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Spinal cord injury (SCI) is a serious neurological injury that causes severe trauma to 
motor and sensory functions. Although long considered incurable, recent research 
has brought new hope for functional recovery from SCI. After SCI, astrocytes are 
activated into many polarization states. Here we discuss the two most important 
classical phenotypes: the ‘A1’ neurotoxic phenotype and the ‘A2’ neuroprotective 
phenotype, with A1 astrocytes being neurotoxic and impeding neurorecovery, 
and A2 astrocytes being neuroprotective. This paper discusses the changes in 
astrocyte responsiveness after SCI and the pros and cons of their polarization 
in SCI. It also elucidates the feasibility of astrocyte polarization as a therapeutic 
target for neuroprotection. In the future, multiple intervention strategies targeting 
astrocyte polarization are expected to gain wider clinical application, ultimately 
improving motor-sensory function and quality of life in SCI patients.
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1 Introduction

Spinal Cord Injury (SCI) is a severe neurological injury that results in a profound 
neurological impairment that culminates in enduring or irreversible deficits in motor, sensory, 
and autonomic functionalities (Ahuja et al., 2017; Maier and Schwab, 2006; Anjum et al., 2020; 
Sterner and Sterner, 2022). The worldwide prevalence of SCI is notably high, averaging 
between 30.0 to 40.0 incidents per million in the United States and 23.7 to 60.6 incidents per 
million in China, as indicated by recent studies (Singh et al., 2014; Jazayeri et al., 2015). SCI 
not only has a severe impact on patient’s quality of life but also poses unprecedented challenges 
in healthcare and rehabilitation. Despite significant advances in neuroprotection, regeneration, 
and repair in recent years, medical science and technology, functional recovery following SCI 
still faces many obstacles and difficulties (Ahuja et al., 2017).

Astrocytes, the most abundant type of glial cell in the central nervous system (CNS) 
(Lawrence et al., 2023), have a variety of critical biological functions, including supporting 
trophic neurons, regulating synaptic activity and neuronal electrical activity, and maintaining 
the integrity of the blood–brain barrier and blood-spinal cord barrier (Seifert et al., 2006; 
Halassa et al., 2007). In the resting state, astrocytes exhibit a “homeostatic” phenotype, but in 
SCI or other pathological states, astrocytes become activated and polarized, and their 
phenotypic and functional changes are critical for repair and regeneration following SCI. This 
review is intended to explore the impact of polarized astrocytes on the repair of spinal cord 
injury and to elucidate the feasibility of utilizing astrocyte polarization as a therapeutic target 
for neuroprotection.
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2 Astrocyte response after SCI

The response of astrocytes following SCI is extremely complex 
and multifaceted, involving significant morphological and functional 
changes. The extent of their response is influenced by various cell 
surface DAMPS receptors and pro-inflammatory cytokines and 
chemokines (Sofroniew, 2014b). After the injury, astrocytes are rapidly 
activated and undergo a series of biological variations, including 
significant hypertrophy of the cyton and protrusions, proliferation, 
and migration (Sofroniew, 2014a; Anderson et al., 2014; Sofroniew, 
2009; Koyama, 2014). At the same time, the function of these activated 
astrocytes undergoes drastic variations, and these functional 
variations are crucial for repairing damage and restoring function. 
Relevant studies have identified multiple polarization possibilities for 
astrocytes. However, we  found that the A1/A2 phenotype may 
be  more useful in describing the state and function of reactive 
astrocytes in SCI, as well as being supported by a large body of 
research, so this paper focuses on the A1/A2 phenotype. In response 
to ischemia, astrocytes undergo polarization and assume a 
neuroprotective/A2 phenotype (Liddelow and Barres, 2017; Zamanian 
et al., 2012; Su et al., 2019). Characteristic hallmarks include S100a10, 
Clcf1, Ptx3, Emp1, and S1pr3 (Zamanian et al., 2012; Liddelow and 
Barres, 2017). These type A2 astrocytes exert neuroprotective 
functions via the generation of anti-inflammatory cytokines and 
neurotrophic factors that promote tissue repair and regeneration 
(Liddelow et al., 2017; Jang et al., 2013; Zamanian et al., 2012; Wang 
et al., 2021b). In contrast, specific cytokines secreted by microglia 
exposed to lipopolysaccharide (LPS), neuroinflammation, etc. induce 
a cytotoxic A1 astrocyte (Liddelow and Barres, 2017; Liddelow et al., 
2017). Characteristic markers are complement C3, iNOS, SerpinG1, 
and H2d1 (Zamanian et al., 2012; Kisucká et al., 2021). Out of these, 
C3 is the most critical biomarker for A1 astrocytes, which are engaged 
in a variety of crucial processes. These type A1 astrocytes are incapable 
of promoting neuronal survival and growth, synapse formation, and 
phagocytosis (Wang et  al., 2023), as well as strongly upregulate a 
variety of genes that are detrimental to synapses (e.g., complement 
system genes) (Liddelow and Barres, 2017), even triggering neuronal 
death (Chang et al., 2023).

