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The persistence or emergence of long-term symptoms following resolution 
of primary SARS-CoV-2 infection is referred to as long COVID or post-acute 
sequelae of COVID-19 (PASC). PASC predominantly affects the cardiovascular, 
neurological, respiratory, gastrointestinal, reproductive, and immune systems. 
Among these, the central nervous system (CNS) is significantly impacted, leading 
to a spectrum of symptoms, including fatigue, headaches, brain fog, cognitive 
impairment, anosmia, hypogeusia, neuropsychiatric symptoms, and peripheral 
neuropathy (neuro-PASC). However, the risk factors and pathogenic mechanisms 
responsible for neuro-PASC remain unclear. This review hypothesis discusses the 
leading hypotheses regarding the pathophysiological mechanisms involved in 
long COVID/PASC, focusing on neuro-PASC. We propose vascular dysfunction 
mediated by activation of astrocytes and pericytes followed by blood–brain barrier 
(BBB) disruption as underlying pathophysiological mechanisms of neurological 
manifestations. Additionally, we provide insights into the role of spike protein at the 
blood–brain interface. Finally, we explore the potential pathogenic mechanisms 
initiated by the interaction between the spike protein and cellular receptors at 
the brain endothelial and tissue levels.
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1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for 
coronavirus disease 2019 (COVID-19), has resulted in over 0.7 billion infections and almost 
7 million deaths (WHO, 2023). The rapid spread of the virus before symptom onset, combined 
with acute clinical complications such as severe inflammation and disseminated intravascular 
coagulation, along with the accelerated emergence of variants of concern (VOCs) associated 
with intra-host viral evolution, have been primary contributors to the high morbidity and 
mortality rates (Chaguza et al., 2022). Despite the success of vaccination efforts in reducing 
mortality and transmission rates in the last 3 years, 10–40% of convalescent patients have 
experienced long COVID syndrome or post-acute sequelae of SARS-CoV-2 infection (PASC) 
(Zheng et al., 2022). Additionally, a significant subset of long-term COVID patients, up to 40%, 
have developed neurological and psychiatric symptoms (Taquet et al., 2021). The emergence 
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of long COVID/PASC, together with VOCs and the increasing 
number of global infections, highlights the urgent need to understand 
the mechanisms underlying long COVID/PASC. In this context, this 
review hypothesis focuses on exploring the underlying mechanisms 
of neuro-PASC, primarily related to the SARS-CoV-2 spike protein (S).

2 Post-acute COVID-19 sequelae 
(PASC): a new disease?

The COVID-19 pandemic has evolved into a significant public 
health issue, manifesting as long COVID or PASC. The WHO defines 
PASC or long COVID as a new clinical entity characterized by the 
persistence of symptoms for at least 3 months after the initial viral 
infection, lasting at least 2 months, and not explained by an alternative 
diagnosis (Al-Aly et al., 2021; WHO, 2021; Soriano et al., 2022). It is 
estimated that long COVID/PASC affects at least 10% of all infected 
patients, equating to approximately 65 million individuals worldwide, 
with cases increasing daily (Tran et al., 2022; Davis et al., 2023). Long-
COVID/PASC incidence ranges from 50 and 70% in hospitalized and 
not hospitalized patients, respectively, for 2 years after acute infection 
(Fernandez-de-Las-Penas et al., 2022b; Bull-Otterson et al., 2022), and 
around 10–12% in vaccinated patients (Ayoubkhani et  al., 2022). 
Symptoms can persist for up to 2 or 3 years and may vary over time 
(Sudre et al., 2021; Davis et al., 2023). Recent findings suggest that the 
duration of long COVID is extending. In a study involving 135,161 
infected patients followed for 3 years, a decrease in the number of 
infected patients, mortality risk, and PASC was observed over time 
(Cai et al., 2024). While the risk of death diminishes after 1 year in 
non-hospitalized patients, it persists beyond 3 years in hospitalized 
patients, along with an increased risk of developing PASC.

PASC is characterized by a variety of long-lasting symptoms, with 
the most common being shortness of breath, headache, fatigue, 
cognitive dysfunction (memory impairment and lack of 
concentration), anxiety, myalgia, joint pain, smell and taste 
dysfunction, cough, insomnia, rhinorrhea (Lopez-Leon et al., 2021). 
Furthermore, neurological and neurodegenerative manifestations 
have been reported in patients without previous clinical history 
including encephalopathy, stroke, seizures, encephalitis, and Guillain-
Barré syndrome. It is important to highlight that more than 50 
symptoms have been documented (Soriano et al., 2022). Importantly, 
the types and severity of COVID-19 symptoms can depend on the 
SARS-CoV-2 variant of infection (Bouzid et al., 2022; Whitaker et al., 
2022). Thus, the great variability in symptoms and severity, as well as 
duration, led to classifying PASC into different types (Fernandez-de-
Las-Penas et al., 2021). However, the Wuhan variant has been shown 
to induce a greater number of symptoms when compared to the Alpha 
or Delta variants (Fernandez-de-Las-Penas et al., 2022a).

2.1 Neuro-PASC

Neurological manifestations are among the primary occurrences 
of long COVID (Ding and Zhao, 2023). A study involving 226 patients 
who survived COVID-19 pneumonia evaluated them between 1 and 
3 months after discharge (Mazza et al., 2021). It found that 78% of 
patients had disabilities in at least one cognitive domain, 50–57% had 
impaired psychomotor coordination, and 20–70% exhibited cognitive 

deficits during the COVID-19 acute phase. In a recent cross-sectional 
study of 57 hospitalized patients, over 80% exhibited significant 
cognitive impairment, particularly in attention and executive function 
(Jaywant et al., 2021). Another study followed 18 patients with mild to 
moderate COVID-19 and found similar issues (Ritchie and Chan, 
2021). A different study following 13,001 individuals found significantly 
higher rates of memory problems 8 months after infection (Garrigues 
et  al., 2020). Then in a cohort study, symptoms such as anosmia, 
ageusia, memory loss, and headache persisted beyond 60 days, with 
memory deficits continuing up to the third month after infection (Han 
et al., 2022). Proposed mechanisms contributing to long-term cognitive 
impairment include blood–brain barrier (BBB) vascular disruption, 
neuroinflammation, synaptic dysfunction, disturbed neurotransmitter 
release, and neuronal loss (Shabani et al., 2023).

3 Understanding the pathophysiology 
of neuro-PASC

Although PASC is a multiorgan disease, post-acute neurological 
sequelae are prevalent and significantly impact the quality of life, 
making the CNS an important target for investigation (Moghimi et al., 
2021). The pathogenic mechanisms responsible for PASC, particularly 
neuro-PASC, remain largely unknown. Key questions include whether 
certain mechanisms are responsible for certain symptoms and whether 
multiple mechanisms might act in concert to produce PASC. The 
primary underlying mechanisms of PASC may include both direct 
effects due to viral brain infection, or persistence of viral components 
(Liotti et  al., 2021; Chen et al., 2023), as well as indirect effects 
stemming from secondary mechanisms. These secondary 
mechanisms may include: (i) impairment of the cerebral vasculature 
(VanElzakker et  al., 2024); (ii) Immune dysregulation, which  
can lead to inflammation, hypoxia, complement activation, 
thromboinflammation, autoimmunity, re-activation of neurotrophic 
viruses, and hormonal dysregulation (Pretorius et al., 2021; Adingupu 
et al., 2023). The widespread expression of the main SARS-CoV-2 
receptor, the angiotensin-converting enzyme 2 (ACE2) molecule, in 
both neural and endothelial cells (EC), renders the CNS susceptible to 
SARS-CoV-2 infection (Baig et al., 2020). Although several autopsy-
based studies have described neurological alterations in various brain 
regions, evidence of viral replication or presence in the brain or 
cerebrospinal fluid (CSF) is infrequent (Pattanaik et al., 2023). These 
findings raise questions about whether the limited viral detection is 
due to the low sensitivity of detection methods or the sampling timing, 
and whether the presence of detected viral RNA indicates persistent 
viral replication. In this context, mechanisms independent of infection 
and viral replication may play a leading role in neuro-PASC effects 
(Hellmuth et al., 2021). Moreover, the persistence of SARS-CoV-2/S 
protein in the brain and its interaction with cellular receptors at the 
endothelial and tissue levels may have a relevant role in neuro-PASC 
(Montezano et al., 2023).

