Check for updates

OPEN ACCESS

APPROVED BY Frontiers Editorial Office, Frontiers Media SA, Switzerland

*CORRESPONDENCE Bryony A. Nayagam ⊠ b.nayagam@unimelb.edu.au Rebecca Lim ⊠ rebecca.lim@newcastle.edu.au

[†]These authors share senior authorship

RECEIVED 17 October 2024 ACCEPTED 21 October 2024 PUBLISHED 14 November 2024

CITATION Ogier JM, Burt RA, Drury HR, Lim R and Nayagam BA (2024) Corrigendum: Organotypic culture of neonatal murine inner ear explants. *Front. Cell. Neurosci.* 18:1512599. doi: 10.3389/fncel.2024.1512599

COPYRIGHT

© 2024 Ogier, Burt, Drury, Lim and Nayagam. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Corrigendum: Organotypic culture of neonatal murine inner ear explants

Jacqueline M. Ogier^{1,2}, Rachel A. Burt^{1,2,3}, Hannah R. Drury⁴, Rebecca Lim^{4*†} and Bryony A. Nayagam^{5,6*†}

¹Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia, ²Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia, ³Department of Genetics, The University of Melbourne, Parkville, VIC, Australia, ⁴School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia, ⁵Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia, ⁶The Bionics Institute, East Melbourne, VIC, Australia

KEYWORDS

organ of Corti, peripheral vestibular organs, dissection, cochlea, hair cell culture, mouse, immunohistochemistry, inner ear

A Corrigendum on

Organotypic culture of neonatal murine inner ear explants

by Ogier, J. M., Burt, R. A., Drury, H. R., Lim, R., and Nayagam, B. A. (2019). *Front. Cell. Neurosci.* 13:170. doi: 10.3389/fncel.2019.00170

In the published article, there was an error in Table 2. The amount of D-glucose to include in NB solution was incorrectly listed as "75 ug." The correct amount is "75 mg." The corrected Table 2 and its caption appear below.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

TABLE 2 Recommended solutions required for this protocol.

MEM solution	Quantity	NB solution (for cochlear preparations)		DMEM/F12 GlutaMAX solution (for vestibular preparations)	
Reagent		Reagent	Quantity	Reagent	Quantity
Minimum essential media	49 mL	Neurobasal-A media	49 mL	DMEM/F12 Glutamax	15 mL
Non-essential amino acids	500 µL	N2 supplement	500 µL	D-(+)-glucose	42.73 mg
Penicillin/streptomycin	500 µL	L-glutamine	500 µL	Penicillin	200 µl
		D-glucose (Dextrose) powder	75 mg		

MEM solution is used in the initial dissection steps. NB solution is used for final cochlear explant dissection and culture. Alternatively, glycerol-based Ringer's solution and DMEM/F12 GlutaMAX solution are used for final vestibular explant dissection and culture, respectively. Separate reagent aliquots for each solution can be stored at -20°C to avoid contamination or freeze thawing of the main stock. Once combined, solutions can be stored for 2-3 days at 4°C.