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Introduction

Pyramidal neurons (PNs) receive and integrate 1,000’s of synaptic inputs impinging

onto their dendritic arbor to shape the neuronal output. The richness and the complexity

of such input-output transformation primarily relies on the ability of neurons to generate

different forms of dendritic local spikes, regenerative events originating in the dendrites

profoundly influencing the probability and the temporal structure of somatic spiking.

Extensive work during the last two decades has identified the impact of clustering

and cooperative plasticity among glutamatergic synapse in promoting dendritic spikes.

However, the role of inhibitory synapses in such processes remains elusive. In this opinion

paper, following a general introduction on the impact of the synaptic input spatial

distribution in neuronal activity, we highlight the coordinated plasticity of excitatory and

inhibitory dendritic synapses as an emerging key factor in the organization of the dendritic

input architecture. In particular we will emphasize that the relative positioning of diverse

excitatory and inhibitory dendritic synapses at the microscale level is a major determinant

for shaping dendritic dynamics and neuronal circuit function in the brain.

Multiscale spatial arrangement of dendritic
excitatory or inhibitory synaptic inputs

In different brain areas, distinct synaptic inputs converging onto PNs show a macro-

scale distribution across large dendritic compartments. For instance, in the hippocampal

formation, excitatory fibers from entorhinal cortex (EC) project to the distal portions

of apical dendrites of CA1 PNs through the perforant path (PP), while Schaffer

collaterals (SCs) from the CA3 area mainly contact the proximal dendrites (Megías et al.,

2001; Figure 1). Similarly, in the neocortex, intra-cortical layer 2/3 (L2/3) PNs axons

(feedforward information) contact the proximal dendrites of layer 5 (L5) PNs, with cortico-

cortical inputs from high-order cortical areas (feedback information) targeting their distal

dendrites (Larkum, 2012). This illustrates a large-scale connectivity scheme wherein fibers

from either distant or local brain regions preferentially contact distal or proximal dendrites,

respectively (Felleman and Van Essen, 1991). Such broad-scale input organization reflects

important functional properties where the activation of proximal dendrites typically
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FIGURE 1

Schematic representation of proximo-distal dendritic compartmentalization of diverse GABAergic and glutamatergic inputs on a CA1 pyramidal

neuron. (A) Representative selection of excitatory and inhibitory inputs received by CA1 dendrites. Specific subsets of excitatory inputs are aligned

with distinct GABAergic fibers. Proximal dendrites in the stratum radiatum are targeted by SC (orange), amygdala projections (green), as well as local

SC-associated interneurons (pink) and bistratified interneurons (purple). In contrast, distal dendrites in the stratum lacunosum moleculare receive

inputs from the thalamus (yellow), the EC through the PP (red), O-LM interneurons (dark blue), and PP-associated interneurons (light blue). Dashed

box delineates a distal dendritic portion represented in (B). (B) Two di�erent possible spatial arrangements of excitatory and inhibitory inputs on a

distal dendritic segment. (Left) GABAergic inputs from either O-LM or PP-associated interneurons (striped light-dark blue) are positioned within an

“interplay range” with thalamic or PP inputs (d1) or located beyond this range (d2). This points to the existence of excitatory-inhibitory spatial

combinations, wherein certain inhibitory inputs consistently spatially paired with specific subsets of glutamatergic inputs. (Right) Excitatory and

inhibitory inputs are randomly distributed along a dendritic segment. In this spatial arrangement, there are no consistent rules determining the pairing

of specific GABAergic and glutamatergic inputs at the microscale level (s.o., stratum oriens; s.p., stratum pyramidale; s.r., stratum radiatum; s.lm.,

stratum lacunosum moleculare; PP, perforant path; SC, Sca�er Collaterals; Thal, Thalamic; Amyg, Amygdala).
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produces single action potentials while co-activation of distal and

proximal synaptic inputs can generate calcium plateau potentials—

specific forms of dendritic spikes initiated in the distal dendritic

region—leading the neuron to burst firing (Jarsky et al., 2005;

Takahashi and Magee, 2009; Larkum et al., 1999). This supra-

linear integration provides the biophysical basis for a fundamental

associative process to combine and compare different types of

information at the single cell level (Bittner et al., 2015; Larkum,

2012). Along the same line, the differential effect of distal

feedforward inputs triggering single spikes and the combined

activation of feedforward and distal feedback inputs inducing burst

firing, provides the opportunity for the independent transmission

of these two distinct signals through the same neuronal pathway

(multiplexing; Naud and Sprekeler, 2017).

