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Background: Spinal cord injury (SCI) poses a substantial challenge in

contemporary medicine, significantly impacting patients and society. Emerging

research highlights a strong association between SCI and chronic pain, yet

the molecular mechanisms remain poorly understood. To address this, we

conducted bioinformatics and systems biology analyses to identify molecular

biomarkers and pathways that link SCI to chronic pain. This study aims to

elucidate these mechanisms and identify potential therapeutic targets.

Methods: Through analysis of the GSE151371 and GSE177034 databases, we

identified di�erentially expressed genes (DEGs) linked to SCI and chronic pain.

This analysis uncovered shared pathways, proteins, transcription factor networks,

hub genes, and potential therapeutic drugs. Regression analysis on the hub

genes facilitated the development of a prognostic risk model. Additionally, we

conducted an in-depth examination of immune infiltration in SCI to elucidate its

correlation with chronic pain.

Results: Analyzing 101 DEGs associated with SCI and chronic pain, we

constructed a protein interaction network and identified 15 hub genes. Using

bioinformatics tools, we further identified 4 potential candidate genes. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analyses revealed a strong correlation between SCI and chronic pain, particularly

related to inflammation. Additionally, we examined the relationship between SCI

and immune cell infiltration, discovering a significant link between SCI and T cell

activation. This is notable as activated T cells can cause persistent inflammation

and chronic pain. Lastly, we analyzed the hub genes to explore the transcription

factor network, potential therapeutic drugs, and ceRNA networks.

Conclusion: The analysis of 15 hub genes as significant biological markers for

SCI and chronic pain has led to the identification of several potential drugs

for treatment.
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Introduction

Spinal cord injury (SCI) is a severe systemic condition of
the central nervous system (CNS), leading to significant motor,
sensory, and autonomic impairments (Tansley et al., 2022; Wang
et al., 2022). According to a statistical study, as of 2019, the leading
causes of SCI were falls and road injuries (Quadri et al., 2018). The
injury can be classified into two categories: primary and secondary
(Yang et al., 2020). The former is a mechanical injury to the cord,
while the latter is the consequence of cell and biological reactions to
the primary injury. Secondary injury usually involves the immune
system, nervous system, vascular system, and other systems,
including hemorrhage, ischemia, oxidative stress, inflammatory
reaction, neural cell death, demyelination, and scar formation
(Hu et al., 2023). The primary injury mechanisms can be broadly
classified as follows: (a) impact plus persistent compression; (b)
impact alone; (c) distraction; and (d) aceration/transection (Sterner
and Sterner, 2023). While the secondary injury can be divided into
immediate, acute, intermediate, and chronic phases. The immediate
phase of the injury commences immediately following the initial
incident and persists for ∼2 h. The acute phase is characterized
by the immediate consequences of the injury, including traumatic
axon rupture, rapid neural and glial cell death, and spinal shock.
The intermediate phase, which occurs between 2 and 6 weeks
after SCI, is characterized by the continued maturation of astroglia
scarring, the formation of axonal regeneration sprouts, and the
development of cysts and syrinxes. Subsequently, the chronic
phase commences 6 months after the initial injury and persists
indefinitely. Various treatment options, such as hydrogels, 3D
printing, stem cells, and extracellular vesicle (EV) vessels, have
been proposed for managing SCI. However, challenges remain in
post-treatment due to reduced axonal growth, insufficient repair
of endogenous cells, and the presence of inhibitory molecules
at the injury site (Liu et al., 2021). Individuals with SCI often
face secondary physical and psychological complications, including
increased rates of depression, anxiety, and a diminished quality of
life (Hearn and Cross, 2020).

Chronic pain is defined as pain persisting for 3 months or
more, either continuously or intermittently (Treede et al., 2019).
A study conducted by the US Centers for Disease Control and
Prevention (CDC) indicates that the prevalence of chronic pain
ranges from 11% to 40%, with an estimated point prevalence of
20.4%. Chronic pain is categorized into nociceptive, neuropathic,
nociplastic, mixed, and cancer pain, all contributing to patient
discomfort. The societal and individual impact of chronic pain
is significant, with a considerable financial burden on society.
Furthermore, patients with chronic pain are frequently associated
with disease-specific alterations in the peripheral nervous system
and CNS, along with a multitude of decrements in quality of
life. It impairs an individual’s capacity to work, gives rise to
financial ramifications, affects biological processes in dynamic
ways, including peripheral and central sensitization, the formation
of new neural connections, and pathology-specific brain alterations
(Cohen et al., 2021). Consequently, it is imperative to treat patients
with chronic pain. Research underscores the importance of treating
chronic pain, which is influenced by physical, psychological, and
social factors, such as age, gender, ethnicity, lifestyle, behavior,

and mental health (Mills et al., 2019). Treatments include
non-pharmacological interventions like physical exercise, weight
management, good sleep routines, and stress management, as
well as pharmacological therapies such as muscle relaxants, non-
steroidal anti-inflammatory drugs (NSAIDs), paracetamol, and
opioids (Fitzcharles et al., 2021).

Chronic pain is prevalent following SCI and includes primary
categories such as neuropathic, nociceptive, and other unspecified
pains, as well as secondary categories like musculoskeletal, visceral,
discogenic, myofascial, sacroiliac, and zygapophyseal (facet) joint
pain (Hunt et al., 2021). It is estimated that between 60% and
80% of individuals with SCI report high rates of chronic pain,
with one-third experiencing intense pain (Shoup et al., 2023).
Numerous studies have established a causal relationship between
SCI and chronic pain. For instance, Jonghoon et al. found that SCI
may induce maladaptive changes in nociceptive synaptic circuits
in the injured spinal cord, enhancing regional hyperexcitability
in the nervous system, and leading to chronic pain (Kang et al.,
2020). Additionally, Andrew et al. demonstrated that deleting
miR-155 following SCI can improve mouse survival and reduce
both spontaneous and evoked pain. Furthermore, single-cell RNA
sequencing analysis of human spinal cord microglia identified
ApoE as being associated with chronic pain (Gaudet et al., 2021).
These findings indicate a strong association between SCI and
chronic pain. However, most studies focus primarily on the cellular
or protein level rather than the molecular level and involve
numerous variables, leading to inconclusive results on how SCI
affects chronic pain. Thus, it is essential to elucidate the molecular
mechanisms by which SCI influences chronic pain and to identify
potential markers that can reduce the likelihood of chronic pain in
SCI patients.

