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The increasing prevalence of neurodevelopmental disorders has highlighted the 
need for improved testing methods to determine developmental neurotoxicity 
(DNT) hazard for thousands of chemicals. This paper proposes the integration of 
organoid intelligence (OI); leveraging brain organoids to study neuroplasticity in 
vitro, into the DNT testing paradigm. OI brings a new approach to measure the 
impacts of xenobiotics on plasticity mechanisms – a critical biological process that 
is not adequately covered in current DNT in vitro assays. Finally, the integration of 
artificial intelligence (AI) techniques will further facilitate the analysis of complex 
brain organoid data to study these plasticity mechanisms.
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1 Introduction

Neurodevelopmental disorders – classified by deficits in developmental domains including 
motor skills, social interactions, language acquisition, and cognition (Hirvikoski et al., 2021) 
– show a rising trend in diagnoses (Straub et al., 2022; CDC, 2022; CDC, 2024). The increasing 
surge in cases cannot be solely attributed to genetic factors or alterations in diagnostic criteria 
(Tran and Miyake, 2017; Hansen et  al., 2015; King and Bearman, 2009). Environmental 
exposures, including developmental neurotoxicants, have emerged as potential contributing 
factors to the increasing prevalence of neurodevelopmental disorders (Carlsson et al., 2021).

Efforts to understand the interaction between environmental exposures and 
neurodevelopment in higher throughput and more human-relevant models have led to the 
creation of the developmental neurotoxicity (DNT) in vitro battery (IVB) (OECD, 2023). The 
DNT IVB is a series of in vitro assays using both human and rodent cells that measures a 
variety of key neurodevelopmental processes (OECD, 2023). While the DNT IVB addresses 
most aspects of neurodevelopment on the molecular and cellular levels, it does not have an 
assay to measure brain function such as neuroplasticity, using human cells.

Brain organoids, derived from pluripotent stem cells, recapitulate brain cellular 
composition and functionality and thus are an emerging tool to study neurological disorders 
as well as brain development and homeostasis in general. Organoid intelligence (OI) is the use 
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of brain organoids as a tool for modeling the neural responses that 
contribute to higher level functions (such as learning and memory) in 
vitro (Smirnova et al., 2023). As brain organoids contain the important 
neuronal and glial cell types, mimic aspects of normal neuronal 
circuitry, and roughly resemble human brain cytoarchitecture 
(Sandoval et al., 2024; Qian et al., 2016; Paşca et al., 2015; Lancaster 
et al., 2013; Kadoshima et al., 2013), OI represents a promising tool 
for DNT testing. OI assays that can measure neuroplasticity (as 
neuroplasticity mechanisms are essential to learning and memory) 
(Mateos-Aparicio and Rodríguez-Moreno, 2019) include open- and 
closed-loop assays and can complement the DNT-IVB when used to 
assess toxicant impact on plasticity. In open-loop experiments, 
organoids are provided with information in the form of electrical, 
chemical, or optogenetic stimuli and their responses are measured in 
the form of network dynamics changes, which then can be classified 
so that the input can be predicted based on the measured output. In 
the closed-loop experiments, feedback is provided to the organoid 
based on the response to the stimuli, which then is repeated in cycles 
to record the organoid’s capability to “learn” and modify its output 
(Smirnova et  al., 2023). These assays can quantify the impact of 
xenobiotics on plasticity mechanisms and information processing. By 
leveraging the potential of OI, researchers can enhance the detection 
of compounds with DNT hazard by covering an aspect of neurobiology 
that is not well captured by current in vitro assays.

By utilizing the responses of brain organoids to electrical/
chemical/optogenetic stimulation, OI offers a biologically relevant 
approach to studying neuroplasticity in vitro. Overall, this paper 
examines the potential of OI to enhance current methods, the 
integration of machine learning (ML) and artificial intelligence (AI) 
into OI assay development and data analysis, and considerations for 
scaling up these assays to meet regulatory standards for inclusion in 
the DNT IVB. Ultimately, this paper advocates for the integration and 
utility of OI in DNT testing, by creating new in vitro assays aimed at 
functional endpoints in neurotoxicology research that are 
currently underrepresented.