3 Pros and cons of astrocyte 
polarization after SCI

Understanding these two phenotypes’ biological functions can 
help delve into repair strategies for SCI. Due to the distinctly different 
functions of A1/A2 astrocytes, their roles in functional recovery from 
SCI are also opposing:

3.1 A2 astrocytes promote neuronal 
survival and functional recovery through 
multiple mechanisms

3.1.1 Secretion of neurotrophic factors
Astrocytes of this phenotype secrete a good deal of neurotrophic 

factors, such as BDNF, GDNF, CLCF1, and HIF (Zamanian et al., 
2012; Liu L. R. et  al., 2020). They confer great neuroprotective 

functions to A2 astrocytes. For example, BDNF promotes neuronal 
survival, synaptic plasticity, and axon growth by binding to its receptor 
TrKB and activating the downstream MAPK/ERK signaling pathway 
(Wang et al., 2024; Liang et al., 2019). Meanwhile, GDNF acts mainly 
through the Ret receptor to support motor and sensory neuron 
survival (Durbec et al., 1996). In vitro co-culture of A2 astrocytes with 
neurons significantly inhibited high glutamate-induced neuronal 
apoptosis, significantly reduced pro-apoptotic proteins such as 
caspase 3, caspase 9, and Bax, and promoted neuronal dendritic 
arborization (Chang et al., 2023). The impact of A2 astrocytes on 
neurons is likely to be  mediated by the secretion of certain 
neurotrophic factors. These trophic factors play a pivotal role in SCI 
(Figure 1).

3.1.2 Regulation of inflammatory response
Excessive inflammatory response following SCI can cause 

severe tissue damage (Xu L. et  al., 2018). Astrocytes of the 
neuroprotective phenotype can secrete anti-inflammatory factors 
(IL-10 and TGF-β), which regulate and inhibit excessive local 
inflammatory responses (Zhang et al., 2020b). For example, IL-10 
can limit immunoreaction, promote myelin regeneration, and 
facilitate neuronal repair (Yang et  al., 2009; Hellenbrand et  al., 
2019). IL-10 also causes A2 astrocytes to secrete TGF-β through 
autocrine means and reduces microglia activation (Norden et al., 
2014). It has been demonstrated that A2 astrocytes are also capable 
of inhibiting the accumulation of reactive microglials (Chang et al., 
2023). These findings offer new insights into the mechanisms by 
which astrocytes regulate microglials in the context of inflammatory 
conditions. Meanwhile, this interaction suggests that polarized 
astrocytes after SCI may be  involved in regulating multiple 
cellular activities.

3.1.3 Removal of harmful substances
A2 astrocytes play an instrumental role in the alleviation of a toxic 

environment in the injured area through the phagocytosis and 
clearance of harmful agents, such as myelin fragments and metabolites 
(Morizawa et al., 2017). Furthermore, myelin fragments have been 
observed to contain axon growth inhibitors, which can impede axon 
regeneration (Schwab, 2010). The removal of such inhibitory 
substances can facilitate more conducive conditions for neuronal 
repair and regeneration.

3.1.4 Involvement in the processes of synapse 
formation and repair and promotion of myelin 
regeneration

Astrocytes with neuroprotective properties have been 
demonstrated to secrete GPCG4/6 (Allen et  al., 2012), SPARCL1 
(Kucukdereli et  al., 2011) and pro-synaptic platelet-responsive 
proteins (e.g., Thbs1/2), which promote synapse formation 
(Christopherson et al., 2005) and accelerate synapse repair following 
SCI (Chan et al., 2019; Eroglu et al., 2009). Myelin regeneration is a 
vital component of the recovery process following a central nervous 
system injury (Psachoulia et  al., 2016; Lee et  al., 2015). The 
transplantation of A2 astrocytes has been shown to enhance myelin 
regeneration at the lesion site in SCI models, indicating that A2 
astrocytes may facilitate the formation of mature myelinating 
oligodendrocytes (Chang et al., 2023).
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A2 astrocytes are implicated in the pathophysiology of SCI 
through multiple pathways, ultimately exerting a supportive influence 
on neurons and promoting regeneration.