Bioinformatics has evolved over an extended period to
elucidate biological phenomena by applying information science
and statistics methodologies. This approach has the potential
to address the proposed research challenge (Uesaka et al.,
2022). For example, the Gene Expression Omnibus (GEO) is
a public functional genomics data repository that supports the
submission of data in accordance with the Minimum Information.
Gene Ontology (GO) knowledgebase offers a comprehensive and
structured representation of gene function, accessible to computer-
based analysis and applicable to genes from any cellular organism
or virus, including molecular function (MF), cellular component
(CC), and biological process (Aleksander et al., 2023). The KEGG
database has been developed as a computer model of biological
information systems, which are represented in terms of molecular
interaction and reaction networks (Kanehisa et al., 2023). Protein-
protein interactions (PPIs) constitute a pivotal element of the
subcellular molecular networks that underpin cellular functionality
(Tomkins and Manzoni, 2021), which facilitates the study of
differential protein complex formation and signal flow through
networks in response to changing internal and external conditions
or stimuli (Jia and Wu, 2023).

Transcriptomics is the study of gene expression at the RNA
level, providing a genome-wide view of the molecular mechanisms
involved in specific biological processes (Dong and Chen, 2013).
It is a widely used technique for elucidating biosynthetic pathways
and molecular mechanisms, which support the validation of
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products and the entrance of molecules into clinical trials
(Maldonado-Carmona et al., 2019). In order to gain insight into the
potential relationship between genes and drugs, we consulted the
Drug-Gene Interaction Database (DGIdb, www.dgidb.org), which
provides information on drug-gene interactions, and druggable
genes drawn from a range of sources, including publications,
databases, and other web-based resources (Freshour et al., 2021).
MicroRNAs (miRNAs) are RNAs ∼22 nucleotides in length that
originate from longer primary miRNA (pri-miRNA) transcripts,
which contain one ormore hairpins (Shang et al., 2023). Competing
endogenous RNAs (ceRNAs) have been identified as a significant
category of post-transcriptional regulators, which modulate gene
expression through a microRNA-mediated mechanism (Wang
et al., 2016). However, the ceRNA network based on SCI and spinal
cord injury has yet to be reported.

In this study, we identified a genetic relationship between SCI
and chronic pain, advancing our understanding of the connections
between these conditions. We discovered several critical signaling
pathways and gene networks linking SCI to chronic pain. Through
protein-protein interaction network analysis, we identified 15 hub
genes in SCI that can serve as biomarkers for exploring their
roles in disease development and progression. Using the LASSO
regression algorithm, we identified four potential candidate genes
from these hub genes, which may significantly aid in diagnosing
SCI-related chronic pain. Additionally, we screened several drugs
that have regulatory relationships with these four candidate genes.
These promising mechanisms, candidate genes, and drugs hold
potential for improving treatment outcomes for patients with SCI
and chronic pain.

Methods

Data acquisition and processing

We downloaded two datasets such as GSE151371 and
GSE177034 from the GEO database. The GSE151371 dataset
contained 38 patients suffering from a traumatic SCI and
10 healthy individuals without a history of CNS disease.
The GSE177034 dataset contained 49 patients with chronic
pain. The basic information about the patients is put in the
Supplementary material.

DEG analysis and intersection

Background correction, normalization, and gene symbol
conversion were performed on the SCI dataset and chronic pain
dataset (GSE151371 and GSE177034). Later, DEGs in the SCI and
chronic pain datasets were identified using the limma package of R
software. Therefore, DEGs in SCI dataset were screened according
to the thresholds of P-value ≤ 0.05 and |fold change| ≥ 2, whereas
DEGs in the chronic pain dataset were identified according to the
thresholds of P-value ≤ 0.05 and |fold change| ≥ 1.2. Common
DEGs between both datasets were obtained using Venn diagrams.
Subsequently, the expression patterns of DEGs were visualized
using volcano plots and heatmaps with the “ggplot2” package and
“heatmap” package in R software, respectively.

Gene set pathway enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) methods are frequently used to assess
the biological functions and the signaling mechanisms of
polygenes. A P-value < 0.05 indicated that the difference was
statistically significant.

Identification of hub genes by
protein-interaction-network analysis

The STRING database (https://string-db.org/) was used to
perform protein-protein interaction (PPI) relationship. For the
identification of hub genes, the PPI network was constructed
using the proteins encoded by the shared DEGs between the SCI
group and the chronic pain group. The genes showing the most
significant correlations with others are referred to as hub ones.
At first, Cytoscape was used to visualize the PPI network, and
then cytoHubba was used to rank the genes and determine the
prominent nodes in the PPI network for predicting hub genes. After
the hub genes were screened out, GeneMANIA (https://genemania.
org/) was used to analyze the correlation among these hub genes.

GO/KEGG pathway enrichment analysis of
hub genes

GO and KEGG pathway-enrichment analyses were performed
to analyze the selected hub genes, of which, significant signal
pathways and GO terms were identified, and the cutoff of
significance level P value was set as <0.025. The outcome was
visualized by the circle plot of GO/KEGG in R software, indicating
the enrichment degree of the pathway respectively.

Variation analysis

To verify whether the hub genes were differentially expressed
in each control group, variation analysis of each hub gene was
performed in each control group to obtain a violin chart, which
intuitively showed the difference in gene expression. The variation
analysis was done to explore the correlation between SCI and
chronic pain.

Transcription factor enrichment analysis
and regulatory network

TRRUST (https://www.grnpedia.org/trrust/) is a reliable and
intuitive tool for human and mouse transcriptional regulatory
networks (Han et al., 2018). Containing 8444 TF-target regulatory
relationships of 800 human transcription factors (TFs), the
TRRUST database can provide the key TFs for multiple genes
and information on how these interactions are regulated. It was
predicted that TFs could regulate hub genes based on Strusts.
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Finally, Cytoscape software (Shannon et al., 2003) was used to map
the regulatory networks of TF–hub genes.

Diagnostic predictive modeling and genetic
screening by three well-established
machine learning algorithms

Co-existing genes were further screened using three well-
established machine learning algorithms: LASSO (Least Absolute
Shrinkage and Selection Operator), SVM-RFE (Support Vector
Machine-Recursive Feature Elimination), and RF (RandomForest).
To ensure the reproducibility of these analyses, a fixed seed value of
123 was applied in both disease groups.

For initial biomarker screening, the LASSO algorithm, a
logistic regression method that optimizes predictive performance
by selecting key variables, was applied using the glmnet package.
Genes identified by LASSO, along with hub genes from the
common gene model, were considered potential candidates for the
development of a diagnostic prediction model for chronic pain-
associated spinal cord injury (SCI). The area under the receiver
operating characteristic (ROC) curve was used to evaluate the
diagnostic accuracy of four candidate biomarkers.