3.1 Neuro-PASC: a disease at the blood–
brain interface?

The regions at the interface between the blood and the brain are 
primarily composed of the BBB, choroid plexus, and circumventricular 
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organs (CVOs) (Miyata, 2022). Given its unique structure, the BBB 
exhibits highly selective permeability, limiting the passage of substances 
and pathogens such as SARS-CoV-2 from the blood to the brain 
parenchyma, while also playing a fundamental role in CNS homeostasis 
(Wu et al., 2023). It is proposed that BBB dysfunction not only results 
from, but also causally contributes to the pathogenesis of neurological 
disorders like Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, 
and neuro-PASC (Xiao et al., 2020; Finsterer et al., 2022). Spike-mediated 
damage to vessels forming the BBB and enhanced immune responses 
have been identified as major causes of chronic neurological symptoms 
in PASC (Suprewicz et al., 2023).

Cognitive impairment is one of the most prevalent symptoms of 
PASC. The dysfunction of BBB can lead to cerebral hypoperfusion, 
hypometabolism, and cognitive impairment in individuals with 
PASC. Several recent studies using advanced neuroimaging and 
processing techniques have reported hypometabolism in various brain 
regions in patients with PASC experiencing persistent functional 
symptoms, including cognitive deficits (Hosp et al., 2021). It has recently 
been demonstrated that BBB disruption and sustained systemic 
inflammation are evident in patients with cognitive impairment positive 
for PASC, commonly referred to as “brain fog” (Alquisiras-Burgos et al., 
2021; Greene et al., 2024). Using a longitudinal design and investigating 
mechanistic pathways associated with the development of cognitive 
impairment in PASC individuals, an association with white matter 
integrity loss has been suggested, potentially mediated by BBB 
compromise and associated glutamatergic excitotoxicity (Chaganti et al., 
2024). CVOs, neural structures around the third and fourth ventricles, 
harbor vessels similar to the choroid plexus, lacking a BBB. This allows 
them to sense stimulatory molecules in the bloodstream but also 
increases their susceptibility to pathogen exposure (Jeong et al., 2021). 
Nevertheless, attacks on CVOs by pathogens are rarely described. For 
instance, trypanosomes present in the choroid plexus can enter the 
ventricles and initiate accelerated infiltration of T cells and parasites in 
periventricular areas, eventually entering the brain parenchyma from the 
median eminence (a CVO located at the base of the third ventricle) into 
the boundary to the hypothalamic arcuate nuclei protected by the 
BBB. This process provides a pathway for pathogens to infiltrate brain 
regions connected to circadian rhythm and sleep–wake regulation 
networks, to which other CVOs are also connected (Bentivoglio et al., 
2018). Significant cellular disruptions in COVID-19 patients indicate 
that choroid plexus barrier cells detect and transmit peripheral 
inflammation to the brain, with peripheral T cells infiltrating the 
parenchyma (Yang et al., 2021).

A study using a pseudovirus containing SARS-CoV-2 S protein 
demonstrated that the spike protein damages the choroid plexus 
epithelium, leading to leakage through this critical barrier, which 
normally prevents the entry of pathogens, immune cells, and cytokines 
into the CSF and the brain (Pellegrini et al., 2020). From the CSF 
which bathes the ventricles and meninges, the S protein can 
accumulate along the skull-meninges-brain axis and potentially have 
implications for long-term neurological complications, associated 
with pathways related to neutrophils and dysregulation of proteins 
involved in phosphatidylinositol 3-kinase (PI3K)-AKT signaling, 
complement activation, and coagulation. Additionally, the S protein 
may travel from the edges of the CNS to the brain parenchyma and 
directly affect brain tissue. A recent study conducted by Rong and 
colleagues showed that the Spike protein remains in the skull-
meninges-brain axis in patients with COVID-19 long after the virus 

has been cleared. Elevated levels of neurodegeneration biomarkers 
were also detected in the cerebrospinal fluid (CSF) of patients with 
Long COVID. In an animal model, the Spike protein, specifically the 
S1 subunit, was shown to alter the proteome in the skull-meninges-
brain axis and induce anxiety-like behaviors. The study identified 
differential expression of proteins associated with the interleukin 
(IL)-18 signaling pathway, as well as changes in proteins related to the 
MAPK and (PI3K)-AKT signaling pathways, and proteins involved in 
neutrophil extracellular trap (NET) formation. Additionally, the Spike 
S1 subunit led to an increase in caspase-3 activity. The authors 
proposed that the Spike protein could travel from the cranial spinal 
cord to the meninges and brain parenchyma, thereby contributing to 
long-term complications (Rong et al., 2024).

SARS-CoV-2 viral particles transmitted through the blood can 
also enter the brain by extravasating through fenestrated vessels of 
CVOs, thereby bypassing the BBB. This hypothesis is supported by the 
abundance of viral markers in the median eminence of the 
hypothalamus from post-mortem COVID-19 patients, including 
edema and neuronal degeneration (Pal, 2020; Sauve et  al., 2023). 
Additionally, immuno-histochemical studies detected high ACE2 
expression in CVOs closely connected to the hypothalamus and the 
hypothalamus (Ong et al., 2022).

The median eminence is composed of specialized ependymoglial 
cells called tanycytes. The spike protein was observed at extremely 
high levels in the terminal feet of tanycytes in a patient who died of 
severe COVID-19, suggesting internalization by the terminal feet of 
tanycytes at the level of fenestrated capillaries, but also subsequent 
transfer to other types of cells (Ternier et al., 2020). Permeation of 
circulating S protein through the median eminence to the 
hypothalamic nuclei could promote neuronal degeneration in this 
region and impair hormonal regulation by the central nervous system 
(Ong et al., 2022).

3.1.1 Spike protein and blood–brain interface 
dysfunction hypothesis

Some researchers suggest that SARS-CoV-2’s ability to infect the 
human brain through ACE2 expression, along with prolonged viral 
infection and the direct effects of the spike protein on neural tissue, could 
be linked to long-term neurological consequences (Datta et al., 2021; 
Ding and Zhao, 2023). However, the question of whether SARS-CoV-2 
directly infects neurons remains debated (Solomon et al., 2020), and there 
is limited or no evidence of active viral replication in the brains of 
individuals with Post-Acute Sequelae of SARS-CoV-2 (PASC) (van den 
Bosch et al., 2022). In this context, we propose that the spike protein 
directly affects neural tissue and may, at least in part, contribute to the 
neuropathogenic mechanisms observed in NeuroPASC, especially in 
areas with high ACE2 expression. As discussed further below, viral 
receptors are more abundantly expressed in the cells forming the blood–
brain interface compared to neurons themselves (Lukiw et al., 2022; Ong 
et al., 2022; Potokar et al., 2023). PASC-positive individuals often show 
persistent or elevated levels of circulating spike protein for up to a year or 
longer after acute infection (Craddock et al., 2023; Schultheiß et al., 2023; 
Swank et al., 2023). This suggests that the spike protein may be stored in 
cellular reservoirs, released into the bloodstream, and subsequently 
absorbed by other regions, potentially causing complications through 
endothelial damage (Cao et al., 2023). This mechanism could explain the 
BBB disruption and ongoing systemic inflammation observed in patients 
with cognitive dysfunction. In addition to the BBB, the 
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blood-cerebrospinal fluid barrier (BCSFB), which includes structures like 
the choroid plexus and circumventricular organs (CVOs) such as the 
median eminence of the hypothalamus, may also suffer persistent damage 
from the spike protein (Pellegrini et al., 2020; Ong et al., 2022). Damage 
to these areas is closely associated with the symptoms of NeuroPASC. In 
summary, we hypothesize that the damage caused by circulating spike 
protein, combined with high permeability in certain tissues and elevated 
ACE2 expression, leads to sustained interactions with other viral receptors 
or coreceptors in cells of the blood–brain interface, such as pericytes and 
astrocytes of the BBB, epithelial cells of the choroid plexus, tanycytes, and 
hypothalamic neurons. These interactions could explain many of the 
primary symptoms observed in NeuroPASC (Figure 1).

