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The prevailing belief has been that the fundamental structures of cerebellar neuronal 
circuits, consisting of a few major neuron types, are simple and well understood. 
Given that the cerebellum has long been known to be crucial for motor behaviors, 
these simple yet organized circuit structures seemed beneficial for theoretical 
studies proposing neural mechanisms underlying cerebellar motor functions and 
learning. On the other hand, experimental studies using advanced techniques 
have revealed numerous structural properties that were not traditionally defined. 
These include subdivided neuronal types and their circuit structures, feedback 
pathways from output Purkinje cells, and the multidimensional organization of 
neuronal interactions. With the recent recognition of the cerebellar involvement in 
non-motor functions, it is possible that these newly identified structural properties, 
which are potentially capable of generating greater complexity than previously 
recognized, are associated with increased information capacity. This, in turn, 
could contribute to the wide range of cerebellar functions. However, it remains 
largely unknown how such structural properties contribute to cerebellar neural 
computations through the regulation of neuronal activity or synaptic transmissions. 
To promote further research into cerebellar circuit structures and their functional 
significance, we aim to summarize the newly identified structural properties of 
the cerebellar cortex and discuss future research directions concerning cerebellar 
circuit structures and their potential functions.
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1 Introduction

Our understanding of the cerebellar circuit structures has gradually evolved, as numerous 
studies have clarified previously unknown synaptic connections, organization of circuit 
formation, or cell types. These structural properties appear to make cerebellar circuits more 
complex than previously understood, potentially serving as effective components for the 
expansion of neuronal signals transmitted through the cerebellum. In this article, 
we summarize these structural updates and discuss their possible contributions to neural 
computations. The structural updates introduced here are obtained from studies mainly in 
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rodents unless otherwise stated. Although our focus is on structural 
properties, we also describe functionally identified properties related 
to the updated structures. Furthermore, based on our revised 
understanding, we consider the future direction of research related to 
new structural properties of cerebellar circuits.

Before discussing recent updates, it is important to summarize the 
fundamental structures of the cerebellum. At the gross morphology 
level, the cerebellar cortex comprises three tightly folded layers: the 
granular layer (GL), Purkinje cell layer (PCL), and molecular layer 
(ML) from the inside. The basic circuit structures within the 
cerebellum and the morphology of individual types of neurons have 
long been known (Eccles et al., 1967; Ito, 2006). There are two major 
afferent pathways into the cerebellum, climbing fibers (CFs) and 
mossy fibers (MFs). While CFs directly innervate Purkinje cells (PCs), 
MFs indirectly innervate PCs via granule cells (GCs), which have 
somas and short dendrites in the GL and their parallel fiber (PF) axons 
in the ML. PCs provide the sole output from the cerebellar cortex, 
projecting mainly to the cerebellar nuclei (CN) and vestibular nucleus. 
PC somas are aligned in the PCL, and their highly elaborate dendritic 
trees are located in the ML, arranged in a single sagittal plane. This 
morphology of PC dendrites is beneficial for receiving inputs from 
many PFs, which run parallel to the layer structures and intersect 
vertically with PC dendrites. Conversely, a single PC receives synaptic 
inputs from only one CF, although hundreds of synapses form 
between them. Molecular layer interneurons (MLIs) receive inputs 
from PFs and inhibit PCs. Another type of inhibitory interneurons, 
Golgi cells (GoCs), receive inputs from both PFs and MFs, and inhibit 
GCs. These typical cerebellar circuit structures are strikingly 
conserved throughout the cerebellum and are believed to be crucial 
for cerebellar neural computations.

2 Update of the structural 
organization of GCs

Cerebellar GCs are the most abundant neurons in the brain, 
consisting of more than 50% of all brain neurons (Herculano-Houzel 
et al., 2015). GCs have a unique morphology, characterized by a very 
small soma with only 3–4 short dendrites, and an ascending axon 
extending into the ML, where bifurcated PFs are formed. Each of the 
3–4 dendrites of a GC makes a synapse with a single MF terminal in 
the glomerulus. Although these numerous small GCs have simply 
been considered homogeneous, their heterogeneous properties have 
also been discovered in terms of molecular expression (Lein et al., 
2007; Kozareva et al., 2021), morphology (Houston et al., 2017), and 
physiological properties (D'Angelo et al., 1998; Gandolfi et al., 2014; 
Chabrol et al., 2015; Dorgans et al., 2019; Masoli et al., 2020; Straub 
et al., 2020; Rhee et al., 2021; Shuster et al., 2021). A well-known 
anatomical heterogeneity is the position of individual PFs within the 
ML, resulting in the formation of characteristic laminar structures by 
all PFs (Figure  1A). PF heterogeneity is evident not only in their 
position but also in their varying diameters, i.e., they are thinner in 
the outer ML and thicker in the inner ML (Sultan, 2000; Wyatt et al., 
2005; Straub et  al., 2020). Consistent with the general correlation 
between axon diameter and action potential propagation velocity 
(Schmidt and Knösche, 2019), the velocity is higher in the inner layer 
(Figure 1B; Straub et al., 2020). Differences also exist in the firing 
properties of GCs within the inner and outer GL (Figure 1C; Straub 

et al., 2020), suggesting that these distinct firing properties might 
be transmitted to spatially correlated PFs in the ML. However, several 
studies have demonstrated no spatial correlation between GC somas 
in the GL and PFs in the ML (Zong et al., 2005; Wilms and Häusser, 
2015; Markwalter et al., 2019; Rhee et al., 2021; Kim et al., 2023b), 
indicating that the properties of GCs detected in the GL cannot 
be  directly related to the locations of PFs in the ML. Advanced 
techniques linking specific GCs to their PF locations are required to 
characterize GCs in the GL according to PF locations. One study used 
adeno-associated virus (AAV)-mediated labeling of a group of GCs 
with a bundle of PFs in the ML and demonstrated MF stimulation-
mediated, nonuniform calcium responses in GCs specific to their PF 
locations (Rhee et al., 2021). Additionally, GCs with PFs in different 
ML sublayers exhibit moderately, yet significantly, different 
connectivity with MFs of varying origins (Figure 1D; Shuster et al., 
2021; Kim et al., 2023b). Thus, PF location-dependent variability in 
GC properties, namely, action potential propagation velocity in PFs, 
functional properties in GCs, and connectivity with MFs, has 
gradually been revealed.

It would be interesting to clarify the role of these GC properties 
according to PF locations. In general, a conceptual role of GCs is 
considered to be separation of contextual information (Cayco-Gajic 
and Silver, 2019). Characteristic GC circuit properties, such as large 
expansion and sparse synaptic connectivity from MFs to GCs, and 
broad feedback inhibition mediated by GoCs, are advantageous for 
pattern separation (Billings et  al., 2014; Cayco-Gajic et  al., 2017; 
Litwin-Kumar et  al., 2017). One traditional theory for pattern 
separation is sparse coding, which posits that only sparse populations 
of GCs are activated to convey specific types of information. This 
theory can explain the associative learning that occurs at synapses 
with PC dendrites (Marr, 1969; James, 1971). However, in vivo calcium 
imaging studies suggested that activities in denser-than-expected GC 
populations represent specific type of contextual information 
(Giovannucci et al., 2017; Knogler et al., 2017; Wagner et al., 2017). In 
contrast, isolated sensory stimuli were recently reported to trigger 
relatively sparse GC population responses via local synaptic inhibition 
(Fleming et al., 2024). Computational studies suggested that the sparse 
synaptic connections between MFs and GCs may contribute to the 
pattern separation of contextual information, regardless of whether 
GC population activity is sparse or dense (Cayco-Gajic et al., 2017). It 
is not entirely clear whether GCs enhance pattern separation via 
sparse coding or other computational mechanisms. In any case, an 
increased representation of neuronal signals appears beneficial for 
pattern separation, which may be achieved through the combination 
of PF location-dependent GC properties described in the 
previous paragraph.