SVM-RFE was employed for recursive feature elimination,
utilizing the “e1071” and “MSVM-RFE” packages. SVM-RFE
sequentially eliminated less relevant features to identify the optimal
hub gene. The results were visualized, and 10-fold cross-validation
indicated that the red circle marked the maximum classification
precision, with the corresponding gene sets showing the lowest
cross-validation error and highest accuracy. Random Forest was
used to classify significant genes using the “randomForest” package.
This decision-tree-based algorithm ranked genes by importance,
allowing the identification of key variables. A RandomForestmodel
with 500 trees was constructed using the discovery cohort, and the
optimal number of trees was determined based on cross-validation
errors. Genes were ranked by importance, and the top 15 were
plotted. A significant threshold of 0.5 was applied for each disease
group to determine relevant genes.

The results from these three algorithms were then intersected,
revealing four shared genes in the Venn diagram. After further
refinement, a final intersection of these common genes yielded a
single gene, identified as the potential diagnostic target for SCI.

Immune infiltration analysis

CIBERSORT was used to assess the degree of immune
cell infiltration according to the SCI gene expression profile.
The abundance and proportion of immune infiltrating cells in
each sample were presented as a violin plot using the ggplot2
package. The differences in the proportions of 22 types of
immune infiltrating cells between SCI and control groups were
compared using the Wilcoxon test, P < 0.05 was regarded
to be of statistical significance, and a stacked histogram was
created using ggplot2 package. Subsequently, the association
among 22 types of immune infiltrating cells was visualized
using a corrplot package. The ssGSEA algorithm was performed

to estimate the relative composition and functions of different
immune infiltrating cells based on mRNA expression data in the
immune gene sets. The proportions of immune infiltrating cells
were displayed by heatmaps. Finally, Spearman’s rank correlation
coefficient was adopted for the correlation analysis between
the expression of diagnostic biomarkers and the proportion of
infiltrated immune cells, and P < 0.05 indicated that the difference
was statistically significant.

Identification of potential drugs

The Drug-Gene Interaction Database (DGIdb, www.dgidb.org)
is a web resource that provides information on drug-gene
interactions and druggable genes from publications, databases, and
other web-based sources and can be used to identify drugs that
interact with these genes (Freshour et al., 2021).We used theDGIdb
to predict the drugs and molecular compounds that can interact
with four potential candidate genes. The drug–potential candidate
genes interaction network was plotted using Cytoscape software
(Shannon et al., 2003).

Construction of competing endogenous
RNA (ceRNA) network

Three databases such as Targetscan database, miRDB database,
and miRanda database were used to predict the differentially
expressed mRNA targets of differentially expressed miRNAs
and perform the intersection between the predicted mRNA
targets and common differentially expressed mRNAs, and the
adjusted relationships between the miRNA and mRNA targets
were obtained. The spongeScan database (https://spongescan.rc.
ufl.edu) was used to obtain the relationships of lncRNA-miRNA
and perform the intersection between the predicted lncRNA and
common differentially expressed miRNA. Thus, the correlated
lncRNA-miRNA pairs, and miRNA-mRNA pairs in the ceRNA
network were displayed by cytoscape software.

Single-cell dataset validates S100A8 gene

We selected the GSE189070 and GSE186421 datasets to validate
the candidate target genes S100A8, S100A12, IL2RB, and NKG7
identified through a combined analysis of spinal cord injury and
pain. The Seurat package (v4.4.0) in R (v4.2.1) was used to process
these single-cell datasets. In GSE189070, we compared uninjured
controls with samples collected 1-day post-injury, aligning with
the GSE151371 dataset where blood samples were collected at
a median of 23 h post-injury. The SCI 1D group in GSE189070
included 13,644 cells, and the uninjured group included 10,254
cells. In GSE186421, the pain group consisted of 3,647 cells, while
the control group had 6,732 cells. Cells were filtered to retain
those of interest. For GSE189070, the criteria were percent.mt
<10 and nCount_RNA <25,000; for GSE186421, percent.mt < 15
and nCount_RNA<100,000. Post-filtering, GSE189070 had 10,781
cells in the SCI 1D group and 7,677 cells in the uninjured group.
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GSE186421 had 2,783 cells in the pain group and 5,357 cells in the
control group. Expression levels of the four candidate genes were
visualized using ggplot2 (v3.5.1) through bubble and violin plots.
Notably, S100A12 expression was absent in both datasets.

Statistical analysis

Data in current study were listed as the mean ±

standard deviation.
If the data followed a normal distribution, we employed a two-

tailed unpaired Student’s t-test to evaluate the disparities between
the two groups. For populations that did not exhibit a normal
distribution, a Mann-Whitney U unpaired test was utilized. We
conducted correlation analysis using GraphPad Prism (version
8.0.1) utilizing the Pearson method. All statistical analyses were
performed using R software (version 4.2.0) and GraphPad Prism.
Statistical significance was determined at a P-value below 0.05
(∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001, n.s.,
not significant).

Results

Identification of the genetic relationship
between SCI and chronic pain

In Figure 1, we illustrate the comprehensive procedures
employed in our current study. To investigate the interrelationship
between SCI and chronic pain, we gathered and annotated a
substantial amount of relevant data from the Gene Expression
Omnibus (GEO) database to obtain both gene expression matrices
and corresponding clinical information. From the SCI dataset,
we identified a total of 1389 DEGs, comprising 832 up-regulated
and 557 down-regulated genes (Figure 2A). Additionally, in the
chronic pain group, we identified 263 DEGs through differential
expression analysis, with 139 genes up-regulated and 124 genes

down-regulated (Figure 2B). Using Jvenn, we identified 101
intersecting DEGs between the SCI and chronic pain groups,
consisting of 63 up-regulated and 38 down-regulated genes
(Figure 2). All 101 DEGs are detailed in Supplementary Table S1.
The volcano plots in Figure 2 visually depict the overall
transcriptional profiles of genes in the SCI and chronic pain groups,
with red and blue dots indicating significantly up-regulated and
down-regulated genes, respectively (Figures 2C, D). Furthermore,
heatmap analyses were employed to illustrate cluster analysis and
expression patterns of DEGs across different samples in the SCI and
chronic pain groups, respectively (Figures 2E, F). The identification
of these significant DEGs provides crucial insights for exploring
disease relationships and identifying potential therapeutic targets.

