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Major depressive disorder is a complex and multifactorial condition, increasingly 
linked to neuroinflammation and astrocytic dysfunction. Astrocytes, along with other 
glial cells, beyond their classic functions in maintaining brain homeostasis, play a 
crucial role in regulating neuroinflammation and neuroplasticity, key processes 
in the pathophysiology of depression. This mini-review explores the involvement 
of astrocytes in depression emphasizing their mediation in neuroinflammation 
processes, the impact of astrocytic dysfunction on neuroplasticity, and the effect 
of some antidepressants on astrocyte reactivity. Recent evidence suggests that 
targeting astrocyte-related signaling pathways, particularly the balance between 
different astrocytic phenotypes, could offer promising evidence for therapeutic 
strategies for affective disorders. Therefore, a deeper understanding of astrocyte 
biology may open the way to innovative treatments aimed at mitigating depressive 
symptoms by impacting both neuroinflammation and imbalances in neuroplasticity.
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1 Introduction

Major depressive disorder (MDD) is a complex and debilitating mental health condition 
that affects millions of people worldwide. Increasing evidence suggests that its pathophysiology 
goes beyond the traditional monoaminergic hypothesis, pointing to the role of 
neuroinflammation and astrocytic dysfunction (Kouba et al., 2024). Astrocytes, a key type of 
glial cell in the central nervous system, play a very important role in maintaining brain 
homeostasis, regulating synaptic transmission, supporting metabolic functions, and 
controlling inflammatory responses (Gradisnik and Velnar, 2023). Neuroinflammation, often 
triggered by stress and immune activation, has been linked to disruptions in neuroplasticity, 
which are thought to contribute to the cognitive and emotional alterations associated with 
depressive states (Wang et al., 2017).

Astrocytes are important modulators of neuroplasticity since they intervene in 
synaptogenesis and neuronal survival. Dysfunctions in these cells have been associated 
with increased neuronal death in depressive disorders (Peng et al., 2015). Likewise, it has 
been emphasized that the balance between the neuroprotective or neurotoxic effects of 
astrocytes, in inflammatory brain environments, is crucial to determine resilience to 
depressive episodes. For this reason, reactive astrogliosis appears to exacerbate 
neuroinflammation and thus contribute to the chronicity of depression (Wang et al., 2017). 
Recent evidence suggests that interventions that aim to impact astrocytic regulatory 
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pathways could restore neuroplasticity and reduce depressive 
symptoms, thus highlighting the potential of astrocytes as 
therapeutic targets (Liu et al., 2024).

Given the complex role of astrocytes in both neuroinflammation 
and neuroplasticity, understanding their contribution to the 
development and progression of MDD is crucial for the advancement 
of treatment strategies. This mini-review aims to explore the intricate 
involvement of astrocytes in depression by discussing three key areas: 
the role of astrocytes as mediators of neuroinflammation and its 
effects on depression, the relationship between astrocytic dysfunction 
and impaired neuroplasticity, and the impact of some antidepressant 
treatments on astrocyte function. Addressing these interconnected 
topics would be crucial to reveal the multifaceted role of astrocytes in 
the pathophysiology of depression, underscoring the need for further 
research to elucidate their involvement in neuroinflammatory 
processes their involvement in neuroinflammatory processes. A 
deeper understanding of astrocyte biology and its interplay with 
neuroinflammation could open new avenues for developing novel 
therapeutic strategies aimed at alleviating depressive disorders.

2 Major depressive disorder, 
neuroinflammation, and astrocytic 
function

Major depression disorder (MDD) is a multifactorial affective 
disorder and one of the leading causes of disease burden globally 
(Cosgrove et al., 2024). MDD has a significant psychosocial impact, 
with clinical manifestations that encompass cognitive, somatic, 
emotional, and psychomotor symptoms, which significantly 
compromise the independence and functionality of those affected 
(James et al., 2018; World Health Organization, 2021). As a complex 
disorder, its etiology involves the interaction of genetic and 
environmental factors, further modulated by epigenetic mechanisms 
(Li Z. et  al., 2021). Several hypotheses have been raised about its 
pathogenesis, including imbalances in monoaminergic 
neurotransmission, deregulation of the hypothalamic–pituitary–
adrenal (HPA) axis, reduction in neuroplasticity, and changes in 
functional connectivity. However, the complete pathophysiology of 
the disorder remains poorly understood, and none of these hypotheses 
alone sufficiently explain its multidimensional phenotype (Cui 
et al., 2024).

