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Obliteration of a glycinergic 
projection to the medial 
geniculate in an animal model of 
autism
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1 Department of Otolaryngology—Head and Neck Surgery, Detroit, MI, United States, 2 Department of 
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Auditory dysfunction affects the vast majority of people with autism spectrum 
disorder (ASD) and can range from deafness to hypersensitivity. In utero exposure 
to the antiepileptic valproic acid (VPA) is associated with significant risk of an 
ASD diagnosis in humans and timed in utero exposure to VPA is utilized as an 
animal model of ASD. VPA-exposed rats have significantly fewer neurons in their 
auditory brainstem, thalamus and cortex, reduced ascending projections to the 
midbrain and thalamus and reduced descending projections from the cortex to 
the auditory midbrain. Consistent with these anatomical changes, VPA-exposed 
animals also have abnormal auditory brainstem responses. We  have recently 
described a significant ascending projection from calbindin-positive neurons in 
the medial nucleus of the trapezoid body (MNTB) to the ventral division of the 
medial geniculate (vMG) in rats that bypasses the central nucleus of the inferior 
colliculus (CNIC). Since we found that axonal projections to the vMG in VPA-
exposed rats are reduced beyond what is predicted from neuron loss alone, 
we hypothesize that VPA exposure would result in a significant reduction in the 
MNTB projection to the vMG. We examined this hypothesis by quantifying the 
proportion of retrogradely-labeled neurons in the MNTB of control and VPA-
exposed animals after injections of retrograde tracers in the CNIC and vMG in 
control and VPA-exposed animals. Our results indicate that in control animals, 
the MNTB forms the largest projection from the superior olivary complex to the 
MG and that this projection is nearly abolished by in utero VPA exposure.
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Introduction

Autism spectrum disorder (ASD) is a developmental disability characterized by social, 
communication and behavioral difficulties (Allen, 1988; Wing, 1997; American Psychiatric 
Association, 2013; CDC.gov, 2024). Approximately one in 36 children will be diagnosed with 
ASD and this is four times more common in males (CDC.gov, 2024). There are several key 
signs and symptoms of ASD, but the vast majority of subjects have some degree of auditory 
dysfunction (Greenspan and Wieder, 1997; Tomchek and Dunn, 2007; Bolton et al., 2012; 
reviewed in Mansour et al., 2021a) and this can range across individuals from deafness to 
hypersensitivity to sounds (Roper et al., 2003; Alcántara et al., 2004; Khalfa et al., 2001; Szelag 
et al., 2004; Teder-Sälejärvi et al., 2005; Gravel et al., 2006; Tharpe et al., 2006; Russo et al., 
2009). Indeed, many individuals with ASD have longer latency auditory brainstem responses 
(ABR) (Ornitz, 1969; Student and Sohmer, 1978; Rosenblum et al., 1980; Sohmer, 1982; 
Tanguay et al., 1982; Gillberg et al., 1983; Sersen et al., 1990; Thivierge et al., 1990; Wong and 
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Wong, 1991; Maziade et al., 2000; Kwon et al., 2007; Roth et al., 2012; 
Azouz et al., 2014; Tas et al., 2007; Miron et al., 2018; Ramezani et al., 
2019; Delgado et al., 2023). Consistent with hearing impairments from 
a developmental etiology, we have identified significant and consistent 
auditory brainstem hypoplasia in the brainstem of individuals with 
ASD (Kulesza and Mangunay, 2008; Kulesza et al., 2011; Lukose et al., 
2015; Mansour and Kulesza, 2020). Specifically, in our study of the 
superior olivary complex (SOC) in a cohort of 28 subjects with ASD 
ranging from 4 to 39 years of age, we found significantly fewer neurons 
and surviving neurons were significantly smaller across nearly all 
constituent nuclei, including the medial nucleus of the trapezoid body 
(MNTB). In addition, several of these subjects had marked gliosis in 
and around the medial superior olive (MSO) and/or islands of ectopic 
neurons posterior and lateral to the SOC (Lukose et al., 2015).