2 Developmental neurotoxicity testing

Neurodevelopmental disorders, which include Autism Spectrum 
Disorder (ASD) and Attention Deficit/Hyperactivity Disorder 
(ADHD), are heterogeneous and are classified by impairments in the 
acquisition of skills in different developmental domains including 
motor, social, language, and cognition (Hirvikoski et al., 2021). The 
prevalence of neurodevelopmental disorders has been increasing over 
time, with one in four publicly- and one in nine privately-insured 
children diagnosed with one or more neurodevelopmental disorders 
by eight years of age (Straub et al., 2022). In addition, it was shown 
from 2016–2019 that six million children aged 3–17 had ADHD 
(CDC, 2022), while in 2020 one in 36 children in the USA was 
diagnosed with ASD (CDC, 2024). The Autism and Developmental 
Disabilities Monitoring Network showed that the prevalence of ASD 
for 8 year olds increased over 121% over 10 years from 2002 to 2012 
(Christensen et al., 2016; Prevalence of Autism Spectrum Disorders, 
2002). Lastly, ADHD prevalence in children aged 3 to 17 increased 
over 25% between 2003 to 2015 (Centers for Disease Control and 
Prevention (CDC), 2010; National Center for Health Statistics, 
United States, Centers for Disease Control and Prevention, 2015). This 

increase in neurodevelopmental disorders cannot be attributed to 
genetic factors, diagnostic criteria, and reporting methods alone (Tran 
and Miyake, 2017; Hansen et al., 2015; King and Bearman, 2009). 
Determining the cause(s) of neurodevelopmental disorders remains a 
challenge due to the complexity of these diseases, but previous 
research has documented that exposure to environmental toxicants 
can negatively impact neurodevelopment (Carlsson et  al., 2021; 
Grandjean and Landrigan, 2014; Landrigan, 2010). There are current 
Organization for Economic Co-operation and Development (OECD) 
and Environmental Protection Agency in vivo testing guidelines for 
DNT (OECD, 2007; U.S. Environmental Protection Agency, 1998). 
However, testing for DNT is not routinely required for all compounds 
and for pesticides, it is typically only conducted when signs of 
neurotoxicity are observed in other required studies or the compound 
is structurally related to known neurotoxicants. As a result, many 
compounds have never been tested for their DNT potential (Behl 
et al., 2019; Smirnova et al., 2014). In addition, it is challenging to test 
all the newly registered compounds due to the limitations of the 
current testing paradigm. This paradigm, based on animal models, is 
expensive (Tsuji and Crofton, 2012; Rovida and Hartung, 2009; 
Paparella et al., 2020), time-consuming (1–2 years) (Tsuji and Crofton, 
2012; Rovida and Hartung, 2009; Paparella et  al., 2020), 
low-throughput (Paparella et al., 2020), raise 3Rs conflicts (Paparella 
et al., 2020), and is not always physiologically relevant (Behl et al., 
2019; Smirnova et al., 2014; Blum et al., 2023). As a result, chemical 
safety testing is transitioning away from in vivo animal tests and 
instead moving toward using in vitro testing and integrated approaches 
to testing and assessment (OECD, 2023). This has led to the 
development of new approach methodologies (NAMs) to study DNT 
(Bal-Price et al., 2018b; Masjosthusmann et al., 2020; US EPA, 2020). 
NAMs include in vitro and in silico methods to inform safety 
assessment (Stucki et al., 2022) and present the opportunity for less 
expensive, high-throughput approaches to address the gaps in toxicity 
testing. Since an individual NAM in isolation cannot model all aspects 
of neurodevelopment, a battery of DNT tests was proposed to study 
key neurodevelopment processes independently of one another (Blum 
et al., 2023). The in vitro battery (IVB) for DNT includes several assays 
that are meant to characterize the physiological effects of chemicals on 
the developing neural system including stages of neuronal 
development. These tests are used as a high-throughput, cost effective 
method for screening environmental chemicals for DNT (Bal-Price 
et al., 2018b; Bal-Price et al., 2018a). The DNT IVB can evaluate how 
a compound impacts different stages of neuronal development, but a 
human-based in vitro assay to determine the impact of compounds on 
neuroplasticity has not yet been incorporated into the DNT IVB 
(Bal-Price et al., 2018b; Juberg et al., 2023). As a complement to the 
DNT IVB, zebrafish assays can be used for behavioral assessment 
(Bal-Price et al., 2018b). Therefore, there is a need to develop an assay 
using human cells to include in the DNT IVB to assess neuroplasticity 
as these mechanisms can help inform changes on the behavioral level.