Recent evidence increasingly links inflammatory processes to 
stress-related disorders, including major depression (Milaneschi et al., 
2021). Depression is often characterized by a persisting state of 
neuroinflammation, accompanied by elevated blood concentrations 
of pro-inflammatory cytokines, such as interleukin-1β (IL-1β), 
interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and some acute 
phase proteins, like C-reactive protein (CRP) (Howren et al., 2009; 
Kim and Won, 2017; Maeng and Hong, 2019; Munshi et al., 2020). 
This inflammatory environment has been shown to impact brain 
regions involved in emotional and cognitive processing, including the 
hippocampus, amygdala, prefrontal cortex, and anterior cingulate 
cortex (ACC), increasing vulnerability to depression (Kim and Won, 
2017). In this context, the role of glial cells, particularly astrocytes, has 
gained significant attention in depression research because of its 
involvement in the regulation of the inflammatory response within the 
central nervous system (Giovannoni and Quintana, 2020).

Beyond their traditional roles in metabolic cooperation with 
neurons, neurotransmitter uptake and catabolism (Bélanger et al., 
2011; Yao et al., 2023), ammonium detoxification (Milaneschi et al., 
2021), and antioxidant responses (Turati et al., 2020), astrocytes are 
also critical in regulating local cerebral blood flow (CBF) (Liu 
L. R. et al., 2020), homeostatic regulation, and maintaining the blood–
brain barrier. Besides, studies in murine models have demonstrated 
that chronic stress induces astrocytic dysfunction, particularly in 
regions like the medial prefrontal cortex and hippocampus, correlating 
with behavioral changes typical of depressive phenotypes (Hao et al., 
2020; Aten et  al., 2023) (Figure  1). This dysfunction is linked to 
reduced expression of glucocorticoid receptors in astrocytes, which 
seem to be more sensitive to stress than neuronal receptors (Lu et al., 
2022). Moreover, impaired astrocytic function can inhibit neurite 
outgrowth and destabilize glutamate release and reuptake, potentially 
leading to excitotoxicity (Planas-Fontánez et al., 2020; Zhang et al., 
2024). One study found that the loss of astrocytes, rather than 
neurons, in the frontal cortex was sufficient to induce depressive-like 
behavior in rats, highlighting the critical role of astrocytes in the 
disorder’s pathophysiology (Banasr and Duman, 2008).

Reduced expression of the multiple endocrine neoplasia type 1 
(Men1 or Menin) protein has been reported in astrocytes of animals 
exposed to lipopolysaccharide (LPS) or chronic unpredictable mild 
stress (CUMS). This was accompanied by increased activation of 
NF-κB and production of IL-1β, which led to depressive-like behaviors 
in these animals (Leng et al., 2018). Another study found that LPS 
exposure in mice promoted the transition of astrocytes into a 
neurotoxic (A1) state, also known as A1 reactive astrocytes (RAS), 
characterized by reduced brain-derived neurotrophic factor (BDNF) 
expression and elevated IL-1β and TNF-α levels (Wang et al., 2019).