In utero exposure to the antiepileptic drug valproic acid (VPA) is 
associated with elevated risk of an ASD diagnosis in humans (Moore 
et al., 2000; Williams et al., 2001; Rasalam et al., 2005; Koren et al., 
2006; Bromley et al., 2013; Christensen et al., 2013; Hernández-Díaz 
et al., 2024; Pack et al., 2024). Accordingly, timed in utero exposure to 
VPA is a biologically relevant and validated animal model of ASD 
(rodents: Rodier et al., 1996; Mabunga et al., 2015; primates: Zhao 
et  al., 2019). Consistent with the neuropathological changes 
we identified in the SOC of human subjects with ASD, animals exposed 
to VPA in utero have significantly fewer neurons in the ventral cochlear 
nuclei (VCN), SOC, nuclei of the lateral lemniscus (NLL), central 
nucleus of the inferior colliculus (CNIC), and medial geniculate (MG; 
Lukose et al., 2011; Zimmerman et al., 2018; Mansour et al., 2019). 
VPA-exposed animals also have fewer neurons across all layers of the 
auditory cortex with smaller pyramidal and non-pyramidal neurons in 
auditory association areas (Kosmer and Kulesza, 2024). Besides having 
fewer neurons throughout the auditory brainstem and forebrain, 
VPA-exposed animals have reduced ascending projections to the 
CNIC (Zimmerman et al., 2020) and MG (Mansour et al., 2021b) and 
reduced descending projections from layer VI of auditory cortex to the 
CNIC (Kosmer and Kulesza, 2024). VPA-exposed animals have fewer 
calbindin (CB) immunoreactive neurons in several locations, including 
the octopus cell area in the VCN, MNTB (Zimmerman et al., 2018), 
dorsal nucleus of the lateral lemniscus (DNLL; Mansour et al., 2019), 
primary auditory cortex (Kosmer and Kulesza, 2024), and cerebellum 
(Main and Kulesza, 2017) and fewer CB+ puncta in vestibular nuclei 
(Mansour et al., 2022). VPA-exposed animals have significantly more 
cFOS+ neurons in the VCN, MNTB and CNIC after exposure to pure 
tone stimuli, consistent with disruption of inhibitory circuits (Dubiel 
and Kulesza, 2016). Finally, VPA-exposed animals have abnormal 
auditory brainstem responses, including elevated thresholds, and 

longer latency responses for wave III, IV and V, consistent with 
auditory brainstem dysfunction (Malhotra and Kulesza, 2023).

The rat MNTB is composed primarily of glycinergic, CB+ 
principal neurons that receive input from globular bushy cells (GBCs) 
in the contralateral VCN via the calyx of Held (Morest, 1968a,b; 
Ottersen and Storm-Mathisen, 1984; Friauf and Ostwald, 1988; Arai 
et al., 1991; Résibois and Rogers, 1992; Lohmann and Friauf, 1996; 
Smith et  al., 1991). MNTB principal neurons project within the 
ipsilateral SOC to the medial and lateral superior olives (MSO and 
LSO, respectively; Spangler et al., 1985; Helfert et al., 1989), and the 
superior paraolivary nucleus (SPON; Kuwabara et al., 1991; Banks and 
Smith, 1992; Sommer et al., 1993; Kulesza, 2007; see Figure 1, control). 
The MNTB also sends a descending projection to the GBC area of the 
ipsilateral VCN (Schofield, 1994) and ascending projections to both 
the ventral and intermediate nuclei of the lateral lemniscus (VNLL, 
INLL; Spangler et al., 1985; Sommer et al., 1993; Smith et al., 1998; 
Kelly et al., 2009; Saldaña et al., 2009; see Figure 1, control). Injections 
of retrograde tracers into nuclei further rostral in the brainstem such 
as the DNLL and CNIC indicate that only rare MNTB neurons project 
to these targets (rat: Beyerl, 1978; Druga and Syka, 1984; Coleman and 
Clerici, 1987; Kelly et al., 1998, 2009; Saldaña et al., 2009; guinea pig: 
Schofield and Cant, 1992; cat: Adams, 1979; Brunso-Bechtold et al., 
1981; gerbil: Nordeen et al., 1983; Cant and Benson, 2006; mole: Kudo 
et al., 1990). However, we have recently demonstrated a projection 
from the MNTB to the ipsilateral MG that bypasses the CNIC in 
Sprague–Dawley rats (Burchell et al., 2022). Specifically, approximately 
40% of MNTB neurons project to the ipsilateral ventral division of the 
MG (vMG; Burchell et al., 2022). Because VPA exposure results in 
significantly reduced ascending projections from the SOC to the MG, 
we hypothesized that in utero VPA exposure will result in a significant 
reduction in this ascending glycinergic projection from the MNTB to 
the MG. We examined this hypothesis in a library of retrograde tracer 
injections into the CNIC and MG from control and VPA-exposed 
animals (Zimmerman et al., 2020; Mansour et al., 2021b).