In addition to the PF location-dependent organization of GCs, 
other GC-related structural updates have been reported. The analysis 
of large-scale electron microscopy data revealed structured 
connectivity not only from MFs to GCs but also from GCs to PCs 
(Nguyen et al., 2023). Compared with randomized connections, pairs 
of GCs tended to share MF inputs, and pairs of PCs exhibited similar 
PF input patterns. A computational model predicted that such 
structured connectivity increased resilience to noise without 
significantly affecting pattern separation capacity. In another study, 
ectopic GCs located in the ML, long thought to have simply ceased 
migration during development, were found to be more abundant in 
the posterior cerebellum than previously expected—comprising 
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approximately 40% of the population relative to MLIs—and exhibited 
firing properties similar to those of GCs located in the GL (Dey et al., 
2022). This raises the possibility that ectopic GCs may have a unique 
functional role.

3 Update of the circuit surrounding 
MLIs

MLIs, a major type of inhibitory interneuron in the cerebellum, 
provide feedforward inhibition to PCs by receiving excitatory synaptic 
inputs from PFs. They also receive inputs from neighboring MLIs 
through chemical and/or electrical synapses (Häusser and Clark, 1997; 
Mittmann et al., 2005; Rieubland et al., 2014). MLIs are traditionally 
classified into two cell types: basket cells (BCs) and stellate cells (SCs), 
based on several anatomical characteristics (Eccles et al., 1967; Jörntell 
et al., 2010). BCs, with relatively straight dendrites, are mainly located 
in the inner one-third of the ML, while SCs, with dendrites and axons 
within a more limited area, are mainly located in the outer two-thirds 
of the ML (Schilling, 2013; Sotelo, 2015; Sergaki et al., 2017; Kim and 
Augustine, 2021). Notably, BCs innervate the area around the PC 
somas, and form pericellular baskets on the PC somas and dense 
plexuses called pinceau on the PC axon initial segment (AIS), 
providing strong inhibitory control of PC activity (King et al., 1993; 
Sultan and Bower, 1998; Bower, 2010; Sotelo, 2015). In contrast, SCs 
send inhibitory inputs to PC dendrites (Sotelo, 2015; Sergaki et al., 
2017). Beyond these basic anatomical properties, higher-order circuit 
mechanisms also contribute to MLI functions. As the characteristics 
of MLIs have been comprehensively summarized in other review 
articles (e.g., Jörntell et al., 2010; Sotelo, 2015; Kim and Augustine, 
2021), we focus on new information associated with MLI circuits and 
discuss their possible organization.

3.1 Cell types of MLIs

Even though BCs and SCs are the two stereotyped MLIs, the 
classification of MLIs is still under debate. There is a contrasting idea 

to the traditional classification of BCs and SCs; all MLIs originate from 
a single type of interneurons with continuous variation in morphology 
and different target locations on PCs (Rakic, 1972; Sultan and Bower, 
1998; Bower, 2010). A transcriptome study identified two distinct 
types of MLIs, MLI1s and MLI2s, characterized by different molecular 
expressions, such as Sorcs3 in MLI1s and Nxph1 in MLI2s (Figure 2A; 
Kozareva et al., 2021). Because both MLI1s and MLI2s showed similar 
continuum in morphological properties, particularly an SC-like 
morphology in the outer one-third of the ML, they do not align with 
the traditional BC and SC classification. However, further analyses 
revealed at least two distinct morphological aspects between MLI1s 
and MLI2s (Lackey et al., 2024). First, MLI1 somas are spiny, while 
MLI2 somas are smooth. Second, MLI1s in the inner two-third of the 
ML contribute to pinceau formations, whereas all MLI2s, regardless 
of soma location, retain classical SC morphologies without 
contributing to pinceau. Supporting this second observation, another 
study identified two discrete morphological types of MLIs, canonical 
BCs and SCs with extensive heterogeneity, which are distinguished by 
the morphological features of axons rather than their soma positions 
in the ML (Wang and Lefebvre, 2022). This study confirmed the 
dissociations between morphological and transcriptomic types, but 
showed some relationships between them. Sorcs3-positive MLIs, 
namely MLI1s, are mostly BCs and SCs with long axons, further 
distinguished by the combined expression levels of Grm8 and 
Cacna1e. Nxph1-positive MLIs, namely MLI2s, are largely SCs with 
short axons and partly SCs with long axons located in the 
superficial layer.

In general, neuronal cell-type classification considers not only 
transcriptional and morphological properties, but also 
electrophysiological and connectional properties (Zeng and Sanes, 
2017). MLI2s were found to be more excitable than MLI1s, and the 
expression of Gjd2, the gene encoding the dominant gap junction 
protein, connexin 36, was detected in MLI1s, but not in MLI2s 
(Kozareva et al., 2021), indicating electrical differences in the two 
transcriptionally identified cell types. In terms of connectional 
properties, a subpopulation of MLIs located in the inner one-third of 
the ML was found to receive inhibitory inputs from PCs (Witter et al., 
2016; Halverson et al., 2022), which may contribute to the disinhibition 

FIGURE 1

Schematic diagram showing heterogeneous properties of cerebellar GCs. PF diameters (A) and the velocity of action potential propagation (B) are 
varied according to the location of PFs in the ML. Firing properties of GCs are varied according to their own locations in the GL (C). Whereas 
distributions of GCs and PFs appear not to be spatially correlated, connectivity of GCs with MFs in the GL is organized according to the location of their 
PFs in the ML (D).
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of other PCs. Further studies are required to clarify whether these 
MLIs have other characteristic properties and can be categorized into 
a specific cell type based on the functional uniqueness.

The anatomical organization of MLIs and their circuits, which 
affect cell type classification, appears to rely on process occurring 
during the postnatal developmental period. MLIs are gradually 
generated from precursors in the white matter (WM), which originate 
in the ventricular zone (Yamanaka et al., 2004). Immature postmitotic 
MLIs radially migrate toward the ML, where they find their final 
positions through a complex migratory route involving radial and 
tangential migration (Simat et al., 2007a; Cameron et al., 2009; Park 
et al., 2021). This complex migration is regulated by several pathways, 
such as excitatory and inhibitory synaptic transmission (Wefers et al., 
2017). Specifically, the blockade of synaptic transmission from PF 
bundles resulted in abnormal distributions of MLIs (Park et al., 2019), 
indicating that PF inputs likely regulate the migration that determines 
the final positions of MLIs. The final position of MLIs also depends on 
their timing of birth; early-and late-born MLIs are positioned in the 
inner and outer parts of the ML, respectively, meaning that BCs are 
generally born earlier than SCs (Yamanaka et al., 2004; Weisheit et al., 
2006; Leto et  al., 2008; Schilling et  al., 2008; Sudarov et al., 2011; 
Consalez and Hawkes, 2012; Sotelo, 2015), although their positions 
are not strictly defined. Despite differences in morphology, 
transcriptional and electrophysiological properties, or connectivity in 

mature MLIs, MLI precursors before leaving the WM are 
indistinguishable in terms of their genetic markers (Maricich and 
Herrup, 1999; Leto et al., 2006; Carter et al., 2018). This suggests that 
each MLI acquires its characteristic phenotypes after migration 
begins. It has been proposed that an additional tangential migration, 
supported by premigratory GCs in the EGL, is required for the 
synaptic differentiation of SCs (Cadilhac et al., 2021). Additionally, a 
study linking morphological and transcriptomic types demonstrated 
that BC and SC morphological identities diverged during early phases 
of migration, prior to the expression of transcriptomic markers (Wang 
and Lefebvre, 2022). Thus, the diverse characteristics of MLIs may 
arise from the impact of their migration process itself or the 
environmental situations encountered during migration.