Identification of crucial signaling pathways
and GO/KEGG terms by the GO enrichment
analysis

GO enrichment analysis characterizes the properties of genes
or gene products by identifying correlations with GO terms, while
KEGG analysis identifies associations between genes and signaling
pathways. In Figure 3A, we conducted GO analysis and identified
the top 10 enriched GO terms related to biological processes,
molecular functions, and cellular components. The comprehensive
results are detailed in Supplementary Table S2. Specifically, the
DEGs were notably enriched in T cell activation within biological
processes (BP), and in secretory granule lumen, cytoplasmic
vesicle lumen, and vesicle lumen within cellular components (CC).
Moreover, they showed enrichment in immune receptor activity
within molecular functions (MF). These common DEGs likely
play roles in immune-related functions and pathways, potentially
influencing the development of chronic pain in SCI patients.
KEGG pathway analysis serves as a modeling tool to illustrate
how fundamental molecular or biological processes interact,
revealing reciprocal influences among various diseases. In our

FIGURE 1

Schematic illustration of the overall flow chat of this study.
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FIGURE 2

Identification of the di�erentially expressed genes (DEGs) between SCI and chronic pain. The Venn diagram of (A) down-regulated genes and (B)

up-regulated genes in SCI and chronic pain datasets, depict the shared DEGs among two disorders. Volcano plots of (C) SCI and (D) chronic pain

datasets. The DEGs expressed in (E) SCI/(F) chronic pain in normal controls and SCI/chronic pain patients were presented in the form of heatmap.

The DEGs in SCI/chronic pain were the DEGs shown in (C, D).

study, the top 10 signaling pathways identified include neuroactive
ligand-receptor interaction, Th1 and Th2 cell differentiation,
measles, transcriptional misregulation in cancers, Epstein-Barr
virus infection, IL-17 signaling pathway, hematopoietic cell lineage,
viral protein interaction with cytokine and cytokine receptor,

Th17 cell differentiation, and NOD-like receptor signaling pathway
(Figure 3B). Our KEGG pathway analysis indicated that these 101
common DEGs are predominantly enriched in pathways related
to infectious/inflammatory diseases and immune responses. This
suggests a significant interconnection between SCI and chronic
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FIGURE 3

Functional pathway enrichment analysis of DEGs between patients with SCI and chronic pain. (A) KEGG enrichment analysis of 101 common DGEs.

(B) GO enrichment analysis of DEGs includes biological processes (BPs), cellular components (CCs) and molecular functions (MFs). (C) A

protein-protein interaction (PPI) network was constructed by STRING.

pain through pathways involving infection and inflammation.
Additional pathway enrichment analyses are depicted in the
bar diagram.

Identification of hub genes by PPI analysis

In our study, we utilized the STRING database to construct the
PPI network of proteins derived from shared DEGs, highlighting
functional and physical interactions between SCI and chronic
pain (Figure 3C). The PPI network of common DEGs comprised
73 nodes and 458 edges, as depicted in Figure 4A. Using the
cytoHubba package in Cytoscape, we identified the top 15
DEGs considered to be the most influential genes in our study.
These hub genes include IL2RB, TBX21, MMP9, GZMH, GZMB,
NKG7, EOMES, PRF1, GNLY, S100A12, GZMA, CX3CR1, CD8A,
S100A8, and CD3E. Detailed information can be found in
Supplementary Table S2. In subsequent studies, we focused on
investigating the biological roles of these 15 hub genes in SCI
to explore their potential mechanisms in the development and
progression of the disease. These genes were selected based on
their centrality in the PPI network, suggesting their significant

involvement in the pathways and processes relevant to SCI and
chronic pain. The identification of hub genes from common
DEGs provides critical signatures for potential biomarkers in
disease. Hub genes are significant for diagnosing and prognosing
conditions, and using the Cytohubba plugin, we constructed a
submodule network to explore gene connectivity and proximity
(Figure 4B). The submodule analysis of hub genes revealed that
potential candidates such as CD8A, GZMB, TBX21, and PRF1
exhibited greater connectivity within the network, confirming
their strong associations with SCI. These findings highlight their
potential roles as key biomarkers for understanding and managing
SCI and its related conditions. As depicted in Figure 4C, gene
network analysis conducted using GeneMania unveiled 15 hub
genes along with associated genes, illustrating their collective
network and specific functions. These functions include T cell
differentiation, regulation of inflammatory response, neutrophil
migration, positive regulation of cell killing, regulation of T
cell activation, lymphocyte differentiation, and leukocyte cell-cell
adhesion. This comprehensive analysis provides insights into the
interconnected roles of these genes in immune response and
cellular interactions, particularly relevant to conditions such as SCI
and chronic pain.
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FIGURE 4

Protein–protein interaction (PPI) network and hub genes of common DEGs to SCI and chronic pain. (A) Cytoscape was used to visualize PPI network,

containing 73 nodes and 458 edges. (B) 15 hub genes and their interactions with each other were shown in the network. (C) The gene–gene

interaction network for DEGs was analyzed based on 15 hub genes by using the GeneMANIA database.

Identification of crucial signaling pathways
and GO terms by hub gene enrichment
analysis

Based on the analysis of selected hub genes, GO annotation
was conducted to identify top biological processes, molecular
functions, and cellular components. The results indicate significant
enrichment of hub genes in cell killing, leukocyte migration, and
leukocyte-mediated immunity for biological processes, external

side of the plasma membrane for cellular components, and serine-
type endopeptidase activity, serine-type peptidase activity, and
endopeptidase activity for molecular functions (Figure 5A). The
GOCircle (Figure 5B) further illustrates the strong enrichment
of S100A8, S100A12, TBX21, MMP9, and CX3CR1 in processes
related to leukocyte migration.

KEGG enrichment analysis identified 18 signaling pathways
with a P-value of < 0.05 (Figure 5C). Notably, three pathways
showed significant enrichment: Th1 and Th2 cell differentiation,
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Th17 cell differentiation, and transcriptional misregulation

in cancers. The circle plot representation of KEGG results

(Figure 5D) highlighted specific enrichments: CD3E and CD8A
were significantly enriched in primary immunodeficiency, while

GZMB and PRF1 were notably enriched in allograft rejection.
Additionally, IL2RB, CD3E, and TBX21 showed significant

enrichment in transcriptional misregulation in cancers and Th1
and Th2 cell differentiation pathways.