The standard approach to studying the effects of a chemical or 
disease on cognitive functions, such as learning and memory, involves 
utilizing either an animal model or conducting epidemiological 
assessments with humans. Although epidemiological studies offer 
insightful data, they have several limitations. These include the 
observational rather than mechanistic nature of collected data, the 
constraint on the range of research questions that can be explored due 
to their focus on an exposed population, and the fact that they are 
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time consuming with limited types of samples that can be collected. 
In addition, there are challenges with documenting the exact exposure, 
including its duration and amount, which are difficult to establish, and 
assignment of effects to a single entity is often difficult due to 
co-exposures. This makes it difficult to investigate the underlying 
processes by which cognition is impaired. There is a history of using 
animal models to evaluate cognitive functions, and there is an array 
of assays that have been developed and used to measure cognitive 
impairments. Some animal cognition/behavior assays that exist 
include the Morris Water Maze, Y-Maze, Novel Object Recognition, 
Barnes Maze, Radial Arm Maze, Step-through Passive Avoidance, and 
Reversal Learning tests (d’Isa and Gerlai, 2023; Shaw and Schmelz, 
2017). In all animal behavior tests, there are three main elements: (1) 
a motivating factor; (2) the observed behavior, and (3) the quantified 
outcome (d’Isa and Gerlai, 2023). These tests can cause stress to the 
animal or even brief pain through the delivery of mild electrical 
shocks (d’Isa and Gerlai, 2023). In addition to the ethical concerns, 
there are many critical challenges associated with the cross-
translational research of studying cognition in animals including 
reproducibility, standardization, and clinical heterogeneity (d’Isa and 
Gerlai, 2023). Moreover, animal models present a challenge for 
toxicity testing because they are costly and time consuming. This 
reduces the throughput of scientific studies, thereby limiting the 
number of chemicals, windows of exposure, and doses that can 
be tested. Due to all these limitations, there is a need for a human cell-
based in vitro assay that can be used to measure the biology underlying 
cognitive functions in a faster, more cost-effective manner. These gaps 
represent an opportunity for OI plasticity assays to be used for in vitro 
DNT testing, which can subsequently reduce the requirement for 
resource-intensive animal-based learning and memory tests.

3 OI for DNT

Throughout human brain development, the brain is highly 
susceptible to exposures (Bick and Nelson, 2016; Miguel et al., 2019). 
Brain development is a regulated process that involves neural stem cell 
proliferation, differentiation, neuronal migration, synaptogenesis, 
neuronal circuit development, synaptic maturation and pruning, 
myelination and gliagenesis (National Academies Press, 2000; Jiang 
and Nardelli, 2016; Tau and Peterson, 2010; Zhou et  al., 2024). 
Throughout development, the brain continues to modulate its neural 
circuit connectivity (Jiang and Nardelli, 2016). As cognition is 
increasingly understood through neuronal circuitry, the proper 
development of these circuits is critical for cognitive development 
(Tau and Peterson, 2010; Zhou et al., 2024). Exposure to xenobiotics 
during brain development could significantly impair cognition and 
overall cognitive functions later in life (Bick and Nelson, 2016; Miguel 
et al., 2019; Zhou et al., 2024).

Toward understanding the impact of diverse exposures on brain 
development, efforts have been directed toward generating in vitro 
models aimed at replicating these cellular processes within controlled 
environments (Cao, 2022; Fan et al., 2022; Matsui and Shinozawa, 
2021; Vashishat et al., 2024; Yang et al., 2022). Microphysiological 
systems (MPS) is an umbrella term, covering different types of 
advanced cultures, including organoids, spheroids, microfluidics, and 
organ-on-chip technology (Barreras et al., 2023). These models serve 
to elucidate the mechanisms and potential adverse outcomes 