3.2 Excitatory inputs to MLIs

As described above, PFs are well-known excitatory inputs to 
MLIs. With the revelation of the heterogeneous properties of GCs and 
PFs, different patterns of short-term synaptic plasticity (STP) were 
observed in PF synapses of the two types of MLIs, namely, BCs and 
SCs. The PF-SC synapses demonstrated persistent facilitation, whereas 
PF-BC synapses showed depression following initial paired-pulse 
facilitation (Bao et al., 2010). This implies that PF inputs trigger firing 

FIGURE 2

Schematic diagram showing update of the neuronal circuits surrounding MLIs. In addition to well-established circuit structures, studies revealed two 
distinct types of MLIs based on molecular expression (A), spillover-mediated CF-MLI connections (B), organized electrical coupling between MLIs (C), 
MLI-MLI synaptic connections biased from the outer to the inner ML (D), and inhibitory inputs from PCs to MLIs (E).
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in BCs first, followed by delayed firing in SCs. Given their target 
locations on PCs, PF inputs may sequentially hyperpolarize PCs from 
soma to dendrites (Bao et al., 2010; Blackman et al., 2013). A recent 
study further categorized STP in unitary PF-MLI synapses into four 
types, attributing this diversity to the heterogeneous expression of the 
key STP molecule, synapsin II, in GCs, but found no clear MLI type-
dependent STP patterns (Dorgans et al., 2019). Although it is unclear 
how to reconcile these conflicting results in terms of cell types, the 
diversity of PF-MLI synaptic functions may contribute to increased 
coding patterns, potentially allowing efficient separation of different 
contexts in the cerebellum.

In contrast to the clear excitatory synaptic connections from PFs 
to MLIs, excitatory inputs from CFs to MLIs have long remained 
controversial. Although anatomical studies of labeled CFs suggested 
possible synaptic connections between CFs and MLIs (Palay and 
Chan-Palay, 1974; Sugihara et al., 1999), no conventional synaptic 
architecture was found between them in electron microscopy studies 
(Hámori and Szentágothai, 1980; Kollo et al., 2006). Nevertheless, 
functional effects of CFs were detected in MLIs (Eccles et al., 1966; 
Jörntell and Ekerot, 2003). It became clear that CF-MLI connections 
were mediated uniquely, through glutamate spillover (Figure  2B; 
Szapiro and Barbour, 2007; Mathews et al., 2012; Coddington et al., 
2013). CF synapses to PCs have a very high release probability and 
typically show multivesicular release (Wadiche and Jahr, 2001; Foster 
et  al., 2002; Harrison and Jahr, 2003), so that CF activation may 
reasonably lead to glutamate spillover. The involvement of N-methyl-D 
aspartate (NMDA) receptors in the spillover-mediated CF-MLI 
connections is also plausible, considering that MLIs have NMDA 
receptors on their dendrites (Carter and Regehr, 2000; Clark and Cull-
Candy, 2002). Thus, it is now generally accepted that MLIs receive CF 
inputs via glutamate spillover. This spillover-mediated, CF-dependent 
regulation of MLIs has been shown to be  involved in sensory 
processing in vivo (Arlt and Häusser, 2020).

3.3 Electrical synapses between MLIs

As commonly seen in inhibitory interneurons of the mammalian 
brain (Galarreta and Hestrin, 2001; Pereda, 2014; Coulon and 
Landisman, 2017), MLIs are also connected with each other via 
electrical synapses (Mann-Metzer and Yarom, 1999). The electrical 
synapses between MLIs rely on the gap junction protein connexin 36, 
which is differentially expressed according to their locations in the ML 
(Alcami and Marty, 2013). MLIs in the inner ML, presumably BCs, 
have higher levels of connexin 36 than those in the outer 
ML. Consistently, electrophysiological recordings have demonstrated 
that electrical connections are more frequent and stronger in BCs than 
in SCs (Figure  2C; Alcami and Marty, 2013). The difference in 
electrical connections is clear between MLI1s and MLI2s, as the 
expression of Gjd2 and electrical coupling were found only in MLI1s, 
but not ML2s (Kozareva et al., 2021; Lackey et al., 2024). Given that 
BCs are likely part of MLI1s (Wang and Lefebvre, 2022; Lackey et al., 
2024), these results regarding cell type-dependent electrical 
connections appear consistent. Furthermore, studies using multiple 
patch-clamp recordings and optogenetic mapping identified that 
electrical coupling occurs in the sagittal plane (Kim et  al., 2014; 
Rieubland et  al., 2014). Such structured organization of electrical 
connections between MLIs contributes to the regulation of 

feedforward inhibition of PCs, by generating spatiotemporally 
controlled synchronization of MLI activity (Hoehne et al., 2020).

3.4 Inhibitory inputs to MLIs

MLIs are well known to receive GABAergic inhibitory synaptic 
inputs from neighboring MLIs (Llano and Gerschenfeld, 1993; 
Häusser and Clark, 1997; Mittmann et al., 2005), and this inhibitory 
connection is presumably important for fine-tuning the temporal 
precision of spiking in PCs (Mittmann et al., 2005). Similar to the 
electrical connections between MLIs, their inhibitory synaptic 
connections were also found to be  oriented in the sagittal plane, 
although not as strongly biased as electrical coupling (Rieubland et al., 
2014). Additionally, transitive patterns of MLI-MLI synaptic 
connections were demonstrated to be organized from the outer to the 
inner part of the ML (Figure 2D; Arlt and Häusser, 2020). This raises 
the possibility that such MLI microcircuit organization, together with 
the location of activated PFs, may be utilized for the regulation of 
cerebellar information processing – e.g., additional activation of PFs 
in the outer ML may lead to greater excitation of PCs through the 
reduction of MLI-dependent inhibition of PCs. Cell type-dependent 
innervation patterns have recently been demonstrated: MLI1s mainly 
innervate PCs to inhibit them, while MLI2s mainly innervate MLI1s 
to disinhibit PCs (Lackey et al., 2024). In other words, many MLI1s 
would receive relatively strong inhibitory inputs from MLI2s, whereas 
MLI2s may have little or no inhibitory inputs from other MLIs.