Significantly di�erential expression of the
hub genes between SCI and chronic pain
groups

Statistical analysis revealed significant differences in
the expression levels of each hub gene between normal
individuals and patients in both the SCI and chronic pain
groups (Figure 6, Supplementary Figure S1). Specifically, the

FIGURE 5

Enrichment analysis of hub genes. (A) GO enrichment analysis of hub genes. (B) The GOCircle shows the enrichment degree between the hub genes

and significant GO terms. (C) KEGG enrichment analysis of hub genes. (D) The circle plot of KEGG shows the enrichment signaling pathway among

hub genes.
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FIGURE 6

Verification of hub genes in SCI. The expression level of 15 hub genes in GSE151371, with a P value <0.05, showing 3 up-regulated genes and 12

down-regulated genes. *P < 0.05, **P < 0.01, ***P < 0.001, ns, no significance.

expressions of 3 genes were up-regulated while 12 genes
were down-regulated, with a P-value of < 0.05 in each
case. These findings underscore the differential expression
patterns of hub genes associated with SCI and chronic
pain, highlighting their potential roles as biomarkers or
therapeutic targets.

Identification of transcription factors
correlated with hub genes

To determine which TFs among the hub genes were
significantly enriched according to TRRUST, we utilized Cytoscape
to visualize the TF regulatory network. The network revealed
the following enrichments: CD8A with ETS1, IL2RB with ETS1
and SP1, MMP9 with ETS1, SP1, RELA, NFKB1, and STAT1,
TBX21 with SP1, RELA, NFKB1, STAT4, and STAT1, and PRF1
with STAT4 (Figure 7A). These associations highlight potential
regulatory relationships between the hub genes and specific TFs,
providing insights into their transcriptional regulationmechanisms
in the context of SCI and chronic pain.

Statistical analysis revealed significant differences in
the expression of each transcription factor (TF) between
normal individuals and patients in both the SCI and chronic
pain groups (Figures 7B–G). Specifically, the expressions of
certain TFs showed statistically significant differences with
a P-value of < 0.05 in each case. These findings suggest
differential regulation of TFs in the context of SCI and
chronic pain, potentially influencing the expression profiles
of hub genes and contributing to the pathophysiology of
these conditions.

Construction of disease diagnosis and risk
model based on hub genes

The aforementioned analysis indicates that hub genes
associated with SCI and chronic pain may influence disease
progression through activation of various functions and pathways.
Building upon these findings, a diagnostic model and prognostic
risk model for SCI were developed based on the 15 hub genes using
machine learning algorithms. Specifically, the LASSO regression
algorithm identified four potential candidate genes from the
15 hub genes, demonstrating significant diagnostic potential
for patients with SCI-related chronic pain (Figures 8A, B). To
assess their diagnostic efficacy, receiver operating characteristic
(ROC) curves were utilized to calculate the area under the curve
(AUC) values for the four potential candidate genes. The ROC
analysis revealed that all four potential candidate genes exhibited
AUC values greater than 0.7 (Figures 8C–F), indicating their
strong sensitivity and specificity in diagnosing patients with
chronic pain-related to SCI. These results suggest that these genes
hold promise as valuable diagnostic biomarkers for SCI-related
chronic pain.

Immune cell infiltration and correlation
analysis of four potential candidate genes
with invading immune cells in SCI

The function and pathway analysis of pathogenic genes
associated with chronic pain highlighted the close association
of SCI with inflammatory and immune processes. Using the
CIBERSORT algorithm, we characterized immune cell profiles

Frontiers inCellularNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncel.2025.1457740
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fncel.2025.1457740

FIGURE 7

The association between transcriptions (TFs) and hub genes. (A) The TF regulatory network between hub genes and TFs. (B–G) The di�erent

expression of TFs between the normal people and patients in both SCI and chronic pain groups. *P < 0.05, **P < 0.01, ***P < 0.001, ns, no

significance.

to explore immune regulation and the correlation between
diagnostic biomarkers and immune cell infiltration in SCI
(Figures 9A–D). Significant differences were observed in 10
immune cell subpopulations between the SCI and control groups
among 22 types of immune cells (Figure 10A). Specifically,
the SCI group exhibited higher proportions of naive B cells,
activated/memory CD4+ T cells, gamma delta T cells, M0
macrophages, and neutrophils, while showing lower proportions
of memory B cells, CD8+ T cells, naive CD4+ T cells, resting
memory CD4+ T cells, resting NK cells, and resting dendritic cells
compared to the control group (Figure 10A). Furthermore, we
explored the association between the expression of four potential
candidate genes (IL2RB, NKG7, S100A8, and S100A12) and the
proportions of differentially infiltrated immune cells. As shown
in Figure 10B, all four potential candidate genes demonstrated
significant correlations with immune cell accumulation in SCI
and chronic pain conditions. The landscapes of immune cell
infiltration in SCI and chronic pain were further estimated
using the ssGSEA algorithm (Figure 10C). Correlation analysis
revealed that among the 22 types of immune cells, activated
memory CD4+ T cells exhibited significant positive correlations
with IL2RB (r = 0.37, P < 0.05) and NKG7 (r = 0.34, P

< 0.05), while showing negative correlations with S100A8
(r = −0.40, P < 0.05) and S100A12 (r = −0.35, P < 0.05)
(Figures 10D–G). These findings underscore the intricate
immune responses in SCI and chronic pain, highlighting
potential biomarkers and their interactions with immune
cell dynamics.

Identification of potential drugs that
interact with potential candidate genes

The DGIdb database was employed to predict drugs or
molecular compounds potentially interacting with the four
identified candidate genes. A total of 9 drugs or molecular
compounds were identified to have regulatory relationships with
these genes, with S100A12 showing the highest number of
interacting drugs among them (Figure 11A).

Construction of ceRNA network

In this study, we investigated competing endogenous
RNA (ceRNA) networks, which regulate RNA transcripts by
competitively binding shared miRNAs. These networks are
crucial in cancer initiation and progression, often exhibiting
cancer-specific characteristics, making them potential diagnostic
biomarkers or therapeutic targets. Our ceRNA network analysis
revealed 4 core mRNA nodes, 78 lncRNA nodes, 45 miRNA nodes,
and a total of 133 edges (Figure 11B, Supplementary Figure S2).
Among the mRNAs, IL2RB exhibited the highest connectivity,
forming co-expression relationships with both lncRNAs and
miRNAs within the ceRNA network. Specifically, IL2RB was
connected to 25miRNAs, with 10miRNAs involved in constructing
ceRNA networks. Notably, hsa-miR-762 and hsa-miR-214-3p were
individually linked with 8 lncRNAs, suggesting potential biological
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FIGURE 8

Construction of disease diagnosis and risk model. (A, B) Four potential candidate genes were identified out of 15 hub genes by applying LASSO

regression algorithm. (C–F) ROC analysis of four potential candidate genes, with each >0.7.

functions within the networks. NKG7 formed a ceRNA network
exclusively with hsa-miR-762, which interacted with 7 lncRNAs.
S100A8 established a ceRNA network with hsa-miR-1205, hsa-
miR-1184, and hsa-miR-198, connected to 1, 13, and 4 lncRNAs,
respectively. Similarly, S100A12 formed ceRNA networks
with hsa-miR-1224-5p and hsa-miR-574-5p. Furthermore, we
observed overlapping lncRNAs across different ceRNA networks.
For instance, CTD-2619J13.14 interacted with hsa-miR-1224-
5p/S100A12, hsa-miR-1321/IL2RB; LINC00689 connected
with hsa-miR-1224-5p/S100A12, hsa-miR-1184/S100A8; and
RP11-94C24.13 was linked to hsa-let-7a-5p/S100A8, hsa-miR-486-
3p/IL2RB, among others. These findings provide insights into the
intricate molecular interactions involved in SCI and chronic pain,
offering potential avenues for further research into therapeutic
strategies targeting ceRNA networks.