associated with such exposures (Cao, 2022; Fan et al., 2022; Matsui 
and Shinozawa, 2021; Barreras et  al., 2023). Human brain 
microphysiological systems (bMPS) are human cell-derived advanced 
cell cultures, recapitulating key aspects of brain architecture and 
functionality (Barreras et al., 2023). Among these, induced pluripotent 
stem cell (iPSC) derived three-dimensional (3D) brain models, such 
as organoids, spheroids, and assembloids, have shown more 
complexity than traditional two-dimensional (2D) monolayer 
cultures. Brain organoids can recapitulate the correct cellular 
composition, including neuronal and glial cell types through self-
organization and co-differentiation (Barreras et al., 2023; Andersen 
et al., 2020; Anderson et al., 2021; Birey et al., 2017; Kim and Chang, 
2023; Pamies et al., 2017; Qian et al., 2019; Quadrato et al., 2017; Sloan 
et  al., 2017). They also exhibit cytoarchitecture (Kim and Chang, 
2023), network connectivity (Sharf et  al., 2022), and aspects of 
electrical activity found in the developing brain (Qian et al., 2016; 
Paşca et al., 2015; Birey et al., 2017). The 3D cytoarchitecture in bMPS 
models provides increased cell–cell interactions, helping regulate key 
aspects of neuronal network development including proliferation, 
differentiation, and migration, which directly impacts neuronal 
network function (Yang et al., 2022; Aschner et al., 2017). While 2D 
models are useful, they lack 3D cytoarchitecture and have 
demonstrated lower neuronal activity compared to organoid models 
(Trujillo et al., 2019), which plays a critical role in neuroplasticity 
processes (Citri and Malenka, 2008).

Among the many methods to generate bMPS, two common 
approaches are unguided and guided differentiation, which generate 
neural or region-specific organoids, respectively (Qian et al., 2019). 
Region-specific organoids, such as the forebrain (Qian et al., 2016), 
midbrain (Qian et al., 2016; Jo et al., 2016), hypothalamus (Qian et al., 
2016), cerebral (Paşca et al., 2015; Lancaster et al., 2013; Citri and 
Malenka, 2008; Jo et al., 2016), and hippocampal (Pomeshchik et al., 
2020; Jacob et al., 2020), are just some of the models that have been 
developed so far. Although organoids are able to recapitulate 
important features of human brain development, it is important to 
note that they are not as complex as the human brain (Qian et al., 
2019), and there is variability across different organoid generation 
protocols (Qian et al., 2019). However, they are simplified models of 
the human brain that provide an opportunity to study the cellular 
mechanisms underlying brain development and functionality and 
how xenobiotics could influence those functions. Utilizing these 
region-specific organoids individually can help to better understand 
brain-region specific impacts of xenobiotics on function. Furthermore, 
combining these different brain regions using assembloids or 
microfluidic techniques could potentially provide greater model 
complexity. Assembloids have been shown to produce more complex 
oscillatory activity compared to individual organoids (Osaki et al., 
2024). In addition, recent work demonstrates that combining 
organoids of different brain regions, such as thalamic and cortical 
organoids, to study synaptic plasticity in a simplified human neural 
circuit is capable of both short- and long-term plasticity (Patton et al., 
2024). While no model can replicate the full complexity of the human 
brain, these organoid and assembloids-based approaches offer 
powerful tools for studying the toxicological effect of xenobiotics on 
brain development and function.

In recent developments, the term organoid intelligence (OI) has 
been proposed as the use of organoids as a promising model for 
studying the neural responses that contribute to cognitive functions 
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such as learning and memory in vitro (Smirnova et al., 2023). While 
current studies with organoids have not demonstrated the capabilities 
of learning or memory, they have exhibited both short (Zafeiriou 
et al., 2020; Cai et al., 2023) and long-term synaptic plasticity (Patton 
et  al., 2024). These processes are fundamental for learning and 
memory (Whitlock et al., 2006). Therefore studying these mechanisms 
can provide insight into brain function and studying their disruption 
following chemical exposure could provide information about 
neurotoxicity hazard.