In addition to the inhibitory synaptic inputs from MLIs, early 
anatomical studies have suggested other possible inputs from PCs and 
Lugaro cells (LuCs), the latter of which are a type of inhibitory 
interneuron in the GL (Hámori and Szentágothai, 1968; Larramendi 
and Lemkey-Johnston, 1970; O’Donoghue et  al., 1989; Lainé and 
Axelrad, 1996, 1998). While functional synaptic connections from 
LuCs to MLIs are not yet clarified, functional inhibitory inputs from 
PCs to MLIs were identified by recording synaptic currents evoked by 
the optogenetic stimulation of PCs (Figure 2E; Witter et al., 2016; 
Halverson et al., 2022). Optogenetically evoked synaptic currents were 
detected in approximately 16 to 30% of MLIs, indicating these are not 
extremely rare synaptic connections. Reciprocally connected pairs of 
PCs and MLIs have not been found so far, thus MLIs receiving inputs 
from PCs are considered to send inhibitory inputs to other PCs, 
suggesting that this pathway from PCs to MLIs contributes to 
synchronization of PCs through disinhibition of MLIs (Halverson 
et al., 2022). Given that inhibitory LuCs also receive inputs from PCs 
(Witter et  al., 2016), PC population activity may rely on the 
organization of connections among PCs, LuCs, and MLIs, if LuCs 
functionally inhibit MLIs. Direct connections from PCs to MLIs are 
considered to mediate synchronization of neighboring PCs (Witter 
et al., 2016; Halverson et al., 2022), while indirect connections from 
PCs to MLIs through LuCs may contribute to desynchronization of 
other PC populations, as seen between aldolase C/zebrin II-positive 
and-negative PC populations (Tsutsumi et  al., 2015). In addition, 
whereas glutamate spillover from CFs primarily exerts excitatory 
influence to MLIs, as described above, other MLIs located outside the 
glutamate diffusion limit have been shown to be inhibited upon CF 
activation via disynaptic inhibition (Coddington et al., 2013). Thus, 
CF-mediated functional segregation of MLIs may also contribute to 
the distinctive patterns of activity of different PC populations. 
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Alternatively, segregation of MLIs could be along the perpendicular 
direction to the layer, as CF inputs were reported to activate many 
MLIs but inhibit MLIs in the deep ML that have strong inhibitory 
impacts onto PCs (Arlt and Häusser, 2020).

4 Newly identified circuit properties in 
PCs

PCs are a unique type of neuron specific to the cerebellar cortex 
and have been extensively studied from various perspectives, including 
development, dendritic arborization, synapse formation, 
electrophysiological properties, synaptic regulation, molecular 
expression, and neuronal circuits (Yuzaki, 2004; Sotelo and Dusart, 
2009; De Zeeuw et al., 2011; Cerminara et al., 2015; Leto et al., 2016; 
Nedelescu et al., 2018; De Zeeuw, 2021). PCs provide the sole output 
of the cerebellar cortex and form GABAergic inhibitory synapses with 
neurons in target regions outside the cerebellar cortex, mainly in the 
CN. Despite the wealth of knowledge about PCs, properties of PC 
axon collaterals and ephaptic coupling around PCs had not been 
adequately analyzed, leaving their importance in cerebellar 
computations and functions unclear. However, in the past decade, 
several studies have provided more detailed characterizations of these 
aspects. Additionally, the morphological diversity and dopaminergic 
signaling of PCs have also been demonstrated.

4.1 PC axon collaterals

While PC axons project outside the cerebellar cortex, PC axon 
collaterals enable the modulation of information processing within 
the cerebellar cortex by sending feedback signals. Early studies 
already described PC axon collaterals as forming synapses onto 
other PCs and neurons of the ML (Eccles et al., 1967; Larramendi 
and Lemkey-Johnston, 1970; Chan-Palay and Palay, 1971). 
Although they were anatomically observed in both young and 
adult rodents (Larramendi and Lemkey-Johnston, 1970; Chan-
Palay and Palay, 1971; Bishop, 1982; Hawkes and Leclerc, 1989; 
Bernard et al., 1993), their functional synaptic transmission was 
first confirmed only in young animals (Orduz and Llano, 2007; 
Watt et al., 2009; Hirono et al., 2012). These studies demonstrated 
that PC axon collaterals form functional synapses with other PCs 
and globular cells, small inhibitory interneurons located in the 
GL. A computational model and experimental confirmation 
demonstrated that PC axon collaterals generated waves of PC 
activity traveling along chains of connected PCs in the developing 
cerebellum, whereas these waves were not observed in the mature 
cerebellum (Watt et al., 2009). This led to an idea that PC axon 
collaterals play a crucial role only in cerebellar circuit formation 
during postnatal development. In contrast, studies using 
optogenetic stimulation with patch-clamp recording identified 
functional synaptic transmissions from PC axon collaterals in 
adult animals (Figure 3A; Guo et al., 2016; Witter et al., 2016), 
although these synaptic connections were restricted to the 
parasagittal plane and were present only near the PCs sending the 
axon collaterals. GABAergic inhibitory synaptic transmissions 
were recorded from PCs, MLIs, LuCs, and candelabrum cells 
(neurons situated in the PCL), but not from GoCs, upon 

optogenetic stimulation of PCs or spontaneous PC firing (Witter 
et al., 2016; Halverson et al., 2022; Osorno et al., 2022). While 
there were variabilities depending on the lobule, PC axon 
collaterals also projected to the GL, and inhibited GCs and a subset 
of unipolar brush cells (UBCs) (Guo et al., 2016; Guo et al., 2021). 
These studies suggest that PC axon collaterals may have additional 
roles in the mature cerebellum. It would be  interesting to 
differentiate properties of collateral axons in the cerebellar cortex 
from axons projecting to the CN, as this may lead to techniques to 
selectively manipulate collateral axons.

4.2 Ephaptic coupling around PCs

Signal processing and transmission in the nervous system involve 
the flow of current across neuronal cell membranes, which alters the 
electrical potential in extracellular regions. Through these alterations 
in extracellular potential, neurons can interact with adjacent neurons 
without forming the specific cell-to-cell contacts required for chemical 
and electrical synaptic transmission. These electrical interactions, 
described as early as the 1940s (Katz and Schmitt, 1940; Arvanitaki, 
1942), are now called ephaptic transmission or coupling (Anastassiou 
and Koch, 2015; Faber and Pereda, 2018). In the well-established 
circuit structures where PFs provide direct excitatory inputs and 
disynaptic inhibitory inputs through BCs or SCs onto PCs, recordings 
from PCs during PF volleys were expected to show a sequence of 
excitation followed by inhibition. However, an initial study revealed 
that a brief inhibition occurred before this expected sequence (Korn 
and Axelrad, 1980). Due to its short latency, this brief inhibition was 
proposed to be  electrically generated by nearby BCs. BCs form 
pinceau that wrap around and terminate on the AIS of PCs (Sotelo, 
2015). While BC axons make GABAergic synaptic contacts onto PC 
somas, the pinceau themselves are largely devoid of chemical and 
electrical synapses (Ichikawa et al., 2011), raising a question about 
their functions. The dense plexuses of pinceau appear to be well-suited 
for generating local electric fields, and indeed, one study demonstrated 
that the pinceau could induce rapid ephaptic inhibition of PC axons 
(Figure  3B; Blot and Barbour, 2014). This study proposed that 
pinceau-dependent ephaptic inhibition allows GCs to instantaneously 
inhibit PCs. Given the variability in pinceau size (Zhou et al., 2020), 
this inhibitory regulation may differ depending on PC zones identified 
by specific molecular markers, such as aldolase C/zebrin II (Apps and 
Hawkes, 2009; Cerminara et al., 2015).