Single-cell dataset validates S100A8 gene

Finally, we employed machine learning algorithms, including
Support Vector Machine (SVM) and Random Forest (RF), to
further refine the candidate genes identified through LASSO
analysis. The results from the machine learning models are shown
in Figures 12A, B. In the SVM analysis, we identified S100A8
and S100A12 as key genes, while in the RF analysis, genes with
importance scores greater than 2 were selected. To integrate the

findings, we used a Venn diagram to identify the overlap between
the LASSO, SVM, and RF results. The only gene found in all three
methods was S100A8 (Figure 12C).

The status of the single-cell datasets before and after
applying the filtering criteria (Figures 12D, E, Supplementary
Figures S3A, B) was evaluated. In both datasets, there was no
significant relationship between RNA expression levels and the
proportion of mitochondrial genes, which is indicative of normal
sample quality. Conversely, a decrease in RNA levels along with an
increase in mitochondrial gene proportion would suggest potential
cell necrosis, as RNA quantity is positively correlated with gene
count. These visualization assessments confirmed that the cells in
the dataset are normal and viable (Figures 12F, G). The bubble and
violin plots for S100A8 revealed that it was significantly upregulated
in both the spinal cord injury (SCI) and pain groups, with notable
differences observed in both datasets (P < 0.001). This trend is
consistent with our previous dual-disease analysis (Figure 12H–K,
Supplementary Figure S3C, D).

Discussion

Spinal cord injury (SCI) is strongly associated with chronic
pain, causing substantial physical and psychological challenges for
affected individuals. Given the increasing prevalence of chronic
pain following SCI, there is an urgent need to investigate its
underlying mechanisms. This study employed high-throughput
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FIGURE 9

The CIBERSORT algorithm was used to examine four hub genes and their impact on chronic pain and spinal cord injury and to discover the

regulation between the two conditions. (A) IL2RB, (B) S100A12, (C) S100A8, (D) NKG7.

sequencing datasets to identify co-expressed biomarkers, aiming
to elucidate the intricate connections between SCI and chronic
pain and explore potential therapeutic strategies. Network analyses
were conducted to pinpoint hub genes, identify potential
candidate genes, and highlight regulatory TFs. Subsequent
analyses evaluated potential drugs, facilitating the construction
of disease models and exploring immune infiltration patterns to
inform treatment strategies. Additionally, a ceRNA network was
constructed to uncover regulatory pathways implicated in SCI-
related chronic pain.

Transcriptomic analysis of SCI and chronic pain revealed
101 common DEGs, comprising 63 up-regulated and 38 down-
regulated genes (Li J. Z., et al., 2023; He et al., 2023). However,
the relationship between SCI and chronic pain, a common
and significant complication, has yet to be thoroughly explored.
Therefore, this study represents an initial investigation into this
field, aiming to uncover the genetic correlations between these two
disorders and identify potential therapeutic strategies.

To delve into the pathophysiology of these conditions, we
conducted GO pathway analyses focusing on biological processes,
cellular components, and molecular functions. The analysis

highlighted T cell activation (15 genes), defense response to
bacterium (11 genes), and leukocyte cell-cell adhesion (11 genes)
as significantly enriched biological processes. T cell activation
involves the recognition of exogenous peptides presented by
major histocompatibility complex (MHC) molecules on antigen-
presenting cells (APCs) via the T-cell receptor (TCR), triggering
a cascade of signaling events essential for their physiological
functions (Nel, 2002). In the context of SCI, inflammation ensues
as a direct consequence, leading to tissue damage and adverse
outcomes (Freyermuth-Trujillo et al., 2022). Disruption of the
blood-spinal cord barrier (BSCB) facilitates T cell infiltration at the
injury site, where they become activated and release cytokines like
perforin, exacerbating the inflammatory response (Liu et al., 2019).
Studies comparing SCI outcomes in rats and athymic nude (AN)
mice (T-cell deficient) have shown superior functional recovery in
the latter, underscoring the role of T cells in exacerbating post-
injury inflammation (Satzer et al., 2015).

Based on GO analysis, the most significant molecular
functions identified were immune receptor activity (7 genes)
and calcium-dependent protein binding (6 genes). These findings
are particularly relevant to the immune response triggered by
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FIGURE 10

Immune cell infiltration analysis. (A) CIBERSORT was used to depict the di�erences of immune cell infiltration between SCI and control groups. (B)

The correlations between four potential candidate genes and infiltrated immune cells. (C) The heatmap of immune cell infiltration landscapes of SCI

was demonstrated by ssGSEA. (D–G) The ssGSEA was used to show the correlation between immune cells and four potential candidate genes, like T

cell CD4 memory activated.

inflammation following spinal cord injury (SCI), where the
release of damage-associatedmolecular patterns (DAMPs) activates
immune receptors. This activation initiates a cascade of events that
recruit and activate migrating immune cells (Shen et al., 2022).
In particular, immune cell receptor activation, including microglia
and macrophages, has been implicated in the pathogenesis of
chronic pain (Malcangio, 2019). Additionally, calcium-dependent
proteins play a crucial role, potentially contributing to axonal
degeneration post-SCI. The influx of calcium ions leads to calcium
overload, disruptingmitochondrial function and ultimately causing
neuronal apoptosis, a key contributor to chronic pain development.
Further KEGG pathway analysis of the 101 commonDEGs revealed
significant similarities in pathway involvement between SCI and
chronic pain, predominantly linking to immune-related pathways.