3.2 A1 astrocytes impede functional 
recovery through the following 
mechanisms

3.2.1 Secretion of pro-inflammatory factors and 
chemokines

A1 astrocytes secrete significant quantities of inflammatory 
factors, including TNF-α, IL-1β, IFN-γ, IL-1, and IL-6 (Li et al., 2019; 
Jang et al., 2013), which have been demonstrated to markedly promote 
the activation of inflammatory cells, resulting in extensive 
inflammatory cell infiltration. A1 astrocytes also rapidly synthesize 
many inflammatory chemokines, such as CCL2, CXCL1, and CXCL2. 
These chemokines facilitate the recruitment of blood-derived immune 
cells (e.g., type I  “inflammatory” monocytes and neutrophils) to 
infiltrate the lesion site, thereby exacerbating inflammatory cell 
aggregation and activation, thus creating an even harsher 
microenvironment (Pineau et al., 2010). At the same time, it has been 
demonstrated that IL-1R is a key regulator of the expression of these 
chemokines by astrocytes after SCI, regulating the secretion of 

chemokines from A1 astrocytes (Pineau et  al., 2010). The intense 
inflammatory response caused by the above factors exacerbates 
damage in the SCI region.

3.2.2 Formation of glial scars
Following the SCI, A2 astrocytes proliferate and secrete plenty of 

extracellular matrix components. A significant consequence of SCI is 
the proliferation and migration of a considerable number of reactive 
astrocytes, which subsequently form a multitude of glial scars at the 
margins of the lesion area. While moderate glial scars can form a 
protective barrier against further expansion of the lesion area, these 
glial scars form a substantial physical barrier that impedes axon 
growth (Cregg et al., 2014; O'Shea et al., 2017). Additionally, astrocytes 
secrete axon inhibitory factors, such as CSPGs and NG2, further 
inhibiting axon elongation (Silver and Miller, 2004). CSPGs and NG2 
proteoglycans can induce neurite retraction and growth cone collapse, 
inhibiting axon growth and regeneration (McKeon et al., 1991; Ughrin 
et al., 2003). Related studies have demonstrated that the utilization of 
specific enzymes to induce CSPG degradation or impede its formation 
can markedly enhance axon growth and regeneration (Faissner et al., 
1994; Smith-Thomas et al., 1995; Tom and Houlé, 2008). What is 
noteworthy is that STAT3 has been demonstrated to play a pivotal role 
in astrocyte glial scar formation, and pSTAT3 was markedly elevated 
following SCI. In STAT3-CKO mice, there was a striking reduction in 

FIGURE 1

The effect of astrocyte polarization on recovery from SCI.
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GFAP up-regulation in the injured region, and astrocytes were unable 
to undergo hypertrophy, resulting in a considerable diminution in 
astrocyte scar formation (Herrmann et al., 2008). These findings imply 
that STAT3 may be  a critical regulator of reactive astrogliosis. 
Inhibition of the aforementioned factors may offer a novel avenue for 
promoting axonal regeneration following SCI. Conversely, Anderson 
et al. (2016) demonstrated that astrocyte glial scarring facilitates rather 
than impedes CNS axonal regeneration. This is contrary to the 
prevailing dogma. However, Silver pointed out the limitations of 
Anderson’s view because glial scarring is made up of multiple 
components, not just astrocytes (Silver, 2016). Consequently, the role 
of glial scarring in axonal regeneration remains a topic of contention, 
and further substantiation is necessary.