In addition to the ephaptic coupling between the pinceau in BCs 
and the AIS in PCs, two other types of ephaptic coupling between PCs 
have been identified (Han et al., 2018; Han et al., 2020). One type of 
ephaptic coupling observed in the AIS of PCs led to the 
synchronization of spontaneous PC firing (Figure  3C; Han et  al., 
2018). Another type of coupling, occurring between PC dendrites, 
resulted in the inhibition of multiple neighboring PCs when 
synaptically connected PCs were activated by CF inputs (Figure 3D; 
Han et  al., 2020). This study proposed that this type of ephaptic 
coupling allows CF inputs to efficiently activate CN neurons through 
the simultaneous inhibition of many PCs. Although these two types 
of ephaptic coupling between PCs may seem contradictory—one 
causing excitation and the other inhibition of neighboring PCs—they 
likely contribute to the spatially distinct responses of neighboring PCs 
upon CF inputs.
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4.3 PC morphological diversity

The diversity of PCs has been well characterized by different 
expression levels of marker molecules, such as aldolase C/zebrin II 
(Cerminara et al., 2015). The expression patterns of these molecules 
form longitudinally striped compartments known as microzones. 
PCs in different microzones (e.g., AldoC+ and AldoC-microzones) 
exhibit distinct firing patterns and project to specific sets of CN or 
vestibular nuclei, linking each microzone to distinct functions (De 
Zeeuw, 2021). For instance, fast and slow eye movements are 
mediated by distinct PC subpopulations in the flocculus, known as 
9- and 9+ PCs, respectively (Blot et al., 2023). Apart from these 
modules visualized by molecular markers, the diversity of PC 
morphology has been gradually recognized. PCs typically have a 
characteristic morphology with a large, planar, highly branched 
dendritic tree, and the diversity is observed in the dendritic shapes 
(Nedelescu and Abdelhack, 2013; Nedelescu et  al., 2018; Chang 
et  al., 2020; Busch and Hansel, 2023; Magnus et  al., 2023). In 
zebrafish, four types of PCs with different morphological and firing 
properties were classified, and they were active at different phases 
during swimming, suggesting that different types of PCs have 
different functions (Chang et  al., 2020). In mice, morphological 
types were specifically considered based on the number of primary 
dendrites (Nedelescu and Abdelhack, 2013; Nedelescu et al., 2018; 

Busch and Hansel, 2023). Most PCs in the anterior and central 
lobules have single primary dendrites, but some PCs, particularly 
those in the posterior lobules, have two primary dendrites. 
Furthermore, a recent study (Busch and Hansel, 2023) demonstrated 
that PCs with two or multiple primary dendrites, called as poly PCs, 
are a near-universal morphological feature in humans and are 
functionally different from normative PCs in terms of the number 
of CF innervations. While PCs usually receive inputs from a single 
CF, each of the two primary dendrites of poly PCs receives discrete 
CF inputs (Figure  3E), suggesting that poly PCs could integrate 
different information from independent CFs. Since poly PCs are 
more prevalent in the posterior lobules, this information integration 
would be  more beneficial for functions involving the posterior 
lobules, such as fear-evoked freezing behavior (Koutsikou 
et al., 2014).

Updates have also been made to our understanding of PC axonal 
morphology. Axonal swellings, known as torpedoes, were historically 
associated with pathological conditions (Louis et al., 2009; Babij et al., 
2013; Louis et  al., 2014; Redondo et  al., 2015). However, axonal 
swellings have also been observed in healthy young animals and are 
thought to serve a different function from those associated with 
disease (Ljungberg et al., 2016). In fact, axonal swellings in healthy 
animals have been shown to enhance action potential fidelity and are 
linked to cerebellum-dependent motor leaning (Lang-Ouellette et al., 

FIGURE 3

Schematic diagram showing update of PC circuit structures. PC axon collaterals form functional synaptic connections (A) to other PCs, MLIs, LuCs, 
candelabrum cells, GCs, and UBCs in the mature cerebellum. In addition, studies have demonstrated ephaptic coupling between the pinceau in BCs 
and the AIS in PCs, triggering rapid inhibition of PCs (B), between PCs in the AIS, leading to the synchronization of spontaneous PC firing (C), and 
between PC dendrites, causing the inhibition of many neighboring PCs upon excitation by CF inputs (D). PCs with two primary dendrites have been 
found more frequently in posterior lobules, receiving two discrete CF inputs on each of the two primary dendrites (E).
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2021). Thus, these swellings appear to represent a form of axonal 
structural plasticity.

4.4 Dopaminergic signaling related to PCs

In addition to influences from traditional synaptic inputs, axon 
collaterals of other PCs, and ephaptic coupling, PCs have been 
reported to be affected by dopamine through D2 receptors (Cutando 
et al., 2022). D2 receptor-mediated dopaminergic signaling appears to 
play a role in regulating social behaviors. Dopamine release may 
originate from dopaminergic projection neurons outside the 
cerebellum, as early studies showed sparse dopaminergic innervation 
in the cerebellum (Panagopoulos et al., 1991; Ikai et al., 1992; Nelson 
et al., 1997). Another potential source could be a subset of PCs that 
express tyrosine hydroxylase, the rate-limiting enzyme in the classical 
dopamine synthesis pathway (Takada et al., 1993; Abbott et al., 1996). 
However, a recent study demonstrated that dopamine is synthesized 
in PCs via an alternative pathway involving a member of the 
cytochrome P450 superfamily, CYP2Ds (Li et al., 2023). This study 
also revealed a role for D1 receptors in Bergmann glial cells, 
contributing to motor and social behaviors. Understanding how 
dopamine released from PCs acts in a coordinated manner on D2 
receptors in PCs and D1 receptors in Bergmann glial cells would be an 
intriguing avenue for future research.

5 Update of the GoC circuits

Even though GoCs are the most abundant type of inhibitory 
interneuron in the GL, they are sparse, existing at a ratio of one to 
several hundred or thousand GCs (D'Angelo and Casali, 2012). These 
few GoCs are heterogeneous, in terms of their molecular markers, 
morphology, and electrophysiological properties (Dieudonné, 1998; 
Geurts et al., 2001; Simat et al., 2007b; Barmack and Yakhnitsa, 2008; 
D'Angelo and Casali, 2012). For instance, transgenic mice expressing 
GFP under the glycine transporter 2 (GlyT2) promoter are used to 
identify GoCs, yet GFP-positive neurons in these mice include 
approximately 85% of GoCs and other types of neurons, but exclude 
15% of GoCs that are purely GABAergic (Simat et al., 2007b). However, 
all GoCs have two classes of dendrites, basal and apical, and a widely 
ramified axon (Barmack and Yakhnitsa, 2008). Basic circuit structures 
also appear to be  conserved among the GoCs, which provide 
feedforward and feedback inhibition onto GCs (Figure 4A-a) through 
excitatory synaptic connections from MFs to basal dendrites in the GL 
(Figure 4A-b) and from PFs to apical dendrites in the ML (Figure 4A-c), 
respectively. The regulation mediated by GoCs appears to be critical 
for fine-tuning GC activity (Crowley et al., 2009; Fleming et al., 2024).