Intriguingly, GABAergic inputs are also non-randomly

distributed along the axo-dendritic axis of PNs. Diverse subclasses

of GABAergic interneurons (INs) target specific sub-regions of PNs

including axon initial segment, soma, proximal dendrites and distal

dendrites, with a specific temporal activation critically contributing

to e.g., brain oscillations (Klausberger and Somogyi, 2007; Tzilivaki

et al., 2023). In both hippocampus and neocortex, the proximo-

distal dendritic compartmentalization of diverse GABAergic inputs

creates a spatial pattern where distinct GABAergic fibers broadly

align with specific subsets of excitatory inputs. For example,

in the hippocampus, oriens-lacunosum-moleculare (O-LM),

neurogliaform, and perforant path (PP)-associated INs target the

distal dendrites of CA1 pyramidal neurons aligning with PP inputs

from the EC. Comparably, bistratified, SC-associated and Ivy

interneurons match glutamatergic inputs from CA3 onto proximal

dendrites (Klausberger, 2009; Lovett-Barron et al., 2012; Figure 1).

The existence of structured patterns of synaptic inputs

localization persists at smaller scales. At glutamatergic side,

computational and experimental works showed that dendritic

synaptic inputs clustering favors dendritic spikes initiation (Mel,

1993; Poirazi and Mel, 2001; Poirazi et al., 2003a,b; Larkum et al.,

2009). In L5 PNs, for instance the activation of glutamatergic inputs

within a ∼ 40µm range undergo supra-linear summation due to

N-methyl-D-aspartate (NMDA) receptor-dependent regenerative

mechanism, whereas inputs more than 80µm apart integrate

linearly, indicating the key role of the spatial determinants in

dendritic input summation (Polsky et al., 2004). The functional

clustering of glutamatergic inputs has been observed directly

in dendrites of both CA3 and L2/3 PNs, where spontaneous

activity is more likely to co-activate neighboring glutamatergic

spines rather than distant spines, thus forming glutamatergic

synaptic “assemblets” within ∼ 10µm (Takahashi et al., 2012).

The clustered organization of glutamatergic inputs underpins an

important role at the functional level. In the visual cortex, the

clustering of similarly tuned inputs aids edge detection and contour

integration (Iacaruso et al., 2017), while in the motor cortex,

task-related inputs cluster within 10µm subdomains to support

decision-making (Kerlin et al., 2019). Besides the relevance of

the tight spatial proximity between active glutamatergic synapses

(synaptic clustering), the initiation of dendritic spikes strongly

depends on the dendritic morphology. In thin and short dendritic

branches, the high input resistance determines low attenuation

of the depolarization produced by individual synapses thus

promoting the signal summation within the branch (Kastellakis

and Poirazi, 2019). For instance, the timely activation of ∼ 20

glutamatergic inputs on a radial oblique dendritic branch of

100µm in CA1 PNs initiate a local sodium spike regardless of

their spatial relationship along the branch, thus determining in-

branch clustering (Losonczy and Magee, 2006). Anatomical studies

of SCs synapses localization onto CA1 PNs dendrites have revealed

a highly non-uniform connectivity structure. In particular, the

number of short inter-spine distances as well as the number of

glutamatergic inputs per branch was greater than chance level,

thus supporting both synaptic clustering and in-branch clustering

modes, respectively (Druckmann et al., 2014). Similar findings were

observed for thalamocortical inputs onto L5 PN (Rah et al., 2013).

Collectively, this evidence indicates that, at different scales, the

spatial arrangement of glutamatergic synapses in dendrites of PNs

crucially shapes the transfer function between synaptic activation

and dendritic depolarization/spiking (Ujfalussy and Makara, 2020;

Kastellakis and Poirazi, 2019). It is interesting to note that, synaptic

inputs in dendrites of interneurons are less spatially structured with

respect to PNs (Kwon et al., 2018), and, in contrast to PNs, synaptic

inputs in small caliber dendrites of fast spiking basket cells tend to

summate sub-linearly (Tzilivaki et al., 2019).