3.2.3 Neurotoxic impact
A subset of astrocytes undergo a polarization shift toward the A1 

phenotype in the aftermath of the SCI. This transition results in the 
loss of their capacity to promote neuronal survival and growth and 
instead renders them neurotoxic. They are capable of rapidly killing 
mature neurons and differentiated oligodendrocytes (Liu et al., 2022). 
The co-culturing of reactive A1 astrocytes with retinal ganglion cells 
(RGCs) demonstrated that RGCs undergo rapid death in higher 
concentrations of A1 medium/ACM (Liddelow et al., 2017). Similarly, 
the co-culturing of A1 astrocytes with spinal motor neurons exhibited 
a mere 20% survival rate of the latter (Liddelow et al., 2017). These 
findings imply that A1 astrocytes might secrete some kind of soluble 
neurotoxin that induces neuronal death. Liang et  al. (2023) 
demonstrated that neurotoxic A1 astrocytes induce neuronal 
ferroptosis-associated lipid peroxidation through the secretion of 
CXCL10 and CXCR3. Bi et al. (2013) and Jung et al. (2023) observed 
that A1 astrocytes induced neuronal damage by secreting the 
neurotoxic LCN2 (Lipocalin-2). Furthermore, LCN2 has been proven 
to enhance the formation of canonical NLRP3 and the production of 
damaging substances such as IL-1β following SCI (Müller et al., 2023). 
Therefore, the hypothesis that A1 astrocytes produce a neurotoxin is 
further substantiated, and the specific neurotoxin or some neurotoxins 
that play a pivotal role in this process require further investigation. 
Furthermore, A1 astrocytes have been demonstrated to impede the 
proliferation of neural stem cells. When primary NSCs were exposed 
to neurotoxic astrocyte culture supernatant (astrocyte-conditioned 
medium, ACM), cell viability assays demonstrated that ACM 
significantly impeded the proliferation of NSCs (Qian et al., 2024). 
Furthermore, A1 astrocytes were found to upregulate the expression 
of numerous classical neurotoxin genes, leading to synaptic disruption 
(Miyamoto et  al., 2020). In conclusion, A1 astrocytes are potent 
neurotoxins and have deleterious effects on SCI recovery.

Following the SCI, astrocytes undergo a phenotypic 
transformation, and their function is dual. Astrocyte polarization is 
likewise a complex process involving multiple genes and factors. 
Nevertheless, numerous studies have demonstrated that NF-κB and 
STAT3 are involved in a multitude of polarization pathways (Ageeva 
et al., 2024; Xu X. et al., 2018; Wang and Li, 2023; Li et al., 2023; Wang 
et al., 2018; Li et al., 2021; Zhang et al., 2021; Su et al., 2019). It is 
extremely likely that they are pivotal molecules in astrocyte 
polarization, regulating astrocyte phenotypic transformation. 
Furthermore, more recent and more detailed studies have 
demonstrated that soluble adenylyl cyclase and regional cyclic 
adenosine monophosphate in reactive astrocytes can serve as 

molecular switches for neuroprotective astrocyte reactivity, and 
potentially be  a target for inhibiting microglial and A1 astrocyte 
activation (Cameron et al., 2024). The study also revealed that A2 
astrocytes likely act upstream of the pathway that A1 astrocytes are 
activated by IL-1α, TNFα, and C1q, inhibiting the recruitment of 
detrimental microglia and preventing C3-positive A1 astrocytes from 
activating and neuronal death. This study is the first to propose an 
effect between A1 and A2 astrocytes and extends the complex 
neuroglia-neuroglia regulation. The identified key molecules provide 
a robust molecular basis for targeting astrocyte polarization treatments 
after SCI in the future.

4 Targeted astrocyte polarization after 
SCI

Following the SCI, astrocytes undergo a phenotypic 
transformation. Type A2 astrocytes facilitate neurological recovery by 
supporting neuronal survival, promoting axonal regeneration, and 
modulating inflammatory responses. In contrast, type A1 astrocytes 
impede spinal cord recovery by exacerbating inflammatory responses, 
forming glial scars, and exerting toxic effects. An in-depth study of the 
function of these two phenotypes gives us a clear direction to develop 
an effective therapeutic strategy: inhibiting A1 astrocytes or promoting 
the polarization of A2 astrocytes.