3.2 Hypothalamic–pituitary axis 
dysfunction and NeuroPASC symptoms

The ACE2 protein is highly expressed in the paraventricular nucleus 
of the hypothalamus (PVH). The PVH is a stress-responsive center in the 
brain, controlling pre-ganglionic sympathetic neurons and serving as a 
source of corticotropin-releasing hormone, which induces 

adrenocorticotropic hormone (ACTH) secretion from the anterior 
pituitary (Alzahrani et  al., 2021). The adrenocortical response was 
reported to be impaired in patients with acute COVID-19 infection, with 
a large percentage of patients having plasma cortisol and ACTH levels 
consistent with central adrenal insufficiency (Alzahrani et al., 2021). It is 
proposed that ACE2 function in CVOs in the PVH could be diminished 
by S protein binding, resulting in increased pre-sympathetic/
neuroendocrine PVH activity and affecting hypothalamic–pituitary–
adrenal axis activity. Therefore, the function of ACE2-positive neurons in 
the PVH may be affected by the SARS-CoV-2 spike protein, interfering 
with Ang II function modulation and reducing stress/anxiety modulation 
in COVID-19 patients (Ong et al., 2022).

Damage to the hypothalamus by COVID-19 can lead to dysfunction 
in hypothalamic–pituitary-testicular axis (Ardestani Zadeh and Arab, 
2021), potentially affecting testicular function (Selvaraj et  al., 2021). 
Additionally, infection of gonadotropin-releasing hormone (GnRH) 
neurons, which are crucial for regulating reproduction, or tanycytes, 
multifunctional hypothalamic glia that interact with GnRH neuron 
terminals, could contribute to hypogonadotropic hypogonadism (Sauve 
et al., 2023). A causal link has been demonstrated between GnRH loss and 
cognitive deficits during pathological aging, including Down syndrome 

FIGURE 1

Schematic representation of blood and the brain regions interface and receptors expressed for the spike protein. (A) Blood–Brain Barrier (BBB): The 
BBB is formed by tight junctions in endothelial cells. The spike protein induces damage to these tight junctions, resulting in BBB disruption, increased 
permeability, and access to receptors present in astrocytes (human dipeptidyl peptidase - DPP4, Neuropilin-1 - NRP1, and Cluster of Differentiation - 
CD147), pericytes (Angiotensin-Converting Enzyme 2 - ACE2), and microglia (Toll-like Receptor 4 - TLR4). (B) Choroid Plexus: Specialized tissue 
located in the wall of the fourth ventricle, composed of endothelial cells that are more permeable than those of the BBB, with gaps known as 
fenestrations. This enables easier movement for the epithelium on the apical side, which expresses ACE2, and this acts as a potential entry route for 
spike protein into the cerebrospinal fluid (CSF). (C) Hypothalamus: Hypothalamic tanycytes can be observed around the third ventricle (III-V), 
expressing ACE2 and transferring spike protein to the regions of the arcuate nucleus (ARC), ventromedial nucleus (VMN), dorsomedial nucleus (DMN), 
and periventricular nucleus (PVN). Figure created with BioRender.com.
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and Alzheimer’s disease (Sunada et al., 2022). Olfactory and cognitive 
changes that persist in some COVID-19 patients, along with long-term 
hypogonadism in men infected with SARS-CoV-2, resemble the 
consequences of GnRH deficiency. This suggests that neuroinvasion of 
the GnRH system may underlie certain post-COVID symptoms, 
potentially leading to accelerated or exacerbated cognitive decline (Sauve 
et al., 2023). Furthermore, GnRH neurons were found to be dying in the 
post-mortem brains of COVID-19 patients, significantly reducing GnRH 
expression. Fetal human olfactory and vomeronasal epithelia, and fetal 
GnRH neurons (proceeding of these epithelia) also appeared to 
be susceptible to infection (Sauve et al., 2023).

Chronic Fatigue Syndrome (CFS) remains a central and common 
complaint among post-COVID patients (Nalbandian et al., 2023). 
Low-grade chronic neuroinflammation induced by the SARS-CoV-2 
virus may explain chronic fatigue in individuals without chronic 
cardiac, pulmonary, or renal dysfunction (Mueller et  al., 2020). 
Additionally, endocrine dysfunctions, such as hypercortisolism, 
hypothyroidism, or disruption of the HPA axis may also contribute to 
CFS (Bansal et al., 2022). A study of patients recovering from previous 
SARS-CoV infection, found that hypercortisolism persisted for up to 
1 year in most patients, along with central hypothyroidism and low 
dehydroepiandrosterone sulfate (DHEAS) in some patients, 
supporting chronic deficiency of corticotropin (CRH). The authors 
suggested that hypothalamus-pituitary dysfunction could result from 
reversible hypophysitis or direct hypothalamic damage (Leow et al., 
2005). Notably, groups of patients with CFS exhibited blunted HPA 
axis activity, with reduced 24-h free cortisol excretion, increased 
sensitivity to ACTH, and an attenuated response to CRH (Clauw and 
Chrousos, 1997). Therefore, patients with prolonged COVID 
experiencing unexplained fatigue, lethargy, malaise, orthostatic 
dizziness, anorexia, and apathy, particularly those with hypothyroidism 
features unresponsive to hydration and traditional treatments, should 
be evaluated for HPA axis dysfunction (Bansal et al., 2022).

Patients with long COVID experiencing general fatigue, depression, 
and fatigue scores were positively correlated with serum cortisol and free 
thyroxine (FT4) levels, respectively. Additionally, patients with general 
fatigue exhibited lower serum growth hormone (GH) levels and higher 
levels FT4 levels, while those patients with anosmia/dysgeusia had 
significantly lower serum cortisol levels. Higher serum thyrotropin 
(TSH) levels and lower FT4/TSH ratios in initially severe cases, suggested 

occult hypothyroidism. Furthermore, plasma adrenocorticotropin to 
serum cortisol ratios were decreased in patients with relatively high 
serum SARS-CoV-2 antibody titers. These studies together (Table 1) 
provide evidence that the impacts caused by the spike protein on the 
hypothalamic centers may be  directly correlated with NeuroPASC 
symptoms (Sunada et al., 2022).

4 SARS-CoV-2 spike protein and 
neuropathogenesis

Several studies point out that neurological symptoms or CNS 
damage cannot be solely attributed to viral infection (Solomon, 2021). 
A recent study indicates that the infection is not required for cognitive 
impairment in long COVID (Fernandez-Castaneda et al., 2022). These 
findings strongly support the participation of factors other than viral 
proliferation in the brain as the main cause of neurological symptoms 
(Muhl et al., 2020). S, S1, and N proteins are detectable in approximately 
65% of patients diagnosed with PASC several months after SARS-
CoV-2 infection. Of the three antigens, the S protein is detected most 
frequently in 60% of PASC-positive patients. S1 is detected to a lesser 
extent in about a fifth of patients and N is rarely detected. Antigens 
detection is most likely found in patients reporting PASC’s acute 
gastrointestinal and neuropsychiatric symptoms (Swank et al., 2023).