4 How OI can be used for 
Developmental Neurotoxicity testing?

OI can complement and enhance the current DNT IVB, 
expanding the functional aspects of the battery by including tests for 
neuroplasticity. Taking the current battery of tests to a new level, OI 
offers the opportunity to quantify the impact of xenobiotics on brain 
organoid information processing at different stages of brain organoid 
development. Specifically, it enables a focused analysis of neuronal 
responses to information, identifying compounds that perturb these 
functions and potentially shedding light on the mechanisms by which 
xenobiotics impair neuroplasticity in the developing brain (Figure 1).

While OI is a new frontier and assays are still being developed, 
there is already promising data to support its utility for developmental 
neurotoxicity testing. Organoids have been shown to exhibit long-
term plasticity using standard patch clamping techniques (Patton 
et al., 2024) and exhibit long-term network changes after stimulation 
on microelectrode arrays (MEAs) (Zafeiriou et al., 2020). In addition, 
brain organoids completed reservoir computing tasks, which involved 
predicting nonlinear dynamics and identifying sensory signals (Cai 
et al., 2023). Moreover, dissociated rat cortical cells cultured in 2D on 
MEAs altered their neural networks in response to repetitive electrical 
training stimuli and demonstrated their ability to distinguish 
individual signals when exposed to multiple stimuli (Isomura et al., 
2015). These tasks showcase how in vitro models including organoids 
can be used to study biological information processing and network 
plasticity, resembling unsupervised machine learning. These tests 
could be considered open-loop assays, as they stimulate and record 
electrophysiology data from the organoids without task-
related feedback.

In addition, while not an organoid, 2D in vitro neuronal networks 
have been shown to successfully “learn” how to play a variant of the 
game “pong” in a simulated game environment through real-time 
closed-loop electrophysiological stimulation and recording on a high-
density MEA (HD-MEA) (Kagan et al., 2022). Furthermore, other 2D 
in vitro neuronal network models were able to successfully navigate a 
virtual robot through an arena with obstacles (Tessadori and 
Chiappalone, 2015), move a robotic arm (Chapin et al., 1999), and 
“learn” using a closed-loop experimental design (Shahaf and Marom, 
2001; Li et  al., 2007; le Feber et  al., 2010; Pimashkin et  al., 2013; 
Sinapayen et al., 2017). These experiments represent the successful 
implementation of closed-loop in vitro experiments that can 
be applied to organoids and used for OI.

By utilizing both open- and closed-loop experimental paradigms 
as shown in Figure 2, OI could provide detailed information as to how 
xenobiotics potentially modulate neuroplasticity across different 
stages of brain organoid development. It could also quantify changes 

in information processing in neural circuits and criticality of neural 
dynamics, both valuable metrics for studying brain function that 
could inform neurotoxic hazard potential.

4.1 Integration of AI for analysis and 
interpretation of open- and closed-loop 
experiments

HD-MEAs and rapidly maturing novel electrode technologies 
such as 3D shell MEAs (Huang et al., 2022), 3D-self-rolled biosensor 
arrays (Kalmykov et  al., 2021), nanowires (Li et  al., 2019), mesh 
electrodes (McDonald et al., 2023; Park et al., 2021), and high density 
probe electrodes (Steinmetz et  al., 2021), allow for signals to 
be presented to and recorded from organoids, in some cases using 
hundreds to thousands of channels (Steinmetz et al., 2021; Miccoli 
et al., 2019; Müller et al., 2015). The complexity and volume of this 
data pose a challenge, but not an insurmountable one, as the 
advancements in AI over the past decade now provide suitable 
computational hardware and techniques for analyzing high-
dimensional organoid signals (Pachitariu et al., 2016). OI for DNT 
testing can leverage extensive advances in ML approaches for in vivo 
and in vitro neuroscience, allowing for automated analysis and 
computational modeling of neural systems at a similar scale.