4.1 Pharmacological intervention

A substantial body of evidence from basic experiments indicates 
that the administration of particular drugs can influence the 
phenotypic transformation of astrocytes, which is conducive to the 
recuperation process following SCI. For example, the classical drug 
methylprednisolone has been demonstrated to exert a protective 
effect on neurons following traumatic SCI by inhibiting A1 astrocyte 
activation (Zou et al., 2021). As a potential protective agent induced 
by stress conditions in the organism, Sestrin2 has been demonstrated 
to inhibit A1 astrocyte activation. Further exploration revealed that 
Sestrin2 significantly up-regulated autophagy markers, such as 
Beclin1 and LC3-II, and mitochondrial autophagy biomarkers, 
PINK1 and Parkin. Furthermore, the autophagy inducer, rapamycin, 
inhibits GFAP and iNOS proteins and C3 mRNA levels. This 
indicates that autophagy or mitochondrial autophagy may 
be  implicated in A1 astrocyte transformation and astrocyte 
inflammation, establishing a correlation between Sestrin2 and 
autophagy. Specifically, the inhibition of A1 astrocyte transformation 
by Sestrin2 is achieved by increasing autophagy levels (Pan et al., 
2024). It is noteworthy that autophagy also appears to be involved 
in regulating the production of CSPGs. Studies have demonstrated 
that autophagy inhibits the production of CSPGs, thereby 
facilitating axonal regeneration (Alizadeh et al., 2021). Targeting 
autophagy might play a beneficial role in SCI recovery through 
multiple pathways. Meanwhile, intravascular injection of 
recombinant prokineticin 2/rPK2 selectively promoted astrocyte 
polarization to an A2 phenotype and induced STAT3 
phosphorylation (Ma et al., 2020). Blockade of the Notch pathway 
with γ-secretase blockers (DAPT) alleviates A1 astrocyte-induced 
neuronal apoptosis and axonal damage (Qian et  al., 2019). 
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Interestingly, telmisartan, which has been used for many years in 
the treatment of hypertension, is also involved in the polarization 
process. Studies have confirmed that telmisartan inhibits microglia-
induced A1 astrocyte activation and restricts the extent of the 
inflammatory response by degrading p65 (Quan et  al., 2023). 
Furthermore, peroxisome proliferator-activated receptor gamma 
(PPARγ) antagonists have been demonstrated to reverse the 
neuroprotective effects of telmisartan; telmisartan may act through 
PPARγ. As classical neuroprotectants, gangliosides are of 
considerable preclinical and clinical value in various central nervous 
systems. Recent studies have shown that when co-cultures of 
astrocytes and neurons are treated with GM1, the neurons 
upregulate the expression of a variety of neuroprotective genes. It is 
speculated that GM1 may promote the polarization of astrocytes 
toward the A2 phenotype and thus neuroprotection (Finsterwald 
et al., 2021). Glucagon-like peptide-1 receptor (GLP1R) agonists 
have been demonstrated to be potential neuroprotective agents in a 
variety of CNS disorders (Harkavyi and Whitton, 2010; Athauda 
and Foltynie, 2016) and recent evidence indicates that NLY01 (a 
GLP1R agonist) directly prevents the microglia-mediated 
conversion of astrocytes to the A1 phenotype and is neuroprotective 
(Yun et al., 2018). Other drugs are attempting to modulate astrocyte 
polarization. However, it is important to recognize that when 
targeting a molecule for drug therapy, the molecule may 
be expressed in a wide range of cells and the impact is likely to 
be multiplicative, so it is essential to target astrocytes and develop 
drugs in a targeted manner.

4.2 Cell therapy

Cell transplantation has emerged as a viable method to promote 
repair following SCI (Assinck et al., 2017). Some studies are in phase 
I clinical trials (Curtis et al., 2018). By transplanting neuroprotective 
astrocytes or functional exosomes, a microenvironment favorable for 
nerve regeneration can be created at the injury site, thus promoting 
functional recovery after SCI (Liu et al., 2019). Recently, it has been 
demonstrated that when A2 astrocytes were selectively transplanted 
into spinal cord lesions after SCI, there was a reduction in the 
accumulation of glial scar, and more neurofilaments and myelin 
structures were detected (Chang et  al., 2023). This direct 
transplantation experiment fully demonstrated the promise of cell 
therapy. Zhang J. et  al. (2024) found that administration of M2 
microglia-derived exosomes/M2-EXOs suppressed A1 astrocyte 
activation and promoted neuronal survival and axonal preservation 
in SCI mice. In contrast, extracellular vesicles/EVs derived from 
hypoxia-pretreated BMSCs regulated the astrocyte phenotype through 
the miR-21/JAK2/STAT3 pathway, promoted the conversion of A1 
astrocytes to A2 astrocytes and facilitated recovery from SCI (Yang 
et al., 2024). Neuron-derived exosomes promoted functional recovery 
and reduced lesion volume after SCI and suppressed the activation of 
neurotoxic astrocytes. miRNA array analysis further revealed that 
miR-124-3p was most highly enriched in neuron-derived exosomes, 
leading to the conjecture that miR-124-3p dominates the activation of 
A1 astrocytes (Jiang et al., 2020). The low immunogenicity and robust 
biocompatibility and stability of exosomes determine their important 
therapeutic potential. Cell therapy has emerged as a promising 
therapeutic modality.