Following SCI, there is a notable influx of T cells at the
injury site, driven by activation of the T cell receptor (TCR) and
subsequent signaling pathways (Sterner and Sterner, 2023; Xu

et al., 2021). Among these T cells, CD4+ T cells can differentiate
into various subtypes, including Th1, Th2, and Th17, under the
influence of inflammatory mediators. Th1 cells are recognized
for producing interferon-gamma (IFN-γ) and interleukin-2 (IL-2),
whereas Th2 cells typically induce interleukin-4 (IL-4), interleukin-
5 (IL-5) and interleukin-13 (IL-13) production through IL-4
signaling (Luckheeram et al., 2012; Künzli and Masopust, 2023).
Th17 cells, identified by their secretion of interleukin-17 (IL-
17) and expression of CC chemokine receptor 6 (CCR6), are
recruited to the SCI site where they become activated (Hu
et al., 2016). IL-17 appears to play a regulatory role in post-
SCI recovery, promoting the release of interleukin-1 (IL-1), IL-
6, tumor necrosis factor-alpha (TNF-α), and other cytokines
(Luckheeram et al., 2012). These cytokines, particularly IL-1, IL-
6, and TNF-α, are pivotal in the secondary inflammatory response
following SCI. They are released by various glial and immune cells,
activating additional inflammatory cells and amplifying the overall

Frontiers inCellularNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fncel.2025.1457740
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fncel.2025.1457740

FIGURE 11

Drug interaction with potential candidate genes and ceRNAs network analysis. (A) Potential drug network with candidate genes. Red nodes represent

up-regulation, green nodes represent down-regulation and blue nodes represent drug. (B) Competing endogenous RNAs (ceRNAs) network analysis

of four hub genes.

inflammatory cascade, which can worsen SCI outcomes (Wu et al.,
2021). The nucleotide-binding oligomerization domain (NOD)-
like receptor (NLR) family, a subset of pattern recognition receptors
(PRRs), plays a crucial role in the initial innate immune response
post-injury (Platnich and Muruve, 2019). NLRP activation can
lead to caspase-1-mediated pyroptosis and cleavage of IL-1β and
IL-18 into their mature forms (Lin and Mei, 2020). Multiple
NLRPs are involved in regulating the NF-κB signaling pathway
within glial cells, further promoting the production of TNF-α,

IL-6, and IL-1 (Li S., et al., 2022). The sustained presence of TNF-
α, IL-1, and IL-6 is associated with neuronal hyperexcitability,
contributing to chronic pain development post-SCI (Sofroniew,
2018). These cytokines sustain inflammation and exacerbate
neuronal sensitization, underscoring their role in chronic pain
pathophysiology following SCI.

A protein-protein interaction (PPI) network analysis was
systematically conducted using 101 common DEGs to identify hub
genes relevant to both SCI and chronic pain. This initiative aimed
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FIGURE 12

Validation of the expression of S100A8 single-cell datasets. (A–C) The SVM and RF machine learning methods combined with LASSO were used to

select candidate genes. (D, E) Visualization of filtered nFeature_RNA, nCount_RNA and percent_mt results for both datasets using violin plots. (F, G)

The first graph shows the number of RNAs expressed in the sample and the ratio of mitochondrial genes, and the second graph shows the

correlation between the number of genes and the number of RNAs. (H–K) Visualization and di�erential analysis of candidate gene expression using

bubble and violin plots.

to gain insights into potential treatment strategies and biomarker
discovery. Utilizing the cytoHubba package, we identified the top
15 hub genes associated with SCI and chronic pain, including
IL2RB, TBX21, MMP9, GZMH, GZMB, NKG7, EOMES, PRF1,
GNLY, S100A12, GZMA, CX3CR1, CD8A, S100A8, and CD3E.
These genes were selected based on their significant roles in
the pathogenesis of both disorders. Further analysis using the
Cytohubba plugin identified IL2RB, S100A8, S100A12, and NKG7
as the top four candidate genes with pronounced relevance.
These genes hold promise as therapeutic targets and valuable

biomarkers for diagnostic and prognostic applications in SCI
and chronic pain contexts. Their identification underscores their
potential to advance understanding and treatment outcomes for
these debilitating conditions.

Interleukin-2 receptor beta (IL2RB) is integral to the IL-2
receptor complex, predominantly expressed in T cells and natural
killer (NK) cells. Its main role involves binding IL-2 to initiate T
cell-mediated immune responses (Li et al., 2022). Upon activation,
CD4+ T cells secrete IL-2, which promotes the differentiation of
regulatory T cells (Treg cells) while inhibiting the differentiation
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of pro-inflammatory Th17 cells (Yuan et al., 2022). Treg cells are
pivotal in promoting spinal cord repair following SCI through
various mechanisms (Chen et al., 2023). In studies involving female
mice lacking Treg cells, heightened activation ofmicroglial cells was
observed, triggered by colony-stimulating factor 1 (CSF1), which
contributed to hyperalgesic responses or increased pain sensitivity
(Olson et al., 2023). Therefore, IL2RB-mediated differentiation
of Treg cells may mitigate chronic pain by modulating this
inflammatory response.

S100A8 and S100A12 belong to the S100 calcium-binding
cytoplasmic protein family, primarily secreted by immune cells
such as monocytes, neutrophils, and dendritic cells. In the context
of SCI, they function as endogenous damage-associated molecular
patterns (DAMPs), initiating and amplifying the inflammatory
response (Xia et al., 2018). Under hypoxic conditions, S100A8 can
induce neuronal apoptosis (Ha et al., 2021). Interestingly, research
suggests that prolonged use of non-steroidal anti-inflammatory
drugs (NSAIDs) may prevent the transition from acute low back
pain to chronic pain, potentially mediated by S100A8 released
from neutrophils (Parisien et al., 2022). Moreover, S100A8 and
S100A12 are recognized as core genes that could serve as
therapeutic targets for various chronic pain conditions (Heida et al.,
2018).

During inflammatory responses, NKG7 is secreted by both
CD4+ and CD8+ T cells, where it plays a role in regulating
the exocytosis of cytotoxic granules. This process enhances
the synaptic efficiency of CD8+ T cells, facilitating the rapid
elimination of target cells and thereby limiting the progression of
damaging inflammation (Lelliott et al., 2022). All four potential
candidate genes—IL2RB, S100A8, S100A12, and NKG7—exhibit
high expression in T cells and are closely associated with T-
cell activation and immune responses, indicative of inflammation.
These findings are consistent with the results from GO and KEGG
enrichment analyses conducted in this study.