In addition to these basic circuit structures, several studies have 
demonstrated additional inputs onto GoCs. While excitatory inputs 
from GCs are predominantly made through PFs in the ML, it has also 
been shown that ascending axons of GCs form functional synaptic 
contacts onto the proximal dendrites of GoCs in the GL (Figure 4B; 
Cesana et al., 2013). Although early studies suggested synaptic contacts 
from the CFs to GoCs (Scheibel and Scheibel, 1954; Marr, 1969), 
subsequent research did not find such contacts (Galliano et al., 2013). 
Another study demonstrated that CFs have excitatory effects on GoCs 
through spillover-mediated transmission, similar to the case with MLIs 

(Figure 4C; Nietz et al., 2017). In contrast to the clear excitatory synaptic 
inputs from MFs and PFs onto GoCs, the source of inhibitory synaptic 
inputs remained unidentified for a long time and is still not completely 
clear (Figure 4D). It was suggested that LuCs provide inhibitory inputs 
via the release of glycine and GABA in the presence of serotonin, and 
MLIs also provide GABAergic inhibitory inputs (Dumoulin et al., 2001). 
However, studies using paired patch-clamp recordings or anatomical 
analyses demonstrated that GoCs do not receive inhibitory inputs from 
MLIs (Hull and Regehr, 2012; Eyre and Nusser, 2016). Instead, 
functional synaptic responses between neighboring GoCs were detected 
in 20% of all connections tested (Hull and Regehr, 2012). Considering 
the anatomical observation that a small fraction of GABAergic synaptic 
inputs to GoC dendrites contain GlyT2, a marker of glycinergic 
terminals (Eyre and Nusser, 2016), it is suggested that LuCs, which 
release both GABA and glycine, may actually innervate GoCs. 
Alternatively, some CN neurons, which also release a mixture of GABA 
and glycine, have been shown to innervate GoCs (Ankri et al., 2015).

GoCs can be subdivided based on their heterogeneous properties, 
which may have biological implications. Studies have attempted to 
classify GoC subtypes based on biochemical and neurochemical 
properties (Geurts et  al., 2001; Simat et  al., 2007b), such as the 
expression of Rat-303, metabotropic glutamate receptor (mGluR) 2, 
somatostatin, and neurogranin in glycinergic and/or GABAergic 
neurons. Although the direct association between the biochemical 
subtypes of GoCs and their electrophysiological properties has not yet 
been clarified, synaptic connections that are selective or preferable for 
specific GoC subtypes have been reported (Ankri et al., 2015; Eyre and 
Nusser, 2016). GlyT2-positive inhibitory axons preferentially make 
synapses onto neurogranin-positive and GlyT2-negative GoCs rather 
than neurogranin-negative and GlyT2-positive GoCs (Eyre and 
Nusser, 2016). Consistently, CN neurons releasing both GABA and 
glycine selectively, but not exclusively, innervate purely GABAergic 
GoCs (Ankri et al., 2015), which are neurogranin-positive and GlyT2-
negative (Simat et  al., 2007b). Thus, there may be  GoC subtype-
dependent circuit organizations, suggesting functional differences 
among the biochemical and neurochemical subtypes of GoCs.

Similar to the MLIs, GoCs are also electrically coupled via gap 
junctions (Figure 4E; Dugué et al., 2009; Vervaeke et al., 2010; Hull 
and Regehr, 2012). Both depolarization and hyperpolarization can 
be  transmitted through these gap junctions, but the inhibition of 
neighboring GoCs by the transmission of spike afterhyperpolarization 
appears to be a major effect of their electrical coupling (Dugué et al., 
2009; Vervaeke et al., 2010). Computational models suggest that the 
electrical coupling of GoCs with excitatory inputs from MFs regulates 
the synchronization and desynchronization of GoC population 
activity (Dugué et  al., 2009; Vervaeke et  al., 2010). This dynamic 
regulation of population activity in  local GoC circuits was indeed 
observed in awake animals (Gurnani and Silver, 2021). These findings 
raise the possibility that electrical coupling and excitatory synaptic 
inputs may be the major regulators of GoCs, while relatively minor 
inhibitory synaptic inputs may modulate specific pathways.

6 Circuits of traditionally minor 
neuron types

In addition to the major neurons described above, at least four 
other types of neurons have been reported in the cerebellar cortex 
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(Schilling et al., 2008). Although the cerebellum is a well-studied brain 
region, these other neuron types are less well understood. Presumably 
owing to the very small numbers of them within the cerebellum, 
which is densely packed with GCs and PCs, investigating these minor 
neurons has been difficult. The lack of clearly distinguishable 
molecular markers also poses a challenge (Tam et  al., 2021). 
Consequently, there is no unified categorization of these neuron types 
(Geurts et  al., 2001; Kozareva et  al., 2021; Tam et  al., 2021). 
Nevertheless, the basic anatomical properties of these relatively minor 
neuron types are gradually being clarified, and their functions have 
been proposed based on their anatomical properties.

6.1 UBCs

UBCs are the only excitatory interneurons among them and are 
located in the GL of the cerebellar vermis. Specifically, UBCs are 
abundant in cerebellar regions associated with vestibular functions, 
such as lobules IX and X in the vermis, but are relatively rare in other 
lobules (Diño et  al., 1999). They have a distinctive morphology, 
characterized by a single short dendrite with a brush-like end. UBCs 
receive an excitatory input from a single MF and inhibitory inputs 
from GoCs (Figure  4F-a; Harris et  al., 1993; Floris et  al., 1994; 
Kalinichenko and Okhotin, 2005; Mugnaini et al., 2011; McDonough 
et al., 2020). Their axons branch out locally and form MF terminal-like 
structures in the GL, which make synapses onto GCs or other UBCs 
(Mugnaini et al., 2011; van Dorp and De Zeeuw, 2015). UBCs have 
been thought to temporally amplify short-lived signals arising from a 
single MF by utilizing their unique circuit structures (Kinney et al., 
1997; Mugnaini et al., 2011; van Dorp and De Zeeuw, 2014). However, 

several studies suggested that UBCs have more complex circuits and 
functions. Two biochemical subtypes of UBCs have been identified: 
mGluR1α-positive UBCs, which lack calretinin, and mGluR1α-
negative UBCs, which express calretinin (Nunzi et al., 2002; Diño and 
Mugnaini, 2008). Functionally distinct subtypes appear to 
be associated with these biochemical differences: MF inputs excite 
mGluR1α-positive UBCs, but suppress firing in mGluR1α-negative 
UBCs (Russo et al., 2008; Borges-Merjane and Trussell, 2015; Zampini 
et  al., 2016). Subtype-specific circuit structures have also been 
reported (Figure 4F-b). Primary sensory afferents from the vestibular 
organ selectively innervate mGluR1α-positive UBCs, while secondary 
sensory afferents from the vestibular nucleus innervate both UBC 
subtypes (Balmer and Trussell, 2019). Additionally, inhibitory 
connections from PC collateral axons specifically innervate mGluR1α-
positive UBCs (Guo et  al., 2021). Given these specific circuit 
structures, UBCs may mediate bidirectional activity patterns in 
distinct GC pathways by amplifying excitatory signals in one pathway 
while suppressing firing in another.