4.3 Biomaterials

Materials such as nanomaterials and hydrogels have been a hot 
research topic in recent years for the treatment of various diseases, and 
repair of the CNS, providing a new platform for stem cell and growth 
factor therapy. The important role of drug-loaded nanomaterials in 
modulating microglial activation has been well demonstrated in 
previous studies. For example, minocycline entrapped in NPs 
consisting of polymers based on poly ε-caprolactone and polyethylene 
glycol was demonstrated to attenuate the activation and proliferation 
of microglia around the lesion site of SCI, with a sustained reduction 
in the expression of the pro-inflammatory cytokine IL-6 and the 
expression of CD68 at the lesion site (Papa et al., 2013). Recent studies 
have also demonstrated the potential of polymeric nanomaterials for 
astrocyte polarization. The study by Vismara et al. (2020) observed 
that the selective internalization of nanostructured gels loaded with 
Rolipram (an NF-κB inhibitor) into astrocytes in mice significantly 
reduced the expression of the pro-inflammatory factors iNOS and 
Lcn2, and reversed the toxic effects of type A1 astrocytes on motor 
neurons in vitro. Polymeric nanoparticles have a high affinity for 
water, greater colloidal stability, and longer drug loading times to 
maximize therapeutic efficacy and minimize side effects. Chan et al. 
(2019) found that EGF-loaded hydrogels improved the survival of 
oxygen–glucose deprivation (OGD)-injured primary neurons by 
3-fold compared to EGF alone and downregulated the expression of 
deleterious A1-like genes (Fbln5 and Rt1-S3) and upregulated 
advantageous A2-like genes (Clcf1, Tgm1, and Ptgs2) and upregulated 
the expression of PSD-95, the synaptophysin that promotes synapse 
formation, which promotes synaptic plasticity and exhibits clear 
neuroprotective properties. This growth factor-loaded hydrogel has 
excellent biocompatibility, degradability, and low immunogenicity. 
While providing a structural scaffold for tissues, the hydrogel can also 
be utilized as a slow-release carrier to continuously release protective 
drugs and accelerate the repair of damaged tissues, which is a great 
advantage in drug delivery. In addition, many previous studies have 
demonstrated the feasibility of drug-loaded hydrogels for neural stem 
cells and neuron differentiation, which promotes functional recovery 
following SCI (Liu et  al., 2024; Song et  al., 2024). In conclusion, 
biomaterials may be  a significant direction for the future 
treatment of SCI.