4.1 Spike and vascular dysfunction and 
blood–brain barrier disruption

The main underlying endothelial cell-EC dysfunction mechanisms 
involved in COVID-19 pathogeneses include: (i) SARS-CoV-2 
infection-mediated EC apoptosis; (ii) Imbalance of the renin-
angiotensin-aldosterone system (RAAS)/kallikrein-kinin system 
(KKS); (iii) Complement activation; (iv) Activation of inflammatory, 
mitochondrial oxidative stress and growth factors signaling pathways, 
promoting endothelial damage (Jin et al., 2020). On the other hand, 
EC dysfunction may result in inflammatory-immune cell infiltration 
and vascular leakage, leading to edema (Teuwen et al., 2020). The main 
proposed mechanisms can lead to: (i) the secretion of inflammatory 
cytokines (TNF-α, IL-1β, and IL-6), and chemokines, which in turn 

TABLE 1 Impacts on the hypothalamic–pituitary axis and association with NeuroPASC symptoms.

Hypothalamic–pituitary axis 
area

Affected function NeuroPASC symptoms References

Hypothalamic–pituitary–adrenal axis
Cortisol regulation and stress 

response

- Anxiety and emotional disturbances

- Mental exhaustion and fatigue

- Dysregulated stress responses

Alzahrani et al. (2021) and Ong et al. 

(2022)

Hypothalamic–pituitary-thyroid axis
Metabolism, energy, and cognitive 

functions

- Fatigue, lethargy

- Memory and reasoning difficulties

- Mood disorders (anxiety, irritability)

Bansal et al. (2022)

Hypothalamic–pituitary-testicular axis
Release of Gonadotropin-Releasing 

Hormone (GnRH)

- Sexual dysfunction (decreased libido, 

erectile dysfunction)

- Mood changes (Irritability, 

Depression)

- Cognitive deficits

Ardestani Zadeh and Arab (2021), 

Selvaraj et al. (2021), and Sauve et al. 

(2023)

Hypothalamic–pituitary-somatotropic axis Secretion of growth hormone (GH) - Chronic Fatigue Syndrome Sunada et al. (2022)
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can lead to a “cytokine storm”; (ii) adhesion molecules (ICAM-1, 
VCAM-1, MCP-1 and VAP-1); (iii) Ang II-AT1R activation (Ferrario 
et  al., 2005), and IL-6/ROS production (Akwii et  al., 2019); (iv) 
KKS-B1/2R activation, increased levels of vascular endothelial growth 
factor (VEGF) levels and VEGFA/VEGFR2 activation (for more detail 
see the next topics) (Tong et al., 2020). This set of pathophysiological 
changes was associated with long COVID syndrome and is known as 
“vascular long COVID” (Zanini et al., 2024). Indeed, a relationship 
between the endothelial biomarkers levels and pro-inflammatory 
cytokine and chemokine levels was associated with the severity of 
pulmonary damage in COVID-19 (Osburn et al., 2022).

4.1.1 Spike and brain endothelial dysfunction
Vascular long COVID can lead to prolonged neuro-inflammation, 

synaptic dysfunction, and disturbed neurotransmitter release, which in 
turn can lead to cognitive dysfunction in PASC patients (Shabani et al., 
2023). Remarkably, S and S1 subunit-activated macrophages induced 
activation of human lung microvascular endothelial cells, increasing 
adhesion molecules, pro-coagulant markers, and chemokines (Rotoli 
et al., 2021). Moreover, the S protein has also been shown to induce 
VEGF production, a potent inducer of vascular permeability. This raises 
the possibility that vascular activation by viral infection or S protein, 
along with pre-existing brain diseases (which are more common in 
older individuals) places them at greater risk of neurological sequelae 
of PASC (Agrawal et al., 2022). On the other hand, the SARS-CoV-2 
virus and the S protein can directly interact with the BBB, inducing 
pro-inflammatory effects, resulting in increased BBB permeability 
through damage to tight junctions (TJs) but not adherents junctions 
(AJs) (Suprewicz et al., 2022). Remarkably, epithelial cells expressing 
intracellular S protein showed to elicit an inflammatory response in 
macrophages when co-cultured. Furthermore, S protein can interact 
with Toll-like receptors, TLR2 and TLR4 receptors from macrophages, 
and activate signaling pathways involving PI3K, AKT, MAPK, and 
NF-κB, with the subsequent production of pro-inflammatory cytokines, 
and adhesion molecules, such as ICAM, VCAM and E-selectin (Khan 
et  al., 2021; Zhao et  al., 2021). In addition, the aforementioned 
cytokines and adhesion molecules can increase vascular permeability, 
and the severity of inflammation is closely correlated with BBB damage 
(Alquisiras-Burgos et  al., 2021). The relevance of peripheral 
inflammation-induced BBB disruption is discussed by Huang et al. 
(2021). On the other hand, infected human brain microvascular 
endothelial cells (hBMECs) showed a low expression of the TJ protein 
and an overexpression of proinflammatory cytokines, chemokines, and 
adhesion molecules (Yang et al., 2022). The proinflammatory IL-1β 
cytokines showed VEGF expression induced by astrocytes with the 
subsequent metalloproteinase-9 (MMP-9)-mediated TJ protein 
disruption matrix (Ralay Ranaivo et al., 2011).

4.1.2 Spike and glycocalyx disruption
The glycocalyx is a layer which covers luminal endothelial cells 

and contributes to maintain vascular homeostasis, vascular tonus, and 
permeability, and also modulates leukocyte adhesion and 
inflammation (Mockl, 2020). It was recently reported that plasma of 
COVID-19 patients induced glycocalyx shedding, resulting in 
hyperinflammation and oxidative stress (Potje et al., 2021), while the 
glycocalyx damage allowed S-ACE2 binding, in turn enabling viral 
entry (Targosz-Korecka et  al., 2021). These in  vitro findings are 
supported by reports about the high levels of syndecan-1 (SDC-1) in 

convalescent patients (Vollenberg et  al., 2021), suggesting that 
endothelial damage persists during COVID-19 progression, and 
highlights an important role in long COVID and possibly of the spike 
protein, given its persistence in circulation after acute infection.

4.1.3 Spike and pericytes dysfunction
Pericytes are contractile cells which wrap capillaries regulating 

tissue blood flow, in the brain, heart, and kidney. The infection of 
pericytes by SARS-CoV-2 underlies both the virus entry into the CNS 
and the appearance of neurological symptoms, due to the induction 
of perivascular inflammation and compromised blood–brain barrier 
(Robles et al., 2022). Moreover, pericytes exposed to the spike protein 
also can lead to vessel-mediated brain damage. Studies suggest that 
spike protein may reduce cerebral capillary blood flow recruiting 
reactive pericytes to damaged tissue, and thereby contribute to brain 
microvasculature injuries associated with COVID-19 (Robles et al., 
2022). Indeed, spike-exposed pericytes displayed phenotypic changes 
associated with an elongated and contracted morphology along with 
an increased expression of ACE2 and contractile and myofibrogenic 
proteins (Khaddaj-Mallat et  al., 2021a). At the functional level, S 
protein exposure promotes Ca2+ influx, the signature of contractile 
pericytes. Furthermore, S protein induced lipid peroxidation, 
oxidative and nitrosative stress in pericytes, in addition to triggering 
the NFk-B signaling pathway, thereby increasing the production of 
pro-inflammatory cytokines involved in activating and trafficking 
immune cells, which is also potentiated by hypoxia a condition 
associated to vascular disease. These findings indicate that S protein 
may impair the brain pericyte functions, which in turn can lead to 
vessel-mediated brain damage (Khaddaj-Mallat et  al., 2021b). 
Interestingly, ACE2 treatment induced a mild pericyte-mediated 
capillary constriction through AT1R activation, which was enhanced 
by the RBD and by spike-pseudotyped viral particles in human and 
hamster brain tissue (Hirunpattarasilp et al., 2023).