Although the roles of different astrocyte activation states in MDD 
are not fully understood, reactive astrocytes persist in depression. 
Studies indicate that activation of the Nlpr3 inflammasome in 
microglia triggers neurotoxic astrocytes via the caspase-1 
neuroinflammatory pathway in response to chronic stress. Notably, 
microglial Nlrp3 knockout has been shown to alleviate neuronal 
dysfunction caused by A1 astrocytes, both in vitro and in vivo (Li et al., 
2022). Another study demonstrated that dehydrocorydaline could 
inhibit Nlpr3-mediated microglial activation and the release of 
TNF-α, IL-1α, and prostaglandin E2 (PGE2), thereby preventing A1 
astrocyte activation and reducing depression-like behavior in C57BL/6 
mice exposed to CUMS (Fang et al., 2022b). Furthermore, astrocyte 
pyroptosis has been observed during depression development in 
mouse models, with Nlpr3/Caspase-1/GSDMD-mediated pyroptosis 
contributing to both astrocyte loss in the hippocampus and behavioral 
changes (Li S. et  al., 2021). Recent research also underscores the 
significance of calcium channels like Orai1  in astrocyte-driven 
inflammation and depression. The absence of Orai1 reduces 
inflammation-related Ca2+ signaling and diminishes inhibitory 
neurotransmission in the hippocampus (Novakovic et  al., 2023). 
Another field of research supports a link between anti-inflammatory 
gut microbiota and depression. It seems that specific butyrate-
producing bacteria are under-represented in patients compared to 
controls and that it could be  associated with the typical chronic 
inflammation process of depression (Liu R. T. et al., 2020). However, 
it has not been described yet if there is any association between 
specific gut microbiota composition and astrocytic functioning under 
inflammatory conditions.
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These findings suggest that neuroinflammation may play a critical 
role in both the onset and progression of depressive phenotypes (Yao 
et al., 2023). Thus, understanding the intricate functions of astrocytes 
in this context could prove essential for developing new therapeutic 
strategies for mood disorders.

3 Astrocyte phenotypes, 
neuroplasticity, and major depressive 
disorder

In response to changing conditions, astrocytes undergo a wide 
range of molecular, morphological, and functional adaptations, 
collectively known as reactive astrogliosis (Sofroniew, 2020) 
(Figure 1). Reactive astrocytes are highly heterogeneous and play a 

pivotal role in restoring homeostasis and repairing tissue damage 
(Hinkle et al., 2019). However, under certain circumstances, RAS can 
decrease adaptive neuronal plasticity (Sofroniew, 2020). Previous 
studies have identified two different types of RAS: neurotoxic 
astrocytes (A1), which can cause neuronal death, and neurotrophic 
astrocytes (A2), which promote neuronal survival and tissue repair 
(Clarke et al., 2018; Chang et al., 2023). The balance between A1 and 
A2 astrocytes influences synaptic function and neuroplasticity, 
determining neuronal outcomes under stress, and becoming a key 
component in the pathophysiology of depression (Hao et al., 2020).

Specifically, it has been suggested that the proinflammatory A1 
phenotype may contribute to alterations in synaptic plasticity, 
dendritogenesis, spinogenesis, synaptogenesis, metabolism, brain 
volume, and behavioral functions. These changes could disrupt 
activity-dependent synaptic plasticity, which is crucial for proper 

FIGURE 1

A1 and A2 astrocyte phenotypes in depression: the inflammatory environment, characterized by a chronic state of stress, increases cortisol levels and 
promotes reactive astrogliosis. At least two types of astrocytes are described: neurotoxic astrocytes (A1), which can induce neuronal death, and 
neurotrophic astrocytes (A2), which support neuronal survival and tissue repair. The pro-inflammatory A1 phenotype may contribute to synaptic 
plasticity alterations, reducing dendritogenesis and synaptic contact formation, which could explain behavioral changes in regions like the 
hippocampus. A2 astrocytes produce neurotrophic factors such as GDNF and BDNF, as well as anti-inflammatory molecules. Some antidepressants 
inhibit the production of pro-inflammatory cytokines and promote the release of neurotrophins, potentially regulating A1 astrocyte activity and 
encouraging the transition to the A2 phenotype. Figure was created using BioRender.com.
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neurotransmission and is known to be impaired in major depression. 
In several animal models of depression, two distinct patterns have 
emerged: increased plasticity in regions primarily involving amygdala 
neurons associated with the ventral emotional network and a decrease 
in neuronal plasticity in the dorsal executive system, which includes 
the hippocampus and large cortical areas (Kuhn et  al., 2014). 
Consistent with these observations, several studies have shown 
reductions in the gray matter volume (GMV) in MDD, along with 
smaller hippocampal volumes, both of which are associated with 
worse depression scores (Cao et al., 2017; Kim et al., 2019). The largest 
global study on cortical structural alterations in MDD, performed 
under the ENIGMA (Enhancing Neuro Imaging Genetics through 
Meta-Analysis) consortium, identified widespread cortical 
abnormalities in patients with MDD compared to controls (Schmaal 
et al., 2017).