4.4 Gene therapy

Gene therapy has been one of the hotspots of research in recent 
years. Specific gene editing technology (e.g., CRISPR/Cas9) is 
employed to regulate the expression of essential genes in astrocytes, 
thereby controlling their phenotypic transformation. Knockdown of 
Sirt1 with the CRISPR/Cas system resulted in the transformation of 
reactive astrocytes to the A2 phenotype (Zhang et  al., 2022). 
Interestingly, Knockdown of microglial voltage-gated proton channel/
Hv1 also reduced A1 astrocytes and increased A2 astrocytes, 
promoting synaptic and axonal remodeling. This indicates that 
we should take a more comprehensive view of astrocyte polarization, 
which may involve more dimensions and have multiple pathways for 
its transformation (Li et al., 2023). Herrmann et al. (2008) found that 
knockdown of the STAT3 gene in mice in the spinal cord injury model 
markedly inhibited the transformation of astrocytes to the A2 
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phenotype, resulting in a dramatic inflammatory response at the 
lesion site and an extension of the lesion volume. Therefore, 
appropriate promotion of STAT3 gene expression may be beneficial in 
restricting local inflammation. Noteworthy, we  found that STAT3 
plays an extremely significant role in the formation of glial scar, 
polarization, and axon formation of astrocytes, and acts as a pivotal 
triggering factor to control astrocytes, which was also confirmed in 
the study of STAT3 ablation after SCI (Okada et  al., 2006), and 
therefore we  believe that STAT3 is likely to become a critical 
therapeutic targeting molecule. Whereas exposure of mice to Mn at a 
young age significantly increased the amount of neurotoxic A1 
astrocytes expressing C3 in the brain, in contrast to wild-type mice, 
knockout of I  kappa B kinase 2/IKK2 (an upstream activator of 
NF-κB) significantly diminished A1 astrocytes in the brain 
(Hammond et  al., 2020). Although there is a possibility of 
heterogeneity, all this evidence confirms the potential of gene therapy. 
With the application of AAV-NeuroD1 in patients, gene therapy has 
officially entered the clinical research phase. However, there are still 
ethical issues and the possibility of side effects, so gene therapy 
remains to be  treated with caution. In addition, the phenotypic 
transformation of astrocytes can also be modulated by regulating the 
expression of non-coding RNAs. For example, silencing of miR-21 
promotes the transformation of astrocytes from a neuroinvasive to a 
neuroprotective phenotype (Su et al., 2019; Liu et al., 2018) whereas 
miR-124 mediates Smad2 to suppress A1 astrocyte activation and 
facilitate recovery of spinal cord function (Su et al., 2019; Jiang et al., 
2020). Interestingly, competing endogenous RNAs (ceRNAs) are also 
involved in the regulation of polarization. M2a macrophage 
conditioned medium (CM) significantly inhibited A1 astrocyte 
activation, whereas knockdown of ceRNA NEAT1 reversed this effect 
and significantly reduced protein levels of M2a biological markers, 
such as Arg-1 and YM-1, and anti-inflammatory cytokines, such as 
IL-4 and IL-13 levels (Liu et al., 2021), indicating that NEAT1 impedes 
A1 astrocyte polarization. The involvement of ceRNAs expands the 
direction of targeting astrocyte polarization, and in the future, we may 
be able to silence or upregulate certain key RNAs to truly promote the 
recovery of spinal cord function in patients in the clinic. In conclusion, 
we believe that gene therapy has an extremely promising future in the 
regulation of astrocyte polarization.

4.5 Photobiological therapy

Photobiology therapy has also been implicated in the regulation 
of astrocyte polarization. As a classical non-invasive physical therapy, 
photobiomodulation has numerous applications in various fields of 
medicine, with promising anti-inflammatory and tissue repair effects. 
Previous studies have found that photobiomodulation inhibits the 
high-level expression of pro-inflammatory factors and upregulates the 
expression of neurotrophic factors, as well as inhibiting microglial 
polarization toward neurotoxicity and promoting functional repair of 
SCI (Ju et al., 2023a; Sun et al., 2020; Zhang et al., 2020a). Recent 
findings have demonstrated that photobiomodulation can not only 
mediate Sox9 to downregulate CSPGs expression after SCI, but also 
inhibit A1 astrocyte activation and neurotoxicity to dorsal root 
ganglion (DRG) neurons, and upregulates bFGF and TGF-β 
expression, both of which regulate A1/A2 astrocyte transformation in 
a dose-dependent manner (Zhang Z. et al., 2024; Wang et al., 2021a; 

Wang et al., 2021b). The time course of A1/A2 astrocyte activation 
after SCI was determined by RNA sequencing and it was determined 
that astrocytes begin to polarize to the A1 phenotype at 7 days after 
SCI, whereas A2 polarization occurs earlier, although the degree of 
polarization appears to be lesser (Wang et al., 2021b). Analysis of the 
levels of polarization-specific transcripts will allow us to gain a deeper 
appreciation of the dynamic process of astrocyte polarization, 
providing a time basis for targeting polarization in the treatment of 
spinal cord injury. Noteworthy, STAT3 may be an extremely potential 
targeting molecule for the photobiological treatment of SCI, regardless 
of microglia or astrocyte (Ju et al., 2023b; Wang et al., 2021a). This 
emphasizes the role of STAT3 in astrocyte phenotypic transformation. 
Based on the above studies, photobiological therapy also provides a 
pathway to functional recovery in SCI.