4.1.4 Mast cell activation and BBB disruption
It is suggested that neuro-PASC may (or at least partially) 

be caused by the activation of cerebral mast cells, which would lead to 
perivascular inflammation and disruption of neuronal connectivity 
and neuronal signal transmission (Theoharides and Kempuraj, 2023). 
Meningeal mast cells are capable of affecting the integrity of the BBB 
and promoting cerebral infiltration of T cells (Sayed et al., 2010), since 
mast cells are an early activator of LPS-induced neuroinflammation 
and BBB damage in the hippocampus (Wang et  al., 2020). 
Furthermore, it is proposed that S protein may enter the brain directly 
or through mast cell activation, which then disrupts the integrity of 
the BBB (Theoharides and Kempuraj, 2023). In fact, spike/
RBD-triggered mast cell activation was shown to induce inflammatory 
factors in human brain microvascular endothelial cells and microglia 
(Wu et al., 2024). Moreover, mast cell activation and degranulation 
destroyed tight junction proteins in brain microvascular endothelial 
cells and induced microglial activation and proliferation. Finally, full-
length S protein, but not RBD, stimulated the secretion of the 
pro-inflammatory cytokine interleukin-1β (IL-1β), as well as the 
proteolytic chymase and tryptase enzymes. This effect was mediated 
by TLR4 for IL-1β and the ACE2 pathway for chymase and tryptase 
(Wu et al., 2024). These results provide strong evidence that the SARS-
CoV-2/S protein contributes to inflammation by stimulating mast cells 
through different receptors (Tsilioni and Theoharides, 2023).
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4.2 Spike and microglia and astrocytes 
activation

Microglia and astrocyte subpopulations associated with COVID-19 
share features with pathological states previously observed in human 
neurodegenerative diseases (Yang et  al., 2021). This suggests that 
neuroinflammatory processes during initial SARS-CoV-2 virus infection 
can induce reprogramming of CNS cells that contribute to 
neuroinflammation, neurodegeneration, and persistent neurological 
symptoms observed in neuro-PASC after COVID-19 acute infection 
(Chagas and Serfaty, 2024). Some mechanisms related to microglial 
deregulation are being explored: (i) the decrease in microglial levels of 
brain-derived neurotrophic factor (BDNF); (ii) the involvement of the 
NLRP3 inflammasome, linked to decreased long-term potentiation 
(LTP); (iii) the deregulated expression of cytokines, chemokines, and 
complement system molecules, interfering with adequate synaptic 
plasticity and inducing insufficient or excessive synaptic removal; (iv) the 
lack of influence of microglia on matrix remodeling which promotes E/I 
imbalance and compromised neural circuit maturation; and (v) the cross-
talk between microglia and other circulating immune cells, such as CD4+ 
T lymphocytes, which further aggravates these effects. These mechanisms 
illustrate how abnormal plasticity contributes to the complications of 
neuro-PASC (Chagas and Serfaty, 2024). The microglial NLRP3 
inflammasome appears as a major driver of neurodegeneration. It has 
been demonstrated mechanistically that S protein can activate NLRP3 in 
LPS-stimulated microglia in an ACE2-dependent manner. Spike protein 
can also prime the inflammasome in microglia through NF- κB signaling, 
allowing activation through ATP, nigericin, or α- synuclein. These 
findings and others (discussed below) support possible participation of 
microglial innate immune activation by S protein, in the increased 
vulnerability to the development of neurological symptoms similar to 
Parkinson’s disease in individuals infected with COVID-19 (Albornoz 
et al., 2023). Furthermore, BDNF acts on neuronal regulation, survival, 
and neural plasticity. Reductions in plasma and brain BDNF levels are 
common in patients with psychiatric and neurodegenerative diseases, 
possibly secondary to a state of chronic inflammation affecting the brain 
(Lima Giacobbo et al., 2019).

Three routes could lead to microglial activation from direct 
contact with viral particles: (i) through the olfactory tract; (ii) through 
the hematogenous and endothelial pathway, and (iii) through the 
blood-CSF barrier (Robichaud and Chamard-Witkowski, 2023). The 
S1 subunit showed to be sufficient to provoke neuroinflammation, 
including activation of microglia and gene expression of multiple 
pro-inflammatory cytokines and altered animal behavior reminiscent 
of neurological and cognitive symptoms in patients with COVID-19 
(Frank et al., 2022). Evidence suggests that the S1 subunit can travel 
along nervus neurons terminals and its axons to the brain and then 
activate microglia by binding to TLR4, resulting in increased 
expression of pro-inflammatory cytokines such as IL1β and antigen-
presenting molecules such as MHC-II – molecules upregulated in 
post-mortem brains of COVID-19 patients. Thus, a complete brain 
infection with viral replication is not necessary to induce 
neuroinflammation with neurological, cognitive, and neuropsychiatric 
symptoms caused by microglial activation, synapse removal, and 
neuronal death (Frank et  al., 2022). On the other hand, systemic 
inflammation by hematogenous route and subsequent breakdown of 
the BBB allow peripheral entry of immune cells and cytokines into the 
CNS, activating microglia.

It is known that microglial activation and consequent astrocytic 
reactivity impair synaptic and myelin plasticity, inhibit hippocampal 
neurogenesis, promote inappropriate synaptic elimination and lead to 
excitotoxicity, responsible for neuronal and oligodendrocyte death 
(Robichaud and Chamard-Witkowski, 2023). Once overcoming  
the blood-CSF barrier, a spike protein’s presence in ventricles can 
have  a delayed impact on cognitive function, recapitulating 
PASC. Hippocampal neuroinflammation and microgliosis have also 
been observed to mediate spike-induced memory dysfunction 
through complement-dependent synapse engagement. Genetic or 
pharmacological blockade of TLR4 signaling has been shown to 
protect animals against elimination of synapse and memory 
dysfunction induced by brain infusion of S protein (Fontes-Dantas 
et al., 2023). The astrocyte response to infection occurs by remodeling 
energy metabolism, which affects metabolic pathways associated with 
neuron nutrition and support neurotransmitter synthesis. The altered 
secretory phenotype of infected astrocytes impairs neuronal viability. 
These events can contribute to neuropathological changes, 
neuropsychiatric symptoms, and cognitive impairment. Although 
increasing evidence confirms neuropsychiatric manifestations are 
mainly associated with severe COVID-19 infection, long-term 
neuropsychiatric dysfunction has been frequently observed after mild 
infection (Crunfli et  al., 2022). Interestingly, a Single-cell 
phototransfection of mRNAs encoding spike and nucleocapsid in 
human astrocytes resulted in RNA-dependent translation interference 
(Wang et al., 2024).