4.1.1 Capabilities and limitations of current 
machine learning and AI approaches for OI

Moving forward, ML and AI algorithms will facilitate the 
detection, analysis, and interpretation of structured activity patterns 
that emerge in developing brain organoids. In general, OI for DNT 
can benefit from emerging approaches for AI for Science (Wang et al., 
2023), which are advancing in many disciplines. Neuroscience, in 
particular, has lagged behind other domains, such as genomics or 
material science, when applying ML and AI tools for data analysis. 
There is now, however, rapid progress in the area (Johnson et al., 
2023). ML and AI algorithms relevant to OI for DNT testing include 
many tools for automating analysis of functional neuroscience data. 
This includes established algorithms for identifying individual units 
in high dimensional electrophysiology recordings (Pachitariu et al., 
2016), processing regions of interest to extract traces in calcium 
imaging data (Giovannucci et al., 2019), and estimating functional 
connectivity of in vitro networks (Puppo et al., 2021). These established 
approaches can greatly improve the throughput and scalability of OI 
experiments and are well validated using existing in vivo and in vitro 
models at the scale of envisioned OI experiments (thousands of 
individual electrodes over many hours of recording). Ultimately, these 
approaches are expected to be  central to a set of OI assays for 
functional analysis as shown in Figure 2.

In addition to accelerating computational analysis, AI and ML 
approaches are being applied to additional aspects of exploratory data 
analysis, visualization, and interpretation. While such approaches are 
more nascent, they hold great promise for giving interpretable insight 
for OI experiments to explore DNT. In the broader neuroscience 
domain, such methods are already being widely applied to in vivo 
animal recordings (Le and Shlizerman, 2022; Schneider et al., 2023) 
to discover lower-dimensional activity embeddings, determine the 
most exciting stimuli in a closed-loop experiment (Walker et  al., 
2019), and decode variables related to sensory and motor processing 
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FIGURE 1

Outline of organoid intelligence for developmental neurotoxicity testing. Using brain organoids interfacing with tools such as high-density 
microelectrode arrays (HD-MEAs) and optogenetic probes, electrophysiological data can be used to inform how xenobiotics impact the molecular 
mechanisms associated with cognition and modulate synaptic plasticity. Created in BioRender. Alam el din, D. (2024) BioRender.com/g91a488 (this is 
the publication license).

FIGURE 2

Envisioned use of OI for in vitro assessment assays for brain organoids. (A) An open-loop experiment, mimicking sensory processing, where task 
feedback is not used to stimulate the organoid. (B) A closed-loop experiment, mimicking reinforcement learning or behavioral tasks. (C) Potential 
assays which can be derived from brain organoid physiological data collected during open- and closed-loop experiments.
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(Pei et al., 2022). In addition, there are extensive packages, such as the 
Brain Modeling Toolkit (Dai et al., 2020), for creating computational 
models of neural activity and plasticity, which can be  used for 
prediction as well as numerical experiments. Such methods are equally 
applicable to brain organoid electrophysiology and functional 
recordings. It is critical, however, to recognize the limitations of many 
emerging ML and AI algorithms and modeling approaches, including 
a lack of generalization to new datasets. Unique OI preparations for 
DNT experiments may require preliminary experimental validation, 
as well as collecting and labeling new data for fine tuning of algorithms.

4.1.2 OI experiments and validation of 
computational AI and ML models

A critical aspect of integrating AI and ML approaches for analysis 
of OI data is establishing experimental paradigms, such as outlined in 
Figure 2. ML and AI approaches for automating steps of analysis, such 
as spike sorting, functional connectivity estimation, region of interest 
identification, and computation of key metrics and statistics can 
be used in both closed and open-loop experiments. In these cases, 
pre-trained models can be deployed to rapidly ingest experimental 
data and create secondary data products. Integration of more complex 
AI tools will require validation against experimental data.

Validation of experimental approaches and AI software tools can 
leverage existing data archives and standards from the neuroscience 
community. Examples of this include the DANDI archive, which 
contains extensive in vivo recordings from mammalian nervous systems 
in a standardized Neurodata Without Borders (Rübel et  al., 2022) 
format. These data can be used to create validation datasets to ensure 
OI data produce raw data and secondary data products of sufficient 
quality for further analysis. In addition, experimental approaches can 
be constructed to explicitly compare dynamics, plasticity, and activity 
across OI and in vivo systems. In addition, the community should 
endeavor to create data analysis challenges focused AI and ML models 
for prediction and interpretation of neural data, following the model of 
successful in vivo benchmark datasets (Pei et al., 2022). In addition to 
in vivo benchmarks, the community should create artificial agent 
benchmarks which can be used to provide performance targets for OI 
experimental tasks and frameworks (Khajehnejad et al., 2024).