4.6 Traditional Chinese medicine therapy

Certain herbal components have also been reported to modulate 
astrocyte polarization. Rao et al. (2024) observed that the combination 
of tetramethylpyrazine/TMPZ and ASG -IV can mediate the Sirt1/
NF-κB axis to prevent A1 astrocyte activating, which promotes 
recovery from SCI. In the middle cerebral artery occlusion (MCAO) 
model, administration of Buyang Huanwu decoction reduced the 
activation of microglia and A1 astrocytes, greatly diminished the level 
of inflammatory factors, and promoted the expression of BDNF, 
which effectively alleviated ischemic stroke injury (Li et al., 2024). 
Honokiol were able to modulate the SIRT3-STAT3 axis to inhibit 
astrocyte A1 astrocyte polarization n and reduce its neurotoxicity. 
Honokiol was able to modulate the SIRT3-STAT3 axis to inhibit 
STAT3 nuclear translocation and A1 astrocyte polarization, reducing 
its neurotoxicity (Hu et al., 2023). Previously, Salidroside has been 
demonstrated to play a neuroprotective role in a variety of central 
nervous system (CNS) diseases (Zhang et al., 2023; Zheng et al., 2024), 
and recent studies have shown that Salidroside not only decreases the 
expression of C3 proteins, but also significantly upregulates axon 
regeneration factors, such as growth-associated protein 43 (GAP43) 
and NF200, and the amount of Nestin and Sox2 double-positive 
stained NSCs, following SCI. Additionally, it also considerably relieves 
the proliferation inhibition of NSCs induced by A1 astrocytes, 
facilitating the migration of NSCs to the injured area (Qian et al., 
2024). This broadens the prospect of clinical application of Salidroside. 
Herbal medicines can act on multiple signaling pathways in an 
integrated manner to achieve a more comprehensive therapeutic 
effect. However, the capacity to easily cross the blood–brain barrier is 
also a concern, and further studies are needed to improve the delivery 
of protective botanicals.

4.7 Other therapies

In the MCAO model, cottonseed oil/CSO treatment 
significantly decreased the number of C3d/GFAP double-positive 
cells and upregulated C3d protein expression, increased the 
number of S100A10/GFAP double-positive cells and 
downregulated S100A10 protein expression, and inhibited protein 
expression of TLR4 and NF-κB, which in turn inhibited the release 
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of IL-1β, IL-6 and TNF-α, and ultimately ameliorated blood–brain 
barrier disruption and neuronal damage. It is suggested that 
cottonseed oil exerts neuroprotective effects by reducing 
neurotoxic astrocyte activation (Liu M. et  al., 2020). And 
recombinant IL-10 (rIL-10) counteracted excessive glutamate 
release induced by methamphetamine (Meth) in astrocyte 
cultures, suggesting that rIL-10 may inhibit activation and 
metabolic levels of A1 astrocytes (Silva et al., 2024).

A large number of treatments have shown great therapeutic 
promise, and there are reasons to believe that targeted astrocyte 
polarization will benefit a wide range of SCI patients in the future.

5 Summary and prospect

Targeting astrocyte polarization is extraordinarily crucial to 
functional recovery following SCI. Harnessing their polarization will 
provide new hope for recovery from SCI. Although significant 
progress has been made in the regulation of astrocyte polarization, in 
the future we still need to investigate astrocyte polarization in depth 
by various means (e.g., genome editing, single-cell RNA sequencing, 
etc.) to better comprehend the dynamic process of phenotypic 
transformation, and to identify more new genes involved in astrocyte 
polarization using high-throughput screening technology to provide 
a solid theoretical foundation for the development of new therapeutic 
strategies. Future research should also strengthen preclinical studies 
to promote adoption for translation into clinical applications. 
Ultimately, multimodal therapeutic protocols may be employed to 
regulate astrocyte polarization and promote functional recovery after 
SCI. With further research and advancements in medical technology, 
it is expected that multiple interventional strategies targeting astrocyte 
polarization will be  more extensively applied in clinical practice, 
ultimately improving the motor-sensory function and quality of life of 
patients with SCI.

It is worth noting that our focus in this article is to review the 
relevant literature using the A1/A2 phenotype. But in addition to this, 
there are many authoritative studies that support other methods of 
typing that are also excellent. However, recent and authoritative 
studies have shown that when describing astrocyte phenotypes, it is 
best to avoid vague and binary terms such as ‘neuroprotective’ or 
‘neurotoxic’ as they are too simplistic to be meaningful and that there 
is heterogeneity in the status of astrocytes in different diseases. 
Astrocyte status is heterogeneous in different diseases. Therefore, 
multiple criteria should be considered in the future classification of 
reactive astrocytes, including transcriptomic, proteomic, 
morphological, and specific cellular functions, as well as the impact 
on pathological hallmarks (Escartin et al., 2021).
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