As previously suggested, activation of the microglial Nlpr3 
inflammasome triggers the transition of astrocytes into the 
neurotoxic A1 state, impairing hippocampal synaptic plasticity. Li 
S. et al. (2021) measured the expression of neuronal nuclear antigen 
(NeuN), microtubule-associated protein 2 (MAP2), synaptophysin 
(SYP), and postsynaptic density-95 (PSD-95) in hippocampal 
neurons. They found that NeuN and MAP2, which indicate neuron 
number and dendritic morphology, were reduced, meanwhile, 
decreased levels of SYP and PSD-95 reflected impairments in 
synaptic plasticity and dendritic atrophy within the hippocampus (Li 
S. et al., 2021). Given the hippocampus’s critical connections with 
emotion-related areas such as the amygdala and anterior cingulate 
cortex, and its role in regulating the HPA axis via glucocorticoid 
receptors, it is particularly vulnerable to allostatic load, associated 
with chronic stress and elevated cortisol levels. This region’s 
neuroplasticity is strongly linked to both the etiology of MDD and 
the effects of antidepressant treatments (Dahmen et al., 2018; Ren 
and Guo, 2021; Tartt et al., 2022).

Another way to connect astrocyte function with neuroplasticity 
and depression is through the impact of certain astrocyte activation 
states on BDNF expression. Signaling through BDNF and its receptor 
TrkB (tropomyosin receptor kinase B) is essential for regulating 
neuronal survival, and structural and functional plasticity (Figure 2). 
BDNF released by astrocytes and neurons plays a significant role in 
neuronal function and astrocyte morphology, as it is critical for 
supporting synaptogenesis and neuronal communication. This is 
especially relevant in MDD, where impaired neuroplasticity is a 
hallmark, and enhancing BDNF signaling from astrocytes can 
improve synaptic health (Stahlberg et al., 2018). BDNF is implicated 
not only in the pathophysiology of depression but also in the 
therapeutic effects of antidepressants. For instance, in models of 
inflammation-related depression, the bacterial endotoxin LPS 
significantly decreases BDNF mRNA levels in the hippocampus 
following IL-1β or LPS injections (Zhang et al., 2016), with similar 
reductions in various cortical regions (Martínez-Turrillas et al., 2005). 
Studies have also found decreased expression of neurotrophins, such 
as BDNF, TrkB, nerve growth factor (NGF), and its receptor TrkA, at 
both protein and mRNA levels in the postmortem brains of suicide 
victims, emphasizing the role of these factors in the pathophysiology 
of depression and related behaviors (Erbay et al., 2021).

This highlights that astrocytes play an intricate role in supportive 
effects on neuroplasticity and neuronal function. Therefore, targeting 
the A1/A2 astrocytic balance and enhancing BDNF signaling within 

astrocytes provide a promising therapeutic strategy for treating major 
depressive disorder and other conditions where neuroplasticity is 
impaired. By promoting the neuroprotective A2 phenotype and 
increasing BDNF expression, it may be possible to counteract the 
detrimental effects of chronic stress and depression on the brain’s 
ability to recover and achieve homeostatic regulation.

4 Antidepressants and astrocytic 
function

Given the impact of astrocytic function on the pathophysiological 
mechanisms related to depression, it is expected that some 
pharmacological strategies used as conventional treatments for the 
disorder also affect astrocytes. Different antidepressants, such as 
selective serotonin reuptake inhibitors (SSRIs) and serotonin-
norepinephrine reuptake inhibitors (SNRIs), act by restoring glial cell 
function and mitigating neuroinflammation. The ability of 
antidepressants to alleviate depressive behaviors and impact astrocytic 
phenotype and function has been demonstrated in various animal 
models. For example, in the Flinders Sensitive Line (FSL) rat model, 
ketamine reduced immobility and had a rapid and significant effect 
on astrocyte soma size and arborization (Ardalan et  al., 2017). 
Similarly, it has been described that some SSRIs could improve altered 
behaviors by inhibiting the activation of neurotoxic A1 astrocytes 
(Fang et al., 2022a).