4.3 Spike-based vaccines’ effect on 
neuro-PASC

It has been suggested that S protein, whether by viral infection or 
post-vaccination, could induce pathophysiological manifestations and 
specifically neuroinflammation and changes in synaptic plasticity. In 
fact, much evidence regarding the induction of vaccination-induced 
adverse effects has been accumulated. The post-COVID-Vaccine-
Syndrome (PACVS) has been associated with fatigue, cognitive 
disorders, headaches, visual alteration, and muscle pain, among other 
symptoms. Adverse effects on the cardiovascular and neurological 
systems, as well as with autoimmune and inflammatory phenomena 
were also reported (Finsterer, 2022; Liu et al., 2022; Rodriguez et al., 
2022; Sriwastava et al., 2022). Alterations in BBB integrity have been 
found after COVID-19 vaccination (Cabral et al., 2022; Rastogi et al., 
2022). Spike mRNA vaccine (BNT162b2 vaccine) administered during 
pregnancy has been shown to significantly alter WNT gene expression 
and BDNF levels in male and female offspring neonatal rats, 
suggesting that the vaccine may have an impact on key 
neurodevelopmental pathways (Erdogan et al., 2024). In this study, 
male rat exhibited autism-like behaviors characterized by a marked 
reduction in social interaction and repetitive behavior patterns. 
Furthermore, there was a substantial decrease in neuronal counts in 
critical regions of the rat brain, indicating potential neurodegeneration 
or altered neurodevelopment. Male rats also demonstrated impaired 
motor performance, evidenced by reduced agility and coordination 
(Erdogan et al., 2024). Moreover, the S1 subunit spike protein has been 
detected in the blood for up to 14 days, in cerebrospinal fluid (CSF) 
for up to 2.5 months, and in breast milk for up to 45 days in individuals 
after receiving one or two doses of the BTN162b2 or Moderna 
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(mRNA-1273) vaccines (Hanna et  al., 2022; Ogata et  al., 2022). 
However, prospective studies have shown that vaccination, up to two 
doses, before or after SARS-CoV-2 infection reduced the risk of 
development of PASC-prolonged symptoms post-infection (Simon 
et  al., 2021). Remarkably, one or two vaccination doses not only 
showed to reduce the risk of manifesting a more extensive range of 
symptoms but also the mortality (Taquet et al., 2022). Although the 
exact protection mechanism is unknown, a low number of doses of 
vaccine probably enhances the humoral (anti-S Abs) and cellular 
immune responses, promoting the clearance of viral reservoirs, and 
thereby eliminating SARS-CoV-2 antigen-mediated chronic 
inflammation. Nevertheless, the apparent protective effect of long 
COVID conferred by vaccines has recently been questioned, since 
high antibody titers induced by successive vaccinations showed to 
have opposite effects (Tsuchida et al., 2022). These latest findings raise 
a warning due to the occurrence of successive infection waves, along 
with the continuation of vaccination programs worldwide.

4.4 Spike and cellular brain receptors 
interplay-mediated neuropathogenesis

SARS-CoV-2 infects the host cell via its spike glycoprotein 
(Tortorici et al., 2019). After being cleaved by cellular furin protease, 
the S protein is incorporated into the viral surface as a homotrimer 
(Daly et al., 2020). Infection begins with the binding of the S1 subunit, 
primarily through its RBD, to the ACE2 receptor (Hoffmann et al., 
2020b; Li et al., 2020b). However, SARS-CoV-2 also utilizes other 
surface molecules as receptors and co-receptors depending on the cell 
type (Gadanec et al., 2021). These include toll-like receptor 4 (TLR4), 
neuropilin-1 (NRP1), cluster of differentiation (CD147), glucose-
regulated protein (GRP78), human dipeptidylpeptidase 4 (DPP4), 
RGD-binding β integrins, receptors of advanced glycation end 
products (RAGE), and transferrin receptor (TfR) (Gadanec et  al., 
2021). Following the initial interaction, the transmembrane serine 
protease 2 (TMPRSS2) and a disintegrin and metalloprotease 17 
(ADAM17) mediate the cleavage of the S2 subunit, facilitating fusion 
of viral and cellular membranes (Hoffmann et al., 2020a).

4.4.1 ACE2
ACE2 is widely expressed in the sustentacular cells of the olfactory 

epithelium. However, some studies have reported either the absence 
of ACE2 or its detection at lower levels in most olfactory receptor 
neurons (Bilinska et al., 2020). In contrast, high ACE2 expression has 
been observed in nerve terminalis, a bilateral bundle of nerve fibers 
extending through the subarachnoid space from the medial olfactory 
stria at the base of the frontal lobe to the nasal septum (Bilinska et al., 
2021). An investigation into ACE2 expression of ACE2 across various 
human cell types and tissues, including 21 different anatomical regions 
of the brain, revealed that overall ACE2 expression in the brain is low 
compared to other tissues. The highest ACE2 expression in the brain 
was found in following regions: (i) the pons and medulla oblongata in 
the human brainstem, which contain the medullary respiratory 
centers (Lukiw et al., 2022); (ii) subfornical organ, area postrema, 
choroid plexus, and paraventricular nucleus of the thalamus and 
hypothalamus (Chen et al., 2020; Ong et al., 2022), with the choroid 
plexus showing ubiquitous ACE2 expression (Piras et al., 2022); and 

(iii) CVOs, especially in the paraventricular nucleus of the 
hypothalamus and in the choroid plexus (Ong et al., 2022).

CVOs are brain structures that regulate the body’s homeostasis 
through blood–brain communication (Munoz, 2022). The interaction 
between the S protein and ACE2  in the CVO regions has been 
implicated in hormonal changes and psychiatric effects, such as post-
viral fatigue, sleep–wake cycle disturbances, stress, anxiety, and 
depression (Rosenzweig et al., 2020; Ardestani Zadeh and Arab, 2021; 
Jocher et al., 2022). One study found that ACE2 expression in the 
normal brain is more restricted to the choroid plexus and ependymal 
cells than other brain cell types. Interestingly, there was upregulation 
of ACE2  in epithelial cells in some COVID-19 patients with 
neurological involvement, particularly in the white matter and in 
patients with severe neurological symptoms (Lindskog et al., 2022). 
Human brain microvascular endothelial cells (hBMVEC) exhibit low 
levels of ACE2, but recombinant S protein increased ACE2 expression 
(Reynolds and Mahajan, 2021). Similarly, S protein stimulation led to 
increased ACE2 expression in human brain vascular pericytes 
(Khaddaj-Mallat et al., 2021a). Although studies using single-cell RNA 
sequencing (scRNA-seq) detected low ACE2 levels in brain cells, 
relatively high ACE2 expression was found in some components of the 
neurovascular unit, particularly in cerebral pericytes (Muhl et al., 
2020). Additionally, prominent capillaries and tanycytes of the 
hypothalamus express TMPRSS-2 and ACE2, which may facilitate 
SARS-CoV-2 infection in brain tissue (Ternier et al., 2020). These 
findings suggest that ACE2 expression in vascular mural cells, such as 
pericytes, makes them a more likely target of SARS-CoV-2 infection.

4.4.2 S/ACE2-β integrin interplay in BBB 
endothelial cells

The ACE2 protein functions both as the primary receptor for 
SARS-CoV-2 and as a modulator of the RAAS system. ACE2 converts 
angiotensin (Ang) I into Ang 1–9 and Angiotensin II (Ang II) into 
Ang 1–7, leading to reduced Ang II levels and attenuated activation of 
the AT1R receptor (Donoghue et al., 2000). Upon viral infection, 
ACE2 internalization disrupts RAAS balance, resulting in increased 
Ang II levels and enhanced AT1R activation. The Ang II/AT1R axis 
mediates various biological responses, including vasoconstriction, the 
release of chemokines and pro-inflammatory cytokines (MCP-1, 
IL-1β, IL-6, TNF-α, and IFN-γ), inhibition of anti-inflammatory 
cytokines like IL-10, and increased ROS production (de Queiroz et al., 
2020). The elevation of chemokines can lead to the activation, 
chemoattraction, and infiltration of T lymphocytes (LT), neutrophils, 
and monocytes into brain tissue. Additionally, activation of Ang-II/
AT1R axis can promote ADAM17 activation, RAGE1 transactivation 
and NF-κB-mediated inflammatory responses in various cell types 
(Pickering et al., 2019). ADAM17 activation results in cleaving and 
shedding the ACE2 ectodomain, further reducing cell surface ACE2 
levels, increasing Ang II/AT1R axis activity, and creating a positive 
feedback loop. Overactivation of ADAM17 also leads to shedding 
inflammatory factors such as TNF-α, IL-6R, IL-6 and TNFR1/2, and 
VEGF, which may contribute to acute inflammatory response and the 
activation of the coagulation cascade (Zipeto et al., 2020).