Transitioning to the realm of TFs, which are critical proteins
involved in regulating gene expression, this study explores their
interconnected roles with common DEGs and miRNAs in the
context of SCI and chronic pain (Matsuyama and Suzuki, 2019).
Several TFs, including ETS1, SP1, RELA, NFKB1, STAT4, and
STAT1, emerge as pivotal players in this complex landscape. For
example, STAT1, activated by TNF-α and IFN-γ, initiates a cascade
leading to nitric oxide production and PANoptosis (Karki et al.,
2021). Its involvement with the promoter region of the P2Y14
receptor suggests a role in diabetic neuropathic pain (Wu et al.,
2022). NF-κB transcription factors, particularly the NFKB1-RELA
dimer, play a significant role in orchestrating inflammation post-
SCI, particularly in microglial cells (Moynagh, 2005; Ding and
Chen, 2023). Notably, the STING/TBK1/NF-κB signaling pathway
in microglia has recently been implicated as a potential trigger
for pain sensations in damaged nerves (Chen et al., 2018; Sun
et al., 2021). Additionally, upregulation of ETS1, induced by
TFs, promotes the expression of histone deacetylase 1 (HDAC1),
shedding light on its role in inducing neuropathic pain following
nerve injury (Zheng et al., 2023).

In this study, several miRNAs have been implicated in
modulating SCI and chronic pain. For instance, down-regulated
miRNA-34c-5p has been shown to mitigate the inflammatory

response and alleviate hyperalgesia after nerve injury through the
SIRT1/STAT3 signaling pathway (Mo et al., 2020). Additionally,
reduced expression of miRNA-214-3p at the injury site post-SCI
increases the release of early growth response 1 (EGR1) and colony-
stimulating factor 1 (CSF1), thereby contributing to chronic pain
development in affected nerves (Jiang et al., 2021). Moreover,
miRNAs such as miRNA-762, miRNA-558, and miRNA-34a-5p
have been associated with secondary injury or functional recovery
following SCI (Deng et al., 2021). These findings underscore the
intricate regulatory roles of miRNAs in modulating inflammatory
responses and pain pathways in SCI and chronic pain contexts.

After analyzing four potential candidate genes, we evaluated
nine substances and drugs as potential therapeutic agents for
SCI. Methotrexate (MTX), known for its anti-inflammatory
and immunosuppressive properties, can mitigate cell apoptosis
post-SCI by regulating the endoplasmic reticulum stress (ERS)
response. MTX, often administered alongside methylprednisolone
(MP), helps reduce side effects and supports functional recovery
of the injured spinal cord (Rong et al., 2018). As a folic
acid antagonist, methotrexate (MTX) alleviates inflammation
by inhibiting dihydrofolate reductase (DHFR) and thymidylate
synthase (TYMS), thereby blocking the synthesis of DNA, RNA,
and proteins in inflammatory cells (Zhao et al., 2022). Previously,
MTX was widely used in the treatment of rheumatoid arthritis due
to its potent anti-inflammatory and analgesic effects (Fautrel et al.,
2022). In animal models of nerve injury, MTX has demonstrated
efficacy in alleviating chronic pain (Luptovčiak et al., 2017). These
findings collectively confirm the significant potential of MTX in
treating chronic pain in patients with SCI. Another potential
therapeutic avenue involves targeting the IL-2 receptor (IL-2R).
Daclizumab, a humanizedmonoclonal antibody, selectively inhibits
activated T cells by blocking IL-2 binding to CD25 on IL-2R. This
mechanism suppresses the proliferation of activated T cells and
NK cells, commonly used in multiple sclerosis treatment and as an
immunosuppressant for managing post-organ transplant rejection
reactions (Bielekova, 2012). Since CD25 is highly expressed on
regulatory T cells (Tregs), blocking CD25 can specifically inhibit
Tregs, thereby reducing the excessive immune response triggered
by post-SCI inflammation (Peng et al., 2024). A recent study
demonstrated that elevated levels of circulating soluble CD25
(sCD25) indicate substantial T-cell activation and are associated
with an imbalance in excitatory-inhibitory regulation in the
prefrontal cortex, contributing to the persistence and amplification
of chronic pain (Ma et al., 2024).

Currently, calcitonin gene-related peptide (CGRP) receptor
antagonists such as atogepant, ubrogepant, and rimegepant
are commonly used in combination with eptinezumab, a
humanized anti-CGRP monoclonal antibody, for the treatment
of migraines. These treatments function by blocking CGRP-
mediated inflammatory responses, vasodilation, and pain signal
transmission. As a result, atogepant and eptinezumab are showing
promising potential for the preventive treatment of chronic
migraine (Morgan and Joyner, 2021). CGRP is released by neurons
in response to pain signals, enhancing glutamate excitability in
postsynaptic neurons, which contributes to central sensitization
and persistent pain after injury (Löken et al., 2021). Studies have
demonstrated that several CGRP receptor antagonists effectively
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alleviate chronic pain following SCI by inhibiting CGRP (Janzadeh
et al., 2020).

This study employed bioinformatics analysis to explore the
association between SCI and chronic pain. However, there are
several limitations that need to be acknowledged. The findings,
including core genes, transcription factor networks, and potential
drug candidates, are based on data obtained from the GEO
database, which has limitations in terms of dataset size and
comprehensiveness for the SCI group. Therefore, it is essential
to validate these findings through studies using larger and more
comprehensive datasets. Furthermore, additional clinical evidence
would greatly enhance the credibility and applicability of the
findings. Incorporating clinical data could provide valuable insights
for future research directions and potential clinical applications.
Addressing these limitations will strengthen the conclusions drawn
from this study and facilitate more robust investigations into the
relationship between SCI and chronic pain.

In summary, this study extensively investigates the underlying
correlation between SCI and chronic pain, aiming to uncover
relevant pathways and molecular biomarkers for potential
therapeutic targeting. Through analysis of 101 common DEGs
between SCI and chronic pain, their functional roles were
characterized using GO and KEGG enrichment analyses.
Building upon this foundation, a PPI network was constructed
to identify 15 core genes and explore their transcription factor
(TF) enrichment. Subsequently, LASSO analysis pinpointed
4 potential candidate genes. Further investigation into these
genes revealed 11 potential therapeutic drugs, highlighting new
avenues for research and development in SCI and chronic pain
treatment. We anticipate that these findings will provide valuable
insights into both conditions, paving the way for innovative
treatments and offering hope to patients suffering from SCI and
chronic pain.
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Verification of hub genes in chronic pain. The expression level of 15 hub

genes in GSE177034, with a P value <0.05, showing 3 up-regulated genes

and 12 down-regulated genes.
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An intersection analysis was used to identify miRNAs from three databases,

while lncRNAs were discovered through spongeScan.

SUPPLEMENTARY FIGURE S3

Validation the expression of Il2rb, Nkg7, S100a8. (A,B) Visualization of

nFeature_RNA, nCount_RNA and percent_mt data before filtering for both

datasets using violin plots. (C,D) Visualization of candidate gene expression

using violin maps.
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