There is evidence showing that antidepressants reduce 
pro-inflammatory cytokine levels while restore or increase anti-
inflammatory proteins and growth factors. For instance, fluoxetine has 
been linked to reduced IL-2 levels, and along with ketamine, it has 
been shown to reestablish the expression of glial cell line-derived 
neurotrophic factor (GDNF) and BDNF (Henkel et  al., 2014; 
Kinoshita et al., 2018; Viana et al., 2020; Ma et al., 2022; Zeb et al., 
2022). Additionally, dimethyl fumarate (DMF) has been proposed as 
a neuroprotective agent due to its ability to reverse increased Iba1 
(ionized calcium-binding adapter molecule 1), TNF-α, and IL-1β 
expression, while counteracting the decrease in GFAP levels observed 
in CMS models (de Souza et al., 2022). Other antidepressants, such as 
paroxetine, sertraline, citalopram, fluvoxamine, and venlafaxine, have 
demonstrated inhibition of IL-1β and IL-6 expression (He et al., 2021). 
Notably, trazodone has been shown to reduce IL-6 levels, with a 
tendency to lower IFN-γ (interferon gamma) and increase IL-10 levels 
(Daniele et al., 2015). Moreover, the accumulation of α-synuclein is 
associated with astrogliosis, and some studies suggest that 
antidepressants reduce the number of α-syn-positive astrocytes, 
inhibiting α-syn propagation or inducing α-syn degradation by 
astroglia cells (Valera et al., 2014).

The effects of antidepressants on astrocyte function extend beyond 
regulating pro-inflammatory proteins. Neurodegeneration linked to 
neuroinflammation has been associated with lipid accumulation 
(Hansen and Wang, 2023). In this context, a study on primary rat 
cortical astrocytes showed that fluoxetine regulates lipid and amino 
acid metabolism and promotes synaptic plasticity. This suggests that 
fluoxetine’s antidepressant effects may involve regulating fatty acid and 
cholesterol metabolism through the activation of SREBP (Sterol 
Regulatory Element-Binding Protein) transcription factors (Bai et al., 
2015). Furthermore, fluoxetine has been shown to promote 
autophagosome formation and remove damaged mitochondria in 
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astrocytes in a CMS model, providing protection through a 
p53-dependent mechanism (Shu et al., 2019). Alongside amitriptyline 
and duloxetine, fluoxetine has also been studied for its effects on 
connexin 43 (Cx43) channels in astrocytes, which are involved in 
neurotransmitter regulation and are downregulated in depressive 
states. These antidepressants inhibited Cx43 hemichannel activity, 
showing differential effects on Cx43 intercellular junction channels, 
though they did not affect connexin expression levels (Koulakoff et al., 
2008). Interestingly, another study demonstrated that fluoxetine 
inhibited A1 astrocyte activation via the astrocytic 5-HT2BR/β-
arrestin2 pathway, improving depression and anxiety-like behaviors 
in CMS mouse models (Fang et al., 2022a). Additionally, this SSRI 
alleviated depression-like symptoms by increasing LC3 (Microtubule-
associated protein 1A/1B-light chain 3) expression and autophagosome 
formation in the hippocampus, which promoted impaired 
mitochondrial clearance. These findings suggest that regulating 
autophagy may be another mode of action for fluoxetine, aside from 
its role in serotonin modulation (Shu et al., 2019).

Another antidepressant, mirtazapine, which is both noradrenergic 
and specifically serotonergic, has been shown to induce astrocyte 

proliferation and upregulate metallothionein, a protein involved in 
protecting against oxidative stress, via 5-HT1A receptors (5-HT1AR) 
on astrocytes (Kikuoka et al., 2020). Similarly, brexpiprazole, a partial 
5-HT1A receptor agonist, was found to downregulate 5-HT1A and 
5-HT7 receptors (5-HT7R) (Fukuyama et al., 2022). Despite these 
beneficial effects, antidepressants can also negatively affect astrocyte 
function. For example, sertraline and paroxetine have been shown to 
cause mitochondrial membrane damage, leading to reduced ATP 
production and increased reactive oxygen species (ROS) generation 
in astrocytes (Then et al., 2017).