Recent research has shown that ADAM17-dependent regulation 
of ACE2 expression is linked to the expression of the bradykinin B1 
receptor in primary cultures of hypothalamic neurons (Parekh and 
Sriramula, 2020). Furthermore, ADAM17 activation can inhibit axon 
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remyelination by blocking neuregulin 1 type III (NRG1-III). Axon 
demyelination may result from increased ROS and cytokines, and 
potentially from direct viral damage to both the CNS and peripheral 
nervous system (PNS) (La Marca et al., 2011). The association between 
elevated ADAM17 expression and activity with poorer clinical 
outcomes and increased mortality underscores the significance of this 
metalloproteinase in COVID-19 pathophysiology (Sun et al., 2024). 
The interaction between the spike (S) protein and ACE2 can also 
activate intracellular mechanisms that involve ADAM17. Specifically, 
the S1 subunit binding with ACE2 has been shown to induce 
ADAM17-mediated shedding of ACE2 and IL-6 shedding in 
adipocytes (Ardiana et al., 2023). Furthermore, the interaction of the 
S protein’s receptor-binding domain (RDB) with ACE2 or β-integrin 
can trigger sequential intracellular signaling events. An increase in 

cytoplasmic Ca2+ initially activates TMEM16/Anoctamin-6 
“scramblases,” leading to the translocation of phosphatidylserine 
(PtdSer) to the outer membrane leaflet (Braga et  al., 2021). The 
translocation of PtdSer can then activate ADAM17 on the cell 
membrane and the extrinsic coagulation pathway through tissue 
factor (TF) (Sommer et  al., 2016). Notably, transient increases in 
cytoplasmic Ca2+, TMEM16 activity, and PdtSer translocation have 
also been observed in brain pericytes, stimulated with both the full-
length S protein and the RBD fragment (Khaddaj-Mallat et al., 2021a). 
Finally, ADAM10/17 is also involved in NOTCH activation, an acute 
phase inflammatory protein that can induce proinflammatory 
cytokines production such as TNF-α and IL-6 (Bozkulak and 
Weinmaster, 2009). Thus, spike protein-mediated ADAM17 activation 
in cerebral vascular endothelium emerges as a critical factor in 

FIGURE 2

Schematic overview of the molecular mechanisms related to SARS-CoV-2 and S protein effect on vascular dysfunction and BBB disruption. Vascular 
cells and pericytes of the BBB can be activated by SARS-CoV-2 infection or by the binding of the spike protein to ACE2 and b-integrin receptors. The 
imbalance of the RAS pathway mediated by ACE2 downmodulation can lead to activation of the Ang II/AT1R axis. Both AT1R activation and viral 
infection itself can trigger several intracellular signaling, such as Ca2+ influx and activation of TMEM16F-scramblase and externalization of PtdSer to the 
outer cell membrane, culminating in the activation of ADAM17. The ADAM17 sheddase activity, together with AT1R-mediated RAGE activation may play 
a preponderant role in the inflammatory process by activating inflammatory factors such as NOTCH and NF-kB proteins, which in turn can lead to the 
production of pro-inflammatory factors such as TNF-α, IL-6, R-IL6, IL1-β. Figure created with BioRender.com.
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pathogenesis, potentially leading to inflammation, vascular 
dysfunction, leakage, edema, and activation of the coagulation cascade 
(Figure 2).

4.4.3 S/TLR4 interplay in microglia cells
Toll-like receptors (TLRs) are essential for initiating the 

innate immune response to infection, stress or injury, and are 
activated by various pathogen-associated molecular patterns 
(PAMPs) (Kawasaki and Kawai, 2014). Research has demonstrated 
that SARS-CoV-2 S protein binds to TLR4 with greater affinity 
than to ACE2 (Choudhury and Mukherjee, 2020), leading to 
aberrant signaling that contributes to the hyperinflammatory 
response seen in COVID-19 patients (Aboudounya and Heads, 
2021). In vitro studies have also shown that the S protein activates 
TLR2/4  in phagocytic cells, stimulating production of 
pro-inflammatory mediators (Khan et al., 2021). Microglia, the 
most abundant immune cells types in the CNS, play a pivotal role 
in neuroinflammatory diseases (Dheen et al., 2007). Microglial 
cells can exhibit both protective and harmful activities during 
viral encephalitis, depending on the infection stage (Chen et al., 
2019). Injection of the S1 subunit into the brain via intra-cisterna 
magna (ICM) modulated the neuroimmune gene expression 
across several brain regions (including hypothalamus, 
hippocampus, and frontal cortex) affecting genes such as Iba1, 
Cd11b, MhcIIα, Cd200r1, Gfap, Tlr2, Tlr4, Nlrp3, Il1b, and 
Hmgb1, as well as protein levels (IFN-γ, IL-1β, TNF, CXCL1, IL-2, 
IL-10) for up to 7 days post-S1 treatment (Frank et al., 2022). 
Additionally, the S1 subunit induced similar behavioral changes 
to those observed in PASC. The infusion of the S protein into the 
brains of mice also impaired cognitive function through 
complement-mediated synapse destruction, mimicking post-
COVID-19 syndrome (Fontes-Dantas et al., 2023).

TLR4 signaling has been identified as the primary pathway 
responsible for long-term cognitive dysfunction after COVID-19 
infection in humans, with the GG genotype TLR4-2604G > A 
(rs10759931) serving as a marker for poor cognitive outcome 
(Fontes-Dantas et al., 2023). In vitro studies further demonstrated 
that the S1 subunit induces pro-inflammatory gene expression 
(TNF-α, IL-6, IL-1β and iNOS/NO) and NF-kB activation in 
mouse BV-2 microglia cell lines (Olajide et  al., 2022). S1 also 
increased the expression and activation of purinergic receptors, 
such as P2x7, in BV-2 cells, and activated the TLR4 signaling 
pathway (Olajide et al., 2022). Notably, Pannexin-1/ATP-dependent 
P2X7 activation acts as a second activation signal of the 
inflammasome system following TLR4-NFkB pathway activation 
(Yue et al., 2023). The P2x7 and NLRP3 inflammasome pathways 
are essential for SARS-CoV-2 infection and involved in the 
COVID-19 pathogenesis (Lecuyer et al., 2023). On the other hand, 
activation of PANX-1/ATP-dependent P2 purinergic receptors can 
also induce ADAM17/10 activation via the ERK and PI3K signaling 
pathway, along with PtdSer translocation through increased 
intracellular Ca2+ influx (Pupovac et  al., 2015). Thus, S-TLR4/
Pannexin1/ATP/P2X7 and S-ACE2/Ca2+/TMEM16/PtdSer 
pathways may synergistically enhance ADAM17 activity (Sommer 
et al., 2016). Consequently, ADAM17 activation mediated by the 
TLR4 and ACE2 receptor signaling may represent another 
mechanism by which SARS-CoV-2 induces the neuroinflammation 

and micro-coagulopathies observed in neuro-PASC (Figure  3; 
Patra et al., 2020).

