurons 
pre-treated with 0.125 and 1.25 u/mL sialidase. A significant 
increase in the percentage of GFP motoneurons in control, RTD 
P1 and P2 was observed in the 1.25 u/mL sialidase treated 
motoneurons (Figures 3E,F, *** p < 0.0001, ** p = 0.0033 for RTD 
P1, **p = 0.0078 for RTD P2, unpaired t-test; mean ± SEM; N = 3 
independent experiments, N = 3 images per independent 
experiment per sample).

Gene therapy successfully rescues RTD 
motoneurons neurites length

Next, to treat RTD motoneurons, we  designed a AAV9-UsP-
SCL52A2 vector carrying the human codon optimized SLC52A2 
cDNA (Figure 4A).

We transduced RTD P1 and P2 motoneurons, with the 
AAV9-UsP-SLC52A2 at day 25 in culture using the optimized 
1.25 u/mL sialidase treatment and m.o.i of 107 and evaluated 
motoneurons at day 45 in culture. To establish the effects of the 
gene therapy on the neurites’ length disease phenotype we also 
transduced motoneurons with the Neurolight red lentivirus 
(Figure  4B; Supplementary Video S1) for the automated 
measurement of the neurite’s length (Supplementary Figure S2). 
Importantly, following AAV treatment, we found that neurites’ 
length of RTD P1 and P2 motoneurons were significantly longer 
than untreated (Figures 4C–E, p = 0.5011 for CTRL, **p = 0.0050 
for RTD P1, *p = 0.0192 for RTD P2, ANOVA; mean ± SEM; 
N = 3 independent experiments, N = 4 images per independent 
experiment per sample). Furthermore, length was restored to 
levels similar to control MNs (Figures  4D,E). A more 
pronounced rescue was observed in treated RTD P1 
motoneurons, therefore to evaluate the effect of the gene therapy 
on neurogenesis, we imaged untreated and treated control and 
RTD P1 motoneurons at several time points (days 30, 35, 40 and 
45 of neuronal differentiation) (Figures 5A,B). We showed that 
in untreated RTD motoneurons, a presumptive neural network 
was able to form, but over time, motoneurons neurites were lost 
and cells underwent neurodegeneration (Figures  5A,B; 
Supplementary Video S1). Meanwhile, following gene therapy 
with the AAV9-SLC52A2 vector the neural network in RTD 
patient was preserved over time, showing a progressive 
amelioration of the neurites’ length in transduced RTD 
motoneurons (Figure 5C, **p = 0.001, ANOVA; mean ± SEM; 
N = 3 independent experiments, N = 4 images per independent 
experiment per sample). No changes in terms of neurites’ length 
nor network formation/degeneration were observed in control 
motoneurons treated with AAV9- UsP-SLC52A2 indicating the 
overexpression of SLC52A2 is not detrimental to neurons 
in vitro (Figure 5C).

Conclusion

In vitro stem cell-derived motoneurons are a valuable tool to 
analyse the pathomechanisms underlying motoneuron diseases. 
In this study, we  demonstrated the efficient differentiation of 
iPSCs into motoneurons by adapting a previously described 
protocol (Maury et al., 2014). Various types of neuronal cultures 
have been described to date, and although this model has been 
broadly used, the majority of the models generate immature 
motoneurons (Bucchia et al., 2018). Here we showed that our 
iPSC-derived motoneurons matured and expressed the post-
mitotic marker HB9 enabling proper RTD modelling in vitro. 
Despite the improved methodology used in this study to obtain 
iPSC-derived motoneurons, the fluorescent intensities of TUJ1 
and SMI32 are significantly decreased in RTD motoneurons 
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FIGURE 5