6.2 LuCs

LuCs are a type of inhibitory interneuron in the GL, characterized 
by fusiform somas located beneath PC somas, and are intermediate in 
size between GoCs and globular cells, which are two other inhibitory 
interneurons in the GL. Anatomical studies demonstrated that LuCs 
extend poorly ramified horizontal and bipolar dendrites beneath the 
PC somas, where they receive inhibitory inputs from PC collateral 
axons, and project their axons to the ML, where they innervate MLIs 
(Lainé and Axelrad, 1996, 1998; Simat et al., 2007b). As mentioned 

FIGURE 4

Schematic diagram showing update of GoCs and other cell types. In addition to well-established circuit structures (A), GoCs receive inputs from GC 
ascending axons (B) and spillover-mediated excitatory inputs from the CFs (C), may receive inhibitory inputs from LuCs, other GoCs and CN neurons 
(D), and have electrical coupling between GoCs (E). UBCs receive excitatory input from a single MF and inhibitory inputs from GoCs, and make 
synapses onto GCs or other UBCs (F-a). Cell-type specific circuit structures of UBCs are also revealed (F-b). LuCs, projecting to MLIs and probably to 
GoCs, have diverse inputs from MFs, CFs, GCs, other LuCs, GoCs, PCs, and serotonergic fibers (G). Candelabrum cells receive excitatory inputs from 
MFs and GCs, and innervate MLIs (H).
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above, the functional synaptic connections from PCs to LuCs were 
confirmed by electrophysiological recordings upon optogenetic 
activation of PCs (Witter et al., 2016). Another recent study presented 
a wider range of anatomical connections, revealing inputs from CFs, 
MFs, GC ascending axons, GoCs, other LuCs, and serotonergic fibers, 
and axonal projections to GoC dendrites (Figure 4G), but not to PC 
dendrites (Miyazaki et al., 2021). This raises an intriguing possibility 
that LuCs integrate various inputs and then coordinate two types of 
inhibitory circuits, though further functional studies are necessary 
(Miyazaki et al., 2021).

6.3 Globular cells

Globular cells have often been considered a subtype of LuCs 
(Lainé and Axelrad, 2002; Schilling et al., 2008; Prestori et al., 2019). 
Although globular cells exhibit different morphological properties, 
such as having a small and round soma with radiating dendrites, they 
share circuit properties with LuCs, in terms of inputs from PC 
collateral axons and projections to the ML (Lainé and Axelrad, 2002). 
One functional difference reported was that globular cells responded 
to both serotonin and noradrenaline, whereas small LuCs responded 
only to serotonin (Hirono et al., 2012). In addition, studies using 
single-cell transcriptomic analysis suggested three types of inhibitory 
interneurons around the PCL, presumably LuCs, globular cells, and 
candelabrum cells (Kozareva et  al., 2021; Osorno et  al., 2022). 
Although the functional relevance of distinguishing LuCs and globular 
cells is still unclear, the possibility is gradually emerging that they 
exhibit unique functions due to their distinct molecular expressions.

6.4 Candelabrum cells

Candelabrum cells were identified more than two decades ago as 
neurons with a small soma situated in the PCL, with a few dendrites 
extending toward the surface of the ML and axons winding through 
or above the PCL (Lainé and Axelrad, 1994). They have long been the 
most enigmatic cell type in the cerebellum. Interestingly, a recent 
study established a mouse line showing fluorescent labeling in 
candelabrum cells, sufficiently distinguishing them from other cell 
types (Osorno et  al., 2022). The study found that GABAergic 
candelabrum cells receive excitatory inputs from MFs and GCs, and 
strong inhibitory inputs from PC collateral axons, while they inhibited 
MLIs (Figure 4H). This mouse line may thus facilitate in unraveling 
the long-standing mystery of candelabrum cells.

7 Discussion: Structural properties 
that need further clarification

As we  have described throughout this article, new structural 
properties have been demonstrated in the cerebellar cortex. Although 
the cerebellum has long been thought to consist of an orderly repetition 
of simple structures, recent findings have revealed that it is actually 
more complex than previously expected. However, the more details 
we learn, the more questions arise. Since it is now generally accepted 
that the cerebellum is involved in cognitive and affective functions in 
addition to motor functions, there will likely be  more studies 
addressing how the cerebellum processes multiple types of information. 

For such studies, it is crucial to further understand cerebellar circuit 
properties. Here, we discuss circuit structures that should be elucidated 
by considering newly identified structural properties.

7.1 Feedforward and feedback 
microcircuits

Feedforward and feedback microcircuits are fundamental 
components of neural computations, widely distributed across various 
brain regions (D'Souza and Burkhalter, 2017; Park et  al., 2023). 
Among these regions, the cerebellum stands out: GCs receive both 
feedforward and feedback inhibitions from GoCs, and PCs receive 
feedforward inhibition from MLIs (D'Angelo et al., 2013; Kim and 
Augustine, 2021). Furthermore, studies have revealed additional 
microcircuits within the cerebellar cortex, including feedback 
inhibitions on various neuron types from PCs and feedforward 
excitation on GCs mediated by UBCs (Kinney et al., 1997; Mugnaini 
et al., 2011; van Dorp and De Zeeuw, 2015; Guo et al., 2016; Witter 
et al., 2016; Guo et al., 2021; Osorno et al., 2022; Hariani et al., 2024). 
Although the specific arrangements of these microcircuits have been 
gradually elucidated (Balmer and Trussell, 2019; Guo et al., 2021; 
Halverson et  al., 2022), a comprehensive understanding remains 
elusive. For example, PC collateral axons send feedback inhibitions to 
GCs, UBCs, LuCs, candelabrum cells, and MLIs, some of which 
connect each other, yet their circuit arrangements at the individual 
neuron level are not clear. There might be organized connections 
among them, similar to the connections between MLIs and PCs: MLIs 
appear to receive feedback inhibition from PCs that are distinct from 
the PCs innervated by those particular MLIs (Halverson et al., 2022). 
Since the resulting neuronal activity and potential regulations can 
differ according to the circuit arrangements (Figure  5A), further 
analyses utilizing advanced techniques, such as a combination of 
sparse labeling and anterograde transsynaptic labeling, are expected.

7.2 Superficially conflicting functions 
among new structural organization

A large amount of effort has been made over the past decade to 
advance our understanding of cerebellar circuits. We assume that the 
additional organization of cerebellar circuits increases the options of 
regulating PC activity, consequently leading to pattern separations of 
signals provided by the cerebellum. However, it is still difficult to 
picture exactly how such circuit organization collaboratively controls 
PC activity. Superficially contradicting aspects make it even more 
challenging. For example, in MLI circuits, MLIs in the inner ML or 
MLI1s likely have strong inhibitory effects on PCs due to their high 
efficiency of individual inhibitory synaptic inputs (Arlt and Häusser, 
2020) and strong electrical coupling (Alcami and Marty, 2013; Lackey 
et al., 2024). However, they are inhibited by MLIs in the outer ML or 
MLI2s (Rieubland et al., 2014; Lackey et al., 2024). This raises concerns 
that the strong inhibitory effects from the inner MLIs might 
be underutilized or wasted. Additionally, glutamate spillover from CFs 
(Coddington et al., 2013; Arlt and Häusser, 2020) and feedback signals 
from PCs (Witter et  al., 2016) could have both excitatory and 
inhibitory effects on MLIs, raising the possibility that they might 
functionally cancel each other out. These concerns might be alleviated 
by obtaining more precise information about the spatiotemporal 
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aspects of MLI circuits, such as temporal gaps or the distinct spatial 
distances between excitatory and inhibitory effects (Figure 5B). A 
study provided a clue about the first concern by recording the activity 
of MLI1s, MLI2s, and PCs during licking, which periodically 
modulates PC firing (Lackey et al., 2024). Changes in PC firing rates 
were inversely correlated with MLI1s and correlated with MLI2s, 
suggesting the organization of bidirectional control of PC firing by 
these two groups of MLIs. Alternatively, it would be interesting to 
computationally predict the tuning of PC activities by including all 
known components of the complex MLI circuit organizations.