As with excitatory inputs, several lines of evidence show

that synaptic inhibition in PNs dendrites depends on local

spatial determinants at the microscale level, such as their fine

relative positioning with respect to excitatory synapses (Boivin and

Nedivi, 2018). Modeling studies suggest that GABAergic synapses

positioned distally (off-path) from a cluster of glutamatergic

synapses more efficiently raise the threshold for initiating a

dendritic spike compared to proximally-placed ones (on-path),

whereas the on-path location is more effective in shunting

already-triggered dendritic spikes (Gidon and Segev, 2012). Both

predictions have been corroborated experimentally ex vivo in

L5 PNs, confirming that the specific spatial arrangement of

GABAergic synapses in dendritic branches is an important

determinant shaping dendritic excitability (Jadi et al., 2012). In this

concern, studies report that diverse GABAergic inputs from specific

interneurons are highly structured at branch and sub-branch

levels. In CA1 PNs, O-LM interneurons (somatostatin+, SOM+)

or neurogliaform interneurons (neural nitric oxide synthase+,

nNOS+) preferentially target the ending or the intermediated

region of the terminal domain of distal dendrites, respectively

whereas bistratified interneurons (neuropeptide Y+, NPY+) target

the origin of the terminal domain of proximal apical oblique

and basal dendrites (Bloss et al., 2016). In addition, the study of

the excitatory and inhibitory synapses distribution in the whole

dendritic arbor in L2/3 PNs revealed that, while density of both

synapses significantly vary in different neuronal sub-regions, its

ratio was remarkably balanced at branch level (Iascone et al.,

2020). Finally, inhibitory GABAergic synapses can be located

directly on glutamatergic spines thus effectively controlling spine

depolarization (Boivin and Nedivi, 2018; Chiu et al., 2013).

How does cooperative plasticity
among glutamatergic synapses shape
synaptic clustering?

Extensive work on glutamatergic spines reports that the

expression of long-term potentiation (LTP) at an individual spine
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can lower the threshold for the induction of synaptic plasticity

at neighboring spines by spreading signaling molecules such as

small GTPases from the potentiated spine in dendritic stretches

of ∼10 µm: this establishes the coordinated potentiation of a

subset of contiguous spines ultimately leading to the formation

of a glutamatergic synaptic cluster (Harvey and Svoboda, 2007;

Harvey et al., 2008; Hedrick and Yasuda, 2017). On the other

hand, the stimulation of a glutamatergic spine cluster can

depress nearby spines through the diffusion of the phosphatase

calcineurin, a mechanism that is expected to increase the structural

and functional identity of specific clusters (Oh et al., 2017).

Likewise, long-term depression (LTD) at an individual spine

can either depress or potentiate neighboring spines (Chater and

Goda, 2021). Overall, these observations suggest that short-

range interplay between spines can define the spatial pattern of

dendritic glutamatergic synapses. Nevertheless, how GABAergic

synapses contribute to these processes remains largely obscure.

Traditionally, inhibition has been considered poorly plastic and

to take part to plasticity phenomena mainly by adjusting the

threshold for the induction of glutamatergic plasticity (Steele

and Mauk, 1999). In this concern, modeling studies report

that specific placement of GABAergic synapses with respect to

either excitatory synapses or dendritic branches can spatially

constraint glutamatergic plasticity hence influencing the degree of

glutamatergic synapses clustering (Bar-Ilan et al., 2012). Similarly,

the activation of GABAA receptors by GABA uncaging leads to

the shrinkage of nearby glutamatergic spines within a range of

∼15µm, reinforcing the spatial role of inhibition in promoting

the competitive selection of dendritic spines (Hayama et al.,

2013).

Nevertheless, several lines of evidence indicate that GABAergic

synapses express several forms of plasticity (Chiu et al., 2019).