4.4.4 S/NRP1-CD147-DPP4 interplay in astrocytes
NRP1 is expressed in the olfactory epithelium and in certain 

brain tissues and cells, highlighting its potential role in CNS 
infection and neuro-pathogenesis (Cantuti-Castelvetri et al., 2020; 
Davies et al., 2020; Lechien et al., 2020; Hopkins et al., 2021; Kong 
et  al., 2022). While astrocytes do not exhibit detectable ACE2 
levels, they notably do express elevated NRP1 levels (Potokar et al., 
2023). Quantitative RNA and protein data from pericytes and 
astrocytes extracted from the BBB indicate moderate ACE2 and 
TMPRSS-2 expression levels in astrocytes, but high NRP1 
expression levels, with pericytes showing variable protein 
expression of ACE2, NRP1, and higher TMPRSS-2 mRNA 
expression (Malik et  al., 2023). Although both astrocytes and 
pericytes permit viral infection, evidence suggests that astrocytes 
produce higher viral levels in culture supernatants than pericytes.

The importance of NRP1-mediated SARS-CoV-2 infection in 
astrocytes has been demonstrated by histopathological and molecular 
studies using an anti-NRP1 neutralizing antibody and siNRP1 
(Crunfli et al., 2022). Moreover, SARS-CoV-2 infection of astrocytes 
leads to increased expression of IFN and inflammatory mediators, 
along with decreased expression of ions and neurotransmitter 
transporters. These events result in the dysfunction and death of 
uninfected neurons, contributing to CNS deficits (Kong et al., 2022). 
Interestingly, both the expression levels and the percentage of 
astrocytes expressing NRP1 mRNA were higher in astrocytes from 
COVID-19 patients compared to controls (Crunfli et al., 2022).

NRP1 binds to vascular endothelial growth factor A (VEGF-A) 
and alternatively to viruses such as Epstein–Barr virus (EBV) and 
human T-cell lymphotropic virus-1 (HTLV-1) (Wang et  al., 2015; 
Mercurio, 2019). Thus, NRP1 plays a critical role in vascular 
angiogenesis, promoting growth, survival, and self-renewal, and is 
also involved in axonal guidance in both the CNS and peripheral 
nervous system through interactions with VEGFR2  in vascular 
endothelial cells (Raimondi and Ruhrberg, 2013; Mercurio, 2019). 
Interestingly, VEGF upregulates the ADAM9/10-mediated NRP1 
cleavage, releasing both extracellular and cytoplasmic fragments. The 
cytoplasmic fragment inhibits angiogenesis and migration induced by 
VEGF/VEGFR-2/NRP1 axis through a negative feedback mechanism 
(Figure 4; Mehta et al., 2018). This phenomenon may be significant in 
COVID-19 pathogenesis, as elevated VEGFA levels have been 
observed in the lungs of deceased COVID-19 patients (Ackermann 
et al., 2020). Conversely, downregulation of NRP1 has been associated 
with iron accumulation, inhibition of cellular growth, and 
immunosenescence, suggesting a possible role for ADAM9/10-
mediated NRP1 shedding in PASC symptoms (Issitt et  al., 2019; 
Hanson et al., 2024).

In addition to NRP1, the S protein also binds with high affinity to 
CD147 and DPP4/CD26 (Li et  al., 2020a). Expression of DPP4 and 
CD147 increases in response to inflammation in reactive astrocytes, 
potentially significantly contributing to viral binding and entry into 
astrocytes (Andrews et  al., 2022). The induction of inflammatory 
cytokines may in turn lead to increased VGEFA levels. Therefore, 
upregulation of viral receptors in astrocytes may act as a positive feedback 
mechanism during viral infection (Figure 4; Potokar et al., 2023).
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4.5 Spike-cellular receptors interplay 
hypothesis on neuro-PASC 
pathophysiology

This section introduced comprehensive data that supports the role 
of the SARS-CoV-2/S protein in the pathophysiology of neuro-
PASC. Indeed, the interaction of the spike protein with specific cellular 
receptors in various CNS cell types - such as endothelial cells, mast cells, 
pericytes, microglia, and astrocytes - may be critical in the development 
of the pathophysiological mechanisms associated with neuro-PASC 
symptoms. The proposed molecular mechanisms resulting from 
interactions between the spike protein and specific cellular receptors in 
various CNS cells and tissues can be summarized as follows: (i) The 
interplay between the spike protein and ACE2/β integrin in BBB 
endothelial cells may lead to ACE2 downregulation, increased AngII/
AT1R activity, activation of ADAM17/NOTCH, and production of 
pro-inflammatory cytokines; (ii) The interaction of the spike protein 

with TLR4 in microglial cells can activate NFk-B/Panx1/P2x7, leading 
to subsequent NLRP3/ADAM17 activation and the production of 
pro-inflammatory cytokines; (iii) The S/NRP1-CD147-DPP4 
interaction in astrocytes involves NRP1/VGEF modulation, which 
causes mitochondrial dysfunction and cellular senescence, while 
microglial pro-inflammatory cytokines can induce upregulation of 
CD147 and DPP4, resulting in increased expression of NRP1.

5 Concluding remarks and future 
directions

Despite the important advances in preventing severe 
COVID-19 cases through vaccination, the emergence of long 
COVID syndrome, and especially neuro-PASC, represents a new 
challenge. Thus, herein we have provided comprehensive evidence 
to better understand the physiological processes behind 

FIGURE 3

Schematic overview of the molecular mechanisms related to microglia activation by the SARS-CoV-2 and S protein. Microglial cells can mainly 
be activated by SARS-CoV-2/S spike protein through the TLR4-signaling pathway. In addition, the S protein enhances activity of the ATP+ ion channel, 
and PANX1 and purinergic receptor P2X7/K+, which together with calcium influx can lead to ADAM17 activation and mitochondrial dysfunction. Both 
TLR4 and PANX1/P2X7 activation can lead to activation of NF-Kb transcription factor and inflammasome system activation. These mechanisms 
together lead to the production of pro-inflammatory cytokines such as TNF-α, IL-6, RIL-6, IL1-β and IL-18, involved in the cytokine storm and the 
increase of viral infection. Figure created with BioRender.com.
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neuro-PASC which highlights the activation of astrocytes and 
pericytes in vascular dysfunction. This dysfunction may lead to the 
disruption of the BBB, as well as BBB-deficient regions crucial for 
body homeostasis based on communication between blood and 
brain. Therefore, neuro-PASC appears to manifest as a disorder of 
the blood–brain interface.

In this scenario, the SARS-CoV-2 spike protein emerges as a 
significant contributor to dysfunction in endothelial cells, glycocalyx, 
pericytes, and astrocytes. The spike protein can also interact with 
secretory and sensory nuclei, such as those in the hypothalamus, 

influencing hormonal regulation and the central nervous system’s 
equilibrium. Moreover, the molecular mechanisms underlying 
neuro-PASC effects may be due (or at least in part) to the induction 
of inflammatory processes and micro-coagulopathies triggered by S 
and/or S1 proteins binding to viral receptors expressed at the brain 
endothelial and tissue levels. In summary, the comprehensive data 
presented here highlights the need to further investigate the 
molecular mechanisms underlying Neuro-PASC, mainly related to S 
protein, and especially given the ongoing infection waves and global 
vaccination efforts centered around the S protein.

FIGURE 4

Schematic overview of the molecular mechanisms related to astrocytes activation by the SARS-CoV-2 and S protein. “Astrogliosis” astrocyte activation 
can be mediated by interplay between CD147/DPP4 and NRP1 receptors and SARS-CoV-2 and S protein. CD147/DPP4 activation may enhance 
proinflammatory cytokines, VEGF production and NRP1 activation. Furthermore, VEGF-VEGF-R2/NRP1 is able to induce angiogenesis, migration and 
disruption of TJ proteins in BBB capillary endothelial cells. In addition, excess VEGF can activate the ADAM9/10 metalloproteinases with the 
consequent release of the extracellular domain of NRP1 and cytoplasmic tail, inhibiting the VEGF-NRP1 signaling pathway in a negative feedback 
fashion. Figure created with BioRender.com.
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