7.3 Other factors involved in the cerebellar 
circuit structures

While this article focuses on neurons and excitatory inputs in the 
cerebellar cortex, many other factors also contribute to cerebellar 
circuit structures as components or regulators. These include 
non-neuronal cells, neuromodulators, and molecules arriving from 
circulation (Schweighofer et  al., 2004; Koibuchi and Ikeda, 2013; 
Araujo et al., 2019; Guedes et al., 2022; Gruol, 2023; Li et al., 2024). To 
comprehensively understand cerebellar circuit structures and their 
functions, these factors must also be  taken into account. Indeed, 
information on their contributions has gradually been updated. For 
example, immunohistochemical analyses have investigated layer-or 
lobule-dependent distributions and orientations of neuromodulatory 
projection fibers (Carlson et al., 2021; Longley et al., 2021). Other 
studies have reported novel interactions between PCs and Bergmann 
glial cells through dopamine released from PCs (Li et al., 2023), and 

cerebellar circuit formation through cytokine-dependent regulation 
of microglial functions (Kana et  al., 2019; Guedes et  al., 2023). 
Regulation by these factors appears less selective than synaptic 
transmission-mediated regulation, as evidenced by volume 
transmission of neuromodulators (Özçete et al., 2024) and delivery of 
cytokines through circulation (Wu et al., 2023). Nevertheless, recent 
studies have shown their involvement in specific cerebellar functions 
or disfunctions (Yamamoto et al., 2019; Kim et al., 2021; Cutando 
et al., 2022; Snell et al., 2022; Guedes et al., 2023; Li et al., 2023; Stanley 
et  al., 2023; Dewa et  al., 2024). As the broad range of cerebellar 
functions appear to be achieved through computations in different 
functional modules/domains, as shown in human studies (Guell et al., 
2018; Diedrichsen et al., 2019; King et al., 2019), it would be intriguing 
to determine how the factors described in this paragraph exhibit a 
certain extent of spatial selectivity within the cerebellum (Figure 5C).

7.4 Circuit organization during postnatal 
development

Well-organized circuit structures of the cerebellum gradually 
form during postnatal development through dynamic processes 
regulated by both cell-autonomous mechanisms and interactions 
between developing neurons in the cerebellum (Leto et al., 2016; Park 
et al., 2021; van der Heijden and Sillitoe, 2021; Kim et al., 2023a). 
While extensive research has focused on these processes for 
traditionally known circuit structures, less is understood about the 
developmental mechanisms of newly identified structures. The 
updated structures are relatively minor or complex, complicating the 

FIGURE 5

Examples of structural properties requiring further clarification. (A) Three possible circuit arrangements among PCs, MLIs, and candelabrum cells 
(CaCs) at the individual neuron level (top). The activities of neurons in these circuits may differ in response to an increase in PCi activity (bottom). 
(B) Two examples of circuit structures involving MLIi, which receives conflicting inputs: excitation from glutamate spillover originating from CF and 
PC-dependent inhibition. The time course of MLIi activity following CF activation may vary depending on whether the excitatory and inhibitory inputs 
are temporally distinct (top) or spatially organized (bottom). (C) Potential mechanisms of other factors (e.g., neuromodulators or circulating molecules) 
exhibiting spatial selectivity. (D) A diagram illustrating the use of developmental time-and cell type-dependent transcriptome analysis data in the 
research on mechanisms of specific synaptic formation of PC axon collaterals. If the expression of hypothetical molecules X and Y increases in PCs 
and target neurons, respectively, during developmental periods, these molecules may play a role in synaptic formation. Note that the Roman numbers 
following PC or MLI in this figure (e.g., PCi or MLIi) are used to differentiate between distinct PCs or MLIs.

https://doi.org/10.3389/fncel.2024.1487362
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Jun et al. 10.3389/fncel.2024.1487362

Frontiers in Cellular Neuroscience 12 frontiersin.org

investigation of their developmental processes. In general, a useful 
approach to understand developmental processes may be to examine 
the effects of molecular deficiencies during specific developmental 
windows. Developmental time-and cell type-dependent transcriptome 
analysis data could help to identify relevant molecules (Figure 5D). 
This approach indeed led us to discover developmental mechanisms 
that maintain the PC soma monolayer after its formation. Specifically, 
multiple epidermal growth factor-like domains protein 11, which 
substantially increases during the late stage of GC development 
(Rosenberg et al., 2018), plays a role in this maintenance (Jun et al., 
2023). Furthermore, integrating transcriptomic data with known 
information about circuit formation could be  beneficial for 
hypothesizing the developmental mechanisms of the updated 
structures. For example, neuropilin-1 (Nrp1) expressed in BCs is 
crucial for the formation of pinceau synapses in the AIS of PCs (Telley 
et al., 2016). Whereas candelabrum cells also express high levels of 
Nrp1, they do not innervate PCs (Osorno et al., 2022). Two potential 
mechanisms are proposed to explain this discrepancy (Schilling, 
2024): the timing of expression of Nrp1 and its partner proteins in 
PCs, MLIs, or candelabrum cells might be regulated, or different splice 
variants of Nrp1 may contribute differently to their synaptic 
connections. Thus, hypotheses based on existing data would help 
advance our understanding of how cerebellar circuits, including newly 
identified structures, are coordinately organized during 
postnatal development.

8 Conclusion and perspectives

This article highlights recent advances in our understanding of 
cerebellar cortex circuit structures, including greater heterogeneity 
among neuron types, previously unidentified synaptic connections, 
and more complex circuit organizations. In general, characteristic 
circuit structures within the cerebellum are believed essential for 
neural computations and their roles in behavior (D'Angelo et al., 2011; 
Billings et al., 2014). In line with this belief, existing theories propose 
functions for some newly identified circuit structures, such as aspects 
of MLI organization that may contribute to the functional 
microdomains of PCs (Coddington et al., 2013; Witter et al., 2016; 
Hoehne et al., 2020; Halverson et al., 2022), or the two types of UBCs 
that may convey different vestibular information bidirectionally to 
distinct GC pathways (Russo et al., 2008; Borges-Merjane and Trussell, 
2015; Zampini et al., 2016; Balmer and Trussell, 2019). Ideally, our 
understanding of the structural-functional relationships in cerebellar 
circuits will be  enhanced through the proposal and validation of 
further theories. Constructing theoretical models based on 
experimental observations would be valuable for comprehensively 
predicting the cooperative or antagonistic effects of various circuit 
structures. The development of techniques for targeted manipulations, 
such as inhibiting specific connections, collateral axons, or cell types, 
would facilitate experimental validation. Transcriptomic data could 
be  instrumental in this technical development. It is crucial to 

investigate through these analyses how the unique circuit structures 
and neuronal morphologies in the cerebellar cortex contribute to 
neural computation, extending beyond the structural studies 
discussed in the previous section (6.1). This would advance our 
understanding of cerebellar functions and the broader mechanisms 
underlying brain operation.
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