This prompts the questions of how glutamatergic and GABAergic

plasticity interact at dendritic level at the microscale level and how

this can shape synaptic clustering—topics that have thus far been

investigated mainly through indirect approaches (Chapman et al.,

2022). After the induction of spike-timing-dependent plasticity at

a specific synaptic population subset in an auditory cortex PN,

the plasticity of excitatory and inhibitory plasticity at distinct

unstimulated synaptic population subset was found to be co-

tuned to achieve a precise excitation-to-inhibition set point (Field

et al., 2020). Interestingly, the plasticity-induced remodeling of

excitatory and inhibitory synapses on dendrites of L2/3 PNs in

the visual cortex is spatially coordinated in dendritic portions

of ∼10µm suggesting short-range interplay between inhibitory

and excitatory synapses (Chen et al., 2012). In addition, the

stimulation of thalamic afferents to distal dendrites of cortical L2/3

PNs induces inhibitory LTP at GABAergic synapses formed by

SOM+ interneurons in the same dendritic portion, thus hinting

to local interaction between excitatory and inhibitory synapses

(Chiu et al., 2018). Extending this framework, a modeling study

identifies the presence of plastic GABAergic synapses as important

organizers of dendritic glutamatergic synaptic clustering (Kirchner

and Gjorgjieva, 2022).

A more recent work investigated the spatial determinants

for the interaction between individual dendritic glutamatergic

and GABAergic synapses in hippocampal neurons (Ravasenga

et al., 2022). By inducing single-spine LTP through the pairing

of glutamate uncaging with somatic action potential train, they

observed that GABAergic synapses located within a spatial range of

∼3–4µm around the potentiated spine were depressed. Although

several factors could limit the generalization of this finding

including the poorly physiological induction of LTP and the

lack of in vivo data, the spatial dependence of the interaction

between excitation and inhibition likely plays an important

role in the organization of dendritic synaptic inputs. First, by

considering the local effect of inhibition (Gidon and Segev,

2012), this heterosynaptic interplay is expected to disinhibit

specific potentiated glutamatergic inputs through a winner-takes-

all process, with e.g., other concurrent plasticity phenomena

maintaining the global dendritic homeostatic balance. Second,

the activity-dependent depression of a neighboring GABAergic

synapse can contribute to the formation of glutamatergic synaptic

clusters thus complementing the cooperative plasticity phenomena

between glutamatergic inputs mentioned above. Finally, in the

light of this short-range interplay, the convergence of diverse

excitatory and inhibitory inputs within the same dendritic

stretch can crucially impact at the network level, allowing, for

instance, specific glutamatergic inputs to differentially control

inputs from different interneuron subtypes. For example, PP

and thalamic inputs contact the distal apical dendrites of

CA1 PNs together with inputs from O-LM and PP-associated

interneurons, which primarily mediate feed-back and feed-forward

inhibition, respectively. If, differently from thalamic inputs, EC

inputs are consistently located within the “interplay range” with

inputs from O-LM interneurons, EC activity could weaken

neighboring O-LM inputs (Figure 1). This could bias the balance

of inhibition from feedback to feed-forward, thereby altering

how these dendrites process and integrate incoming signals.

Thus, in analogy with the aforementioned large-scale matching

between excitation and inhibition in proximal and distal dendritic

compartments, it is important to define the co-alignment between

excitatory and inhibitory inputs at the microscale level. The

spatial pattern of diverse excitatory and inhibitory inputs along

the dendrites may serve as a “fingerprint” for PN subtypes,

where the consistent pairing of particular excitatory inputs

with inhibitory inputs from specific interneurons could act as

structural “synaptic motifs.” In a broader framework, the impact

of excitatory-inhibitory short-range synaptic interplay can be

assessed by including specific synaptic topology and plasticity

rules in available biophysical computational models predicting the

spiking output of PNs receiving realistic excitatory and inhibitory

temporal activity patterns at cellular level. This will allow to

understand how short-range plasticity contribute to modulate

specific network oscillations by tuning at dendritic level the

contribution of diverse interneuron subtypes, or how it could

enable associative learning by differentially gating information

from distinct brain areas. Importantly, this could also clarify

how aberrant short-range plasticity could lead to the disruption

of coordination between different interneurons subtypes activity

ultimately causing pathology. In the long run, the refined

information about the dendritic synaptic spatial arrangement
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and short-range interaction could be integrated in computational

models that include dendritic computation in large-networks

functions and will also contribute designing more neuromorphic

and efficient deep neuronal networks (DNNs; Pagkalos et al., 2024,

2023).
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