Time-laps imaging of the neurites’ length in untreated and treated motoneurons with AAV9-SLC52A2 vector. (A,B) Representative fluorescent images 
of Neurolight red positive neurons of CTRL and RTD P1 at different days of neuronal differentiation, showing that at the end of in vitro neurogenesis 
(day 45), motoneurons of RTD patient showed longer neurites compared to those untreated. (C,D) Graphs showing neurites’ length of CTRL and RTD 
P1 over in vitro neurogenesis (**p = 0.001, one-way ANOVA; mean ± SEM, N = 3 independent experiments, N = 4 images per independent experiment 
per sample). Scale bar 400 um.
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(Figure  2D), thus confirming the impaired neuronal 
differentiation of RTD cells as previously demonstrated using 
different neuronal differentiation methodology (Marioli et al., 
2020; Rizzo et al., 2017; Niceforo et al., 2021). Additionally, we do 
not exclude that the decreased TUJ1 and SMI32 levels in RTD 
motoneurons are a consequence of impaired neuronal survival of 
RTD motoneurons, since neuronal apoptosis has been recently 
demonstrated as a contributing event in RTD pathogenesis 
(Marioli et al., 2024).

One of the most compromised features in RTD motoneurons is 
the cytoskeleton (Marioli et al., 2020; Rizzo et al., 2017; Niceforo et al., 
2021). Our morphometric analyses of RTD iPSC-derived 
motoneurons confirmed that RTD disease leads to neurites that are 
significantly shorter than those of the healthy motoneurons (Marioli 
et al., 2020; Rizzo et al., 2017; Niceforo et al., 2021).

Previous studies have reported that gene therapy testing in 
iPSC-derived motoneurons is limited due to low transduction 
efficiency by AAV vectors. Here, we  described that treatment 
with Sialidase significantly increased cell surface binding and 
infectivity of adeno-associated virus (AAV) serotype 9 (Shen 
et  al., 2011). We  also established the optimal experimental 
condition to obtain the maximal rate of infection. Various 
combinations of sialidase and MOI vector allowed to obtain more 
than the 50% of transduction efficiency.

The majority of RTD patients are responsive to RF 
supplementation, however, it remains unclear if this 
supplementation will be effective in preventing symptoms for life in 
responsive patients, or simply delay the occurrence of symptoms 
(Jaeger and Bosch, 2016; Koy et al., 2012). It is therefore necessary 
to look for a strategy that can alleviate the sufferings of all RTD 
patients. Considering the recent advances in the field of gene 
therapy, we  designed and tested a AAV9-SLC52A2 gene 
supplementation therapy which would be efficacious on all RTD 
patients independently to the carried mutations and/or their 
responsiveness to RF treatment.

In the present study, we aimed at promoting the expression of 
the correct SLC52A2 protein by introducing it by AAV9-SLC52A2 
transduction. Promisingly, gene therapy was able to restore 
neurites length of RTD motoneurons generating long neurites 
maintaining a robust neural network during the neurogenesis 
compared to the untreated RTD motoneurons, which resulted in 
a breakable and fragile neuronal network undergoing degradation 
over time.

Collectively, our results indicate that AAV9-SLC52A2 vector 
rescues the neural phenotype in motoneurons derived from RTD 
Type 2 patient iPSCs, which warrants further in vitro as well as 
in  vivo studies to develop gene therapy as a potential clinical 
treatment for these patients. In fact, we observed recovery of the 
morphological abnormalities of the RTD neurites and we  are 
currently working on the evaluation of the functional aspects of 
AAV9-SLC52A2 transduced RTD neuronal cells. Recently, several 
in vivo viral-vector gene therapies are currently on the market and 
the field of gene therapy for neurological conditions is continuously 
evolving (Ling et al., 2023). For many years, rare neurodegenerative 
disorders as amyotrophic lateral sclerosis (SLA), spinal muscular 
atrophy (SMA) and RTD were considered incurable, but now, gene 
therapy might offer an effective treatment. Currently, many research 

efforts are focused on finding new therapeutic strategies that would 
treat RTD independently from patients’ variants. These findings, 
offer the first insights into gene therapy efficacy for RTD 
patients worldwide.
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