In addition, using experimental data gathered during closed-loop 
experiments, AI algorithms can be  trained to model sophisticated 
learning rules in organoids. These rules include either 
phenomenological rules, rules built on neuroscience principles such as 
Hebbian learning and spike-timing dependent plasticity, or rules built 
on neuroscience learning theories such as predictive coding (Huang 
and Rao, 2011; Rao and Ballard, 1999) or the free-energy principle 
(Friston, 2010). As with open-loop experiments, progression of 
organoid learning can be monitored to assess the impact of xenobiotics. 
These can be  assessed using tasks derived from AI algorithm 
development (Staley et al., 2021) as well as simulations of behavioral 
experiments conducted in vivo (Molano-Mazon et al., 2022). As the 
field develops, such closed-loop experiments may play the role of 
established behavioral experimental paradigms, relating toxicity 
mechanisms to functional activity changes to behavioral outcomes. 
Careful design of validation experiments will be required, including 
hold out experimental conditions, to ensure robust and reproducible 
model fits.

Challenges remain, however, and the nature of any given organoid 
system should be considered with respect to its relationship to human 

brains. In particular, current single-region brain organoids lack the 
brain macrostructure and thus both the organoids and AI models of 
those organoids are unlikely to be adequate models of certain types of 
learning, such as those that leverage delayed reward (O’Doherty et al., 
2003) or relate to complementary learning theories (McClelland and 
Goddard, 1996). Scaling is also a challenge; if organoids are to be used 
in screening, then systems will need sufficient throughput (multi-well 
plate format, which is challenging for more advanced MEA devices or 
more complex perfused organoid systems) to test multiple chemicals 
simultaneously. In addition, variability in electrode positioning and 
interfacing with organoid’s neurons may create difficulties in 
experimental reproducibility. Advances in both organoid and interface 
consistency are likely necessary to ensure consistent results across 
organoids, time, and neurotoxicity testing protocols.

4.2 Regulation and adoption of OI for 
developmental neurotoxicity testing

To have an impact on assessment of environmental chemicals for 
DNT, the OI field will need to evolve from its current state as a tool for 
basic neurobiology to become a useful tool for applied toxicology. This 
will require several advancements and transformations. These 
approaches will have to be more widely available and adopted by the 
toxicology community, which will require the availability of training and 
thus specialists, which have expertise in the use of OI and its application 
to different types of problems. The requisite equipment and biological 
models will also need to be widely available. It will take some time for 
this to happen, but as it was seen for gene editing and genomics 
approaches, this approach can become more mainstream. As part of this 
process, approaches will need to become more standardized and 
variability of data produced by these approaches will need to 
be  quantified and shown to be  comparable to or better than data 
obtained from animal models (Paparella et al., 2020). In the near future, 
OI approaches could be incorporated into DNT hazard assessment as 
part of a tiered approach. Thomas et  al. (2019) have outlined a 
temporally tiered approach to chemical testing where transcriptomic 
approaches comprise a 1st tier, the current assays in the DNT-IVB 
comprise a 2nd tier, and organoid and OI approaches could become a 
viable 3rd tier. As the technology improves and allows for higher 
throughput approaches (for example, closed -loop experiments in multi-
well MEA plates), then these approaches can be employed in earlier tiers 
(e.g., 1st or 2nd) for DNT screening and characterization. By following 
the approach taken for assays in the current DNT-IVB (testing common 
sets of chemicals, making data publicly available, development of 
criterion for acceptability of data), OI-derived assays could eventually 
be incorporated into the battery. Regardless of what tier these approaches 
might contribute to now or in the future, regulatory acceptance will 
be facilitated by the development of case-studies that demonstrate the 
ability of organoids and OI to inform regulatory decision-making.

5 Conclusion

In conclusion, incorporating OI into DNT testing represents a 
promising tool for advancing toxicology research and improving 
regulatory approaches. By addressing the limitations of the current 
testing paradigm, OI offers a human based approach to study 
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neuroplasticity in vitro. In addition, the integration of AI further 
enhances the analysis of complex brain organoid data, providing 
information on the impact of xenobiotics on neurodevelopment. 
Overall, OI is a promising new approach that has the potential to 
be  used to study neurotoxicity mechanisms, contribute to higher 
throughput chemical assessments, and aid in regulatory decisions.
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