Besides the therapeutic effect of common antidepressants, it has 
been reported that some immunomodulatory drugs can also reduce 
depressive symptoms. In a recent meta-analysis of randomized 
controlled trials, Bai et al. (2020) reported that anti-inflammatory 
agents (including Non-Steroidal Anti-Inflammatory Drugs – NSAIDs, 
polyunsaturated fatty acids, cytokine inhibitors, statins, 
corticosteroids, minocycline, pioglitazone, modafinil and 
N-acetylcysteine – NAC) could exert antidepressant effects and impact 
response and remission rates in MDD patients (Bai et  al., 2020). 
Similarly, it has been found that patients exhibiting depressive 

FIGURE 2

BDNF–TrkB signaling: the BDNF protein and its receptor TrkB participate in various signaling pathways, including phospholipase Cγ (PLCγ), 
phosphoinositide 3-kinase (PI3K), and mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) pathways. Both 
ERK1/2 and cAMP response element binding protein (CREB) can translocate to the nucleus, where they phosphorylate CREB, promoting the 
transcription of genes involve in neuronal survival, dendritic growth, and synaptic plasticity. Figure was created using BioRender.com.
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symptoms associated with primary inflammatory disorders benefit 
from cytokine inhibitor treatment regardless of improvements in 
general physical health (Wittenberg et al., 2020).

In summary, these studies provide additional evidence of the 
strong connection between inflammatory responses and depression, 
highlighting that immune modulation is a promising pathway for 
further exploration. More specifically, it is emphasized that 
pharmacological agents preventing or reversing inflammation-
induced reactive astrogliosis could effectively reduce depressive 
symptoms (Figure 1). However, the potential of these drugs to regulate 
inflammatory modulators through their impact on astrocyte reactivity 
remains underexplored (Dolotov et al., 2022). Besides, there is still a 
need for more detailed information on how different classes of 
antidepressants specifically influence astrocytic activity. This must 
include not only traditional drugs, like SSRIs and SNRIs, but also 
novel therapeutic approaches. Now, given the great versatility of 
astrocytes under different conditions, both physiological and 
pathological, and considering the increased research on these state 
transitions in the context of various disorders, it will be crucial to 
adopt a unified nomenclature to refer to these different astrocytic 
states. This nomenclature, rather than being a simplistic classification, 
should be  more specific and based on transcriptomic, proteomic, 
metabolic, and other profiles characteristic of astrocytes under 
different conditions (Escartin et al., 2021). This approach toward a 
unified nomenclature in future research will be essential to guide 
efforts aligned with a joint pursuit of increasing understanding of the 
disorder’s pathophysiology, as well as refining the development of 
therapeutic strategies.

5 Conclusion

This mini-review highlights the essential role of astrocytes in the 
development and persistence of major depressive disorder, especially 
through their involvement in neuroinflammation and the regulation 
of neuroplasticity. Although there are valuable insights into the 
function of astrocytes in depression, significant gaps persist, 
particularly concerning the specific mechanisms by which astrocyte 
dysfunction contributes to depressive symptoms. This understanding 
would be essential for developing more assertive treatment strategies. 
One potential therapeutic approach could involve targeting different 
astrocyte states, since modulating the balance between phenotypes 
related to neuroprotection and those more typical of 
neuroinflammation responses may offer promising new strategies for 
treatment. In particular, to promote the astrocyte-mediated 
neuroplasticity process, could improve brain resilience, and reduce the 
neuronal damage often observed in patients with depression.

Furthermore, the use of classic psychedelics, which have shown 
potential in treating mood disorders, remains an area that has not 
been fully explored in terms of their effects on astrocyte reactivity 
(VanderZwaag et  al., 2023). Understanding how these substances 
interact with astrocytes may not only provide new insights into their 

therapeutic mechanisms but could also expand the range of treatment 
options for mood disorders. Future research should focus on these 
promising areas to develop new, astrocyte-targeted therapies, that 
could better address the underlying causes of depression and improve 
patient outcomes.
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