Methods

All handling and surgical procedures were approved by the 
LECOM Institutional Animal Care and Use Committee (protocols 
#16-02, 19–04, 20–02 & 21–03) and conducted in accordance with the 
National Institute of Health Guide for the Care and Use of Laboratory 
Animals. Sprague–Dawley rats were maintained on a 12 h light/dark 
cycle with ad libitum access to food and water. In utero exposure to 
VPA was performed per our previous work in this model (Figure 2A; 
Main and Kulesza, 2017; Zimmerman et al., 2018; Mansour et al., 
2019; Zimmerman et al., 2020; Mansour et al., 2021b; Mansour and 
Kulesza, 2021; Mansour et  al., 2022; Malhotra and Kulesza, 2023; 
Kosmer and Kulesza, 2024). All dams were fed 3.1 g of peanut butter 
on embryonic days (E) 7–12. Dams in the VPA group were fed peanut 
butter mixed with 800 mg/kg of VPA on E10 and E12 (Figure 2A). 
Both control and VPA-exposed dams were permitted to deliver pups 
without interference and pups were weaned on postnatal day (P) 21. 
Only male pups were included in the study because gender-specific 
effects of VPA exposure are established (Schneider et  al., 2008). 
We conducted this study under the assumption that all male pups in 
a given litter were equally impacted by VPA exposure; our previous 
studies provide data consistent with this strategy (Main and Kulesza, 

Abbreviations: ASD, Autism spectrum disorder; CB  +  Calbindin positive; CNIC, 

Central nucleus of the inferior colliculus; dMG, Dorsal nucleus of the medial 

geniculate; DMW, Dorsal medial wedge; DNLL, Dorsal nucleus of the lateral 

lemniscus; E, Embryonic; FB, Fast blue; FG, Fluorogold; GBC, Globular bushy cell; 

INLL, Intermediate nucleus of the lateral lemniscus; LSO, Lateral superior olive; 

MG, Medial geniculate; mMG, Medial nucleus of the medial geniculate; MNTB, 

Medial nucleus of the trapezoid body; MSO, Medial superior olive; P, Postnatal; 

PBS, Phosphate buffered saline; SOC, Superior olivary complex; SPON, Superior 

paraolivary nucleus; VCN, Ventral cochlear nucleus; vMG, Ventral nucleus of the 

medial geniculate; VNLL, Ventral nucleus of the lateral lemniscus; VPA, Valproic acid.
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2017; Zimmerman et al., 2018; Mansour et al., 2019; Zimmerman 
et al., 2020; Mansour et al., 2021b; Mansour and Kulesza, 2021).

Animals receiving tracer injections were anesthetized with 
vaporized isoflurane (5% isoflurane in oxygen for induction, 2–3% for 
maintenance at 1.2 L/min). When animals were unresponsive to toe 
pinch, they were fitted with an anesthesia mask and secured in a 
stereotaxic frame with non-rupture ear bars. Body temperature was 
maintained with an electric heating pad. The animal’s scalp was 
cleaned with iodine solution and injected with 0.25% bupivacaine; 
eyes were covered with ophthalmic ointment or closed and covered 

over with the anesthesia mask. A midline incision was made over the 
parietal and occipital bones and the dorsal aspect of the brain was 
approached via stereotaxic craniotomy. All injections were made with 
a tracer-dedicated 1 μL Hamilton KH Neuros syringe (32-gauge, 
four points).

We studied projections from the MNTB to the CNIC in injection 
site-matched cases from seven control and eight VPA-exposed animals 
(Figure 2B). In all animals, the CNIC was approached 0.2 mm rostral 
to lambda, 1.5 mm to the right of the midline. A depth measurement 
was taken from the surface of the dura mater and deposits of 100 nL 

FIGURE 1

Schematic of MNTB projections. In control animals, the MNTB receives its main input from the contralateral VCN via the calyx of Held and projects 
within the SOC, to the ipsilateral VCN, to the VNLL, INLL, and MG. Our tract tracing results indicate that VPA exposure abolishes the MNTB projection 
to the MG. Currently, it is unclear if VPA exposure impacts other projections from the MNTB.
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of Fast Blue (FB; 2.5% in water; Polysciences) or Fluorogold (FG, 4% 
in saline; Fluochrome) were made at depths of −3.6, − 3.2, 
and − 2.6 mm for a total injected volume of 300 nL.

We studied projections from the MNTB to the MG in injection 
site-matched cases from six control and six VPA-exposed animals 
(Figure 2C). The stereotaxic coordinates were the same for all control 
and VPA-exposed animals: 5.6 mm caudal to bregma and 3.4 mm to 
the right of the midline (as indicated by Paxinos and Watson, 2007). 
Injections of FG were made as described above. A depth measurement 
was taken from the surface of the dura mater and deposits of 100 nL 
of FG were made at depths of −5.8 and − 5.0 mm for a total injected 
volume of 200 nL.

The syringe was left in place for 10 min after the final injection 
to permit diffusion of the tracer. After the syringe was removed, the 
scalp wound was injected with lidocaine and sutured. Animals were 
removed from anesthesia and placed in their home cage and 
monitored until they were able to stand on all fours. Six-days 
following the surgery, animals were anesthetized with isoflurane 
and perfused through the ascending aorta first with 0.9% saline and 
then 4% paraformaldehyde (PFA) in phosphate buffered saline (pH 
7.4; “fixative”). Brains were dissected from the skull and the right 
side (ipsilateral to the tracer injection) was marked with a syringe 
needle and post-fixed for at least 24 h. Twenty-four hours before 

frozen sectioning, brains were transferred into cryoprotectant (30% 
sucrose in fixative). Brains were sectioned in the coronal plane at a 
thickness of 50 μm and sections were collected in PBS from the 
cochlear nucleus through the injection site in the CNIC or MG in 
three wells. Injection sites were recovered from well 3; sections 
from well 2 were counter stained with Neurotrace Red (NT; 
Invitrogen), mounted onto glass slides from cresyl gelatin, 
coverslipped with Entellan (Millipore Sigma) and photographed 
with an Olympus CKX41 microscope with epifluorescence and a 
DP71 camera. The rostrocaudal borders of the MNTB, SPON and 
dorsalmedial wedge (DMW) were as previously delineated (Kulesza 
et al., 2002; Mansour et al., 2021b; Burchell et al., 2022). For each 
section including the MNTB, two images were collected—one of 
NT (using a rhodamine filter cube) and one of FB/FG labeling 
(using a UV filter cube) using a 20 × objective. Each pair of images 
was combined using the z-stack feature in Fiji (Schindelin et al., 
2012) to form a single layer image containing overlayed NT and FB/
FG labeling.

Counts of FB/FG + MNTB neurons were made from 4 to 6 stacked 
images per  animal. The overlayed FB/FG and NTR images were 
imported into Fiji and analyzed with the cell counting feature. In these 
images, neurons were considered FB or FG + if they had blue or yellow 
fluorescent labeling within a cell body contour. Neurons were 

FIGURE 2

Experimental paradigm. Panel (A) shows the timing of VPA exposure, weaning and tracer injections. The experimental timeline (embryonic day 0; E0) 
started with identification of a vaginal plug. Pregnant females in the control group were fed peanut butter (vehicle) from E7 through E12; those in the 
experimental group received peanut butter on E7-9 and E11 and peanut butter + VPA on E10 and E12. Pups were weaned on P21 and stereotaxic 
injections of retrograde tracers were made between P50-60. Three injections (100  nL each) were made into the CNIC (B). In a separate group of 
animals, two injections (100  nL each) were made into the MG (C).
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considered negative if the cell body demonstrated NT labeling and 
lacked any blue/yellow fluorescence. At least 80 MNTB neurons were 
analyzed in each overlayed image and counts from these 4–6 images 
were averaged, resulting in a single percentage of FB/FG + MNTB 
neurons per animal. In Table 1, we re-examine previously published 
data from our study of ascending projections to the MG from the rat 
SOC (Mansour et al., 2021b) to demonstrate the relative size of the 
MNTB projection to the MG. Morphology of NTR and FB/FG-labeled 
MNTB neurons was quantified as previously described (Zimmerman 
et al., 2018).

GraphPad Prism (10.1, San Diego, CA) was used to generate 
descriptive statistics and conduct all statistical comparisons. Data that 
fit a normal distribution are presented in the text as mean ± standard 
deviation (SD); data that did not fit a normal distribution are presented 
as the median with the 95% confidence interval of the median. 
Specifically, the number of neurons projecting to the CNIC and MG 
were compared with Mann–Whitney (one-tailed) and neuronal 
morphology was compared with ANOVA with Tukey’s multiple 
comparison test. Differences were considered statistically significant 
if p values were < 0.05.

Results

Projections to the CNIC

After injections of FB or FG into the CNIC (Figures 3, 4), only 
2.2% (95% CI: 0–5.62%) of neurons in the ipsilateral MNTB were 
retrogradely labeled in control animals (Figure 5A). In VPA-exposed 
animals, 1.49% (0–7.14%) of neurons in the ipsilateral MNTB were 

labeled (Figure 5B). This difference was not significant [U(7,8) = 22.5, 
p = 0.54; Figure 6A]. Contralateral to the injection site, no retrogradely 
labeled MNTB neurons were found in control or VPA-exposed 
animals (Figure 5A).

Projections to the MG

After injections of FG into the MG (Figures  7, 8), 36.7% 
(20–50%) of neurons in the ipsilateral MNTB were retrogradely 
labeled in control animals (Figures 9A,B). In VPA-exposed animals, 
only 1.6% (1.3–2.9%) of neurons in the ipsilateral MNTB were 
labeled (Figures 9C,D). This difference was significant [U(6,6) = 0, 
p = 0.001; Figure 6B]. Contralateral to the injection site, only 0.43% 
(0–0.55%) MNTB neurons were retrogradely labeled in control 
animals and 0.18% (0–0.59%) MNTB neurons were labeled in 
VPA-exposed animals. This difference was not significant 
[U(6,6) = 14, p = 0.57; Figure 6B]. In control animals, MNTB neurons 
had a cross-sectional area of 182.5 ± 65.37 μm2. MNTB neurons 
retrogradely labeled from the MG had a cross-sectional area of 
177.6 ± 70.23 μm2. This difference was not significant (p = 0.98; 
Figure 6C). In VPA-exposed animals, MNTB neurons had a cross-
sectional area of 125.1 ± 50.93 μm2 and those retrogradely labeled 
from the MG had a cross sectional area of 126.1 ± 43.88 μm2. This 
difference was not significant (p > 0.99; Figure 6C). Consistent with 
our previous reports, MNTB neurons in control animals are 
significantly larger than those in VPA-exposed animals [F(3, 
144) = 10.84, p < 0.0001]. Retrogradely, labeled neurons in the MNTB 
of control animals were significantly larger than those in 
VPA-exposed animals (p = 0.035; Figure 6C).

TABLE 1 Neuron loss and projection changes in VPA-exposed animals.

Number of 
neurons in 
nucleusa,b,d

MG neurons per 
total number of 

neurons in 
nucleusa,b,c

Total number of 
neurons 

projecting to 
MGc

MG neurons per 
projecting 
neurons in 
nucleusc

Projection 
Changec

A B C D E F G H I J K

Calculation 46,796/A 23,403/B D/C A*%FG+ B*%FG+ 46,796/F 23,403/G I/H E-J

Control VPA Control VPA VPA/C Control VPA Control VPA VPA/C VPA/C

vMG + mMG 46,796 23,403

(36.7%) (1.6%)

IL MNTB 6,591 5,300 7.10 4.41 0.62 2,419 84.8 19.34 275.97 12.56 −11.94

IL LSO 2,586 1,935 18.10 12.09 0.67 173.26 75.47 270.09 310.09 1.15 −0.48

CL LSO 2,586 1,935 18.10 12.09 0.67 57.67 157.70 811.48 148.40 0.18 +0.49

IL MSO 1,201 517 38.96 45.27 1.16 148.56 38.93 314.99 601.15 1.91 −0.75

IL SPON 2,265 1,302 20.66 17.97 0.87 450.96 155.20 103.77 150.79 1.45 −0.58

IL DMW 2,407 1,803 19.44 12.98 0.67 883.37 485.91 52.97 48.16 0.91 −0.24

CL DMW 2,407 1,803 19.44 12.98 0.67 403.17 98.26 116.07 238.17 2.05 −1.38

IL VNTB 3,244 2,606 34.13 22.5 0.66 389.28 260.6 120.21 89.80 0.74 −0.08

CL VNTB 3,244 2,606 34.13 22.5 0.66 32.44 26.06 1,442.54 898.04 0.62 0.04

CL VCN 23,111 15,280 2.02 1.53 0.76 7,164.41 825.12 6.53 28.36 4.34 −3.59

aZimmerman et al. (2018).
bMansour et al. (2019).
cMansour and Kulesza (2020).
dMansour and Kulesza (2021).
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Proportion of SOC neurons projecting to 
the MG

Our previous studies indicate the rat MNTB contains 6,591 
neurons in control animals and 5,300 neurons in VPA exposed 
animals (Table 1, columns A and B; Zimmerman et al., 2018). This 
equates to a 20% loss of neurons in the MNTB after VPA exposure. 
Our tract tracing experiments indicate that 36.7% of MNTB neurons 
in control and only 1.6% of MNTB neurons in VPA-exposed animals 
project to the ipsilateral MG. Based on these values, we estimate that 
in control animals 2,419 MNTB neurons project to the ipsilateral MG 
(Table 1, column F). However, after VPA exposure, this drops to only 
about 85 total neurons (Table 1, column G) and constitutes a loss of 
96% of the MNTB projection to the MG.

In control animals, the vMG and mMG combined include 46,796 
neurons, but only 23,403 neurons in VPA-exposed animals (Mansour 
et al., 2021b; Table 1, columns A and B). This equates to a 50% loss of 
neurons in the vMG and mMG after VPA exposure. Accordingly, 
there are nearly 15 times as many MG neurons per MNTB neuron 
projecting to the MG in VPA-exposed animals (Table 1, column H and 
I). This drastic change led us to ask if the MNTB projection to the MG 
was more severely impacted by VPA exposure than other SOC nuclei. 
Figure 6D shows linear correlation lines comparing the projection to 
the MG from the MSO and LSO combined and the MNTB alone. In 
control animals about 320 neurons from the ipsilateral MSO and LSO 
combined project to the MG while approximately 2,400 MNTB 

neurons make this projection. In VPA-exposed animals, only about 
114 neurons from the MSO and LSO project to the MG, while only 
about 85 MNTB neurons make this projection (Figure 6F). Figure 5E 
shows linear correlation lines comparing the projection to the MG 
from the SPON and the MNTB. In control animals, approximately 450 
SPON neurons project to the MG and only about 160 SPON neurons 
in VPA-exposed animals make this projection (Table 1, columns F and 
G) (Figure 6E). Together, this suggests that VPA exposure results in 
a ~ 65% decrease in the projection from the MSO and LSO and a 66% 
decrease in the projection from the SPON to the MG (Figure 6F). 
However, VPA exposure results in a 96% decrease in the projection 
from the MNTB to the MG (Figure 6F; Table 1, column F and G).

Finally, we asked if in utero VPA exposure altered the contributions 
of the SOC nuclei to the olivogeniculate projection (Mansour et al., 
2021b). The proportional contributions of each SOC nucleus to the 
olivogeniculate projection are shown in Figure 5G. The control pie chart 
is based on distribution of 4,075 neurons; the VPA pie chart is based on 
distribution of only 840 neurons. The largest projection to the MG is 
from the medial SOC in control animals: 91% of the olivogeniculate 
projection comes from the SPON, DMW and MNTB. This proportion 
changes drastically after VPA exposure. In VPA-exposed animals, the 
SPON, DMW and MNTB contribute only 75% of the MG projection 
and the MSO and LSO contribute ~25%. In control animals, the largest 
single contributor to the olivogeniculate project is the MNTB (53%, 
Figure 6G). While in VPA-exposed animals the DMW is the largest 
single contributor (53%) followed by the LSO (21%, Figure 6G).

Since all auditory brainstem nuclei have fewer neurons after VPA 
exposure (except the VNTB: Mansour and Kulesza, 2021), 
we calculated a projection change. This calculation compares neuron 
loss and projection loss (Table 1, column K). A negative value indicates 
loss of projections beyond what is predicted by VPA-induced neuron 
loss. The MNTB has a projection change of −11.94 and the VCN has 
a projection change of −3.59, indicating these are the most severely 
affected of the brainstem nuclei.

Discussion

This study provides the first detailed examination of the impact of 
in utero exposure to the antiepileptic VPA on a novel, glycinergic 
projection from the MNTB to the auditory thalamus. It is important 
here to recall our finding that VPA exposure results in significantly 
smaller brains and brainstems (Zimmerman et al., 2018; Mansour 
et al., 2019). Accordingly, VPA animals received proportionally larger 
tracer deposits in the CNIC and MG and in theory this should result 
in more retrogradely labeled neurons, but this was not the case. In 
utero VPA exposure results in hypoplasia and dysmorphology in the 
auditory brainstem and thalamus, abnormal patterns of CB 
immunolabeling, reduced ascending projections to the CNIC and 
MG, abnormal auditory brainstem responses and imbalanced 
excitatory/inhibitory inputs to brainstem neurons (Zimmerman et al., 
2018; Mansour et  al., 2019; Zimmerman et  al., 2020; Alhelo and 
Kulesza, 2022). Similar morphological changes have been found in the 
SOC of human subjects with ASD, including significantly fewer 
neurons in the MNTB (Kulesza and Mangunay, 2008; Kulesza et al., 
2011; Lukose et al., 2015). Therefore, our findings may provide insight 
into structural and functional changes in the auditory pathway of 
subjects with ASD and other neurodevelopment disorders.

FIGURE 3

Tracer injection sites in the CNIC. Injection sites for the seven control 
animals are shown in panel (A) and those for the eight VPA-exposed 
animals are shown in panel (B). These cases were selected to match 
injections site size and rostrocaudal distribution of injections 
between control and VPA-exposed animals. The scale bar is equal to 
500  μm. D, Dorsal; DC, Dorsal cortex; EC, External cortex; and M, 
Medial.
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Connectivity of the MNTB

The MNTB receives a fast and precise glutamatergic input from 
GBCs in the contralateral VCN via the calyx of Held (Harrison and 
Irving, 1964; Morest, 1968a,b; Kuwabara et al., 1991; Smith et al., 
1991). Consequently, evoked responses from MNTB principal 
neurons maintain the precision of the auditory nerve and GBCs. 
Principal MNTB neurons use glycine as a neurotransmitter (Moore 
and Caspary, 1983; Wenthold et  al., 1987) and project to 
surrounding nuclei in the ipsilateral SOC (Moore and Caspary, 
1983; Kuwabara and Zook, 1992; Sommer et al., 1993; Smith et al., 

1998), the ipsilateral VCN (guinea pig: Schofield, 1994), and VNLL 
and INLL (Spangler et al., 1985; Sommer et al., 1993; Smith et al., 
1998; Kelly et al., 2009; Saldaña et al., 2009). Glycinergic input from 
the MNTB to the MSO and LSO plays essential roles in coding 
sound source localization (Zarbin et al., 1981; Moore and Caspary, 
1983; Kuwabara and Zook, 1992; Grothe and Sanes, 1993; Kapfer 
et al., 2002). In the SPON, MNTB inputs form temporally precise 
rebound responses that code the offset of tone-pips and rapid 
fluctuations in the stimulus envelope (Kulesza et al., 2003; Kadner 
et al., 2006). The projection from the MNTB to the MG is a recent 
discovery—it was first described in guinea pigs (Schofield et al., 

FIGURE 4

Injection sites in the CNIC. Representative examples of recovered injections sites in the CNIC are provided for control (A–C) and VPA-exposed animals 
(D–F). The images were taken with simultaneous illumination with white light and a mercury lamp with a UV filter cube. Myeloarchitecture is shown in 
gray and the tracer injection in white. The scale bar is equal to 500  μm. D, Dorsal; DC, Dorsal cortex; EC, External cortex; M, Medial.
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2014b), but in this species appears to originate from non-principal 
MNTB neurons. In rats, deposits of retrograde tracers in the vMG 
and dMG result in robust labeling in the ipsilateral MNTB (Burchell 
et al., 2022). Our injections in the MG resulted in labeling across 
the auditory brainstem, consistent with previous reports of thalamic 
projections from the CNIC, NLL, SOC, and VCN from other species 
(ferrets: Angelucci et al., 1998; guinea pig: Schofield et al., 2014a,b; 
rat: Mansour et al., 2021b). It should be emphasized that in control 
animals, focal injections of FG restricted to the vMG resulted in 
labeling of up to 84% of MNTB neurons (Burchell et al., 2022). 
Approximately 87% of MNTB neurons retrogradely labeled from 
the vMG are CB immunoreactive, confirming that at least in the rat, 
the thalamic projection from the MNTB is derived from principal 
neurons (Burchell et al., 2022). Deposits of an anterograde tracer in 
the MNTB resulted in labeled axons and terminals in the SPON, 
LSO, VNLL, (consistent with previous reports; see above) but also 
the ipsilateral nucleus of the brachium of the inferior colliculus and 
vMG (Burchell et al., 2022). Consistent with a glycinergic projection 
to the auditory thalamus, there is dense somatic immunolabeling 
for the glycine receptor in the dMG and vMG, with only scant 
labeling in the mMG (Burchell et al., 2022). Together, these results 
support the presence of a prominent projection from MNTB 
principal neurons in rats providing a fast, glycinergic input to 
the vMG.

Functions of the MNTB projection to the 
auditory thalamus

The role of direct projections from the cochlear nuclei and SOC to 
the MG are unclear. Specifically, there is a direct projection from stellate 
neurons in the VCN to the contralateral CNIC and MG (Malmierca 
et al., 2002; Schofield et al., 2014a; Zimmerman et al., 2020). Our results 
show that 13,913 neurons in the rat VCN project to the contralateral 
CNIC (Zimmerman et al., 2020) and 7,164 neurons in the VCN project 
to the contralateral MG (Mansour et al., 2021b). In the current study, 
we  show that 2,419 MNTB neurons project to the ipsilateral 
MG. Outside of the VNLL, whose thalamic projection has not yet been 
examined in rats, the VCN appears to be the largest single subcollicular 
source of input to the MG, followed by the MNTB (Table 1; Mansour 
et al., 2021b). The stellate neuron input from the VCN is most likely 
excitatory based on the nature of VCN projections to the CNIC (Ito 
and Oliver, 2010) and seems to be  most heavily directed to the 
contralateral mMG (Malmierca et al., 2002; Schofield et al., 2014a). The 
mMG receives input from the inferior colliculus, CN, SOC, NLL 
(Schofield et al., 2014a,b; Malmierca et al., 2002; Anderson et al., 2006) 
and several non-auditory sources. The mMG also receives input from 
the vestibular system (Roucoux-Hanus and Boisacq-Schepens, 1977) 
and spinothalamic tract relaying pain and thermal sense (LeDoux et al., 
1987). The mMG projects to auditory, somatosensory and prefrontal 

FIGURE 5

Only occasional MNTB neurons project to the CNIC. Panels (A1,B1) show sections through the same rostrocaudal level of the SOC from a control (A1,A2) 
and VPA-exposed animal (B1,B2) after tracer injection in the CNIC. Retrogradely-labeled neurons are pseudocolored yellow and Neurotrace counter-
stained cells are shown in red (NT). Retrogradely labeled MNTB neurons are indicated with yellow arrowheads. Panels (A2,B2) show the Neurotrace 
counter-stained sections from panels (A1,B1) but without the tracer label for reference. The scale bar is equal to 500 μm. D, Dorsal; FN, Facial nerve; LNTB, 
Lateral nucleus of the trapezoid body; M, Medial; RF, Reticular formation; Tz, Trapezoid body; VNTB, Ventral nucleus of the trapezoid body.
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FIGURE 6

Quantification of the MNTB projection. Panel (A) shows the percentage of MNTB neurons that were retrogradely labeled from the CNIC (Mann–
Whitney). Panel (B) shows the percentage of MNTB neurons retrogradely labeled from the MG (Mann–Whitney). Each data point is averaged data from 
one animal. Panel (C) shows the cross-sectional area of MNTB neurons in control and VPA-exposed animals comparing counterstained (NTR) and 
retrogradely labeled (FG) neurons (ANOVA). Panel (D) shows linear correlation comparing the number of neurons projecting to the MG from the MSO 
and LSO to the number of neurons projecting to the MG from the MNTB. Panel (E) shows linear correlation comparing the number of neurons 
projecting to the MG from the SPON to the number of neurons projecting to the MG from the MNTB. In Panel (D,E), each data point corresponds to 
one animal. Panel (F) shows the mean number of SOC neurons projecting to the MG in control and VPA-exposed animals. Panel (G) shows the 
distribution of neurons participating in the olivogeniculate projection. The control chart is based on distribution of 7,166 neurons and the VPA chart is 
based on distribution of 825 neurons. C, Control; CL, Contralateral; DMW, Dorsal medial wedge; FG, Fluorogold; IL, Ipsilateral; LSO, Lateral superior 
olive; MSO, Medial superior olive; NTR, Neurotrace red; SPON, Superior paraolivary nucleus. Key to symbols: *p  <  0.05; **p  <  0.01, and ****p  <  0.0001.
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cortex (Spreafico et al., 1981; Avedafio and Llamas, 1984; Winer, 1985), 
amygdala (Ottersen and Ben-Ari, 1979; LeDoux et al., 1985; Doron and 
LeDoux, 1999) and provides descending input to the auditory 
brainstem (Whitley and Henkel, 1984). Together, these features of the 
mMG illustrate its possible role in integration across several sensory 
modalities. The MNTB input is most likely glycinergic and mainly 
targets the vMG (Burchell et al., 2022). The vMG is the main relay of 
ascending auditory information from the CNIC to the auditory cortex 
(Ryugo and Killackey, 1974; LeDoux et al., 1987; Winer and Larue, 
1987; González-Hernández et al., 1991; Clerici and Coleman, 1990; 
Winer et al., 1999; Kimura et al., 2003; Hazama et al., 2004; Ito and 
Oliver, 2012; Smith et al., 2012) and therefore its functions are likely 
focused on hearing. The roles these inputs from the VCN and MNTB 
play in shaping responses of neurons across the MG subdivision are 
unclear, but they clearly provide fast and precise input to the auditory 
thalamus (Schofield et al., 2014b). It is important to emphasize that 
based on tract tracing studies in rat and guinea pig (Malmierca et al., 
2002; Schofield et al., 2014a,b; Burchell et al., 2022), the VCN and 
MNTB projections are targeting different regions of the MG and would 

appear to be functionally independent. As such, we will only discuss 
the MNTB projection further.

Within the SOC, glycinergic input from the MNTB to the MSO 
arrives before excitatory, glutamatergic inputs from the ipsilateral VCN, 
despite a longer axon distance and extra synapse (Grothe, 1994; Grothe 
and Sanes, 1993; Roberts et  al., 2014). In the rat, MNTB principal 
neurons have spontaneous discharge rates of 20–30 spikes/s and respond 
to pure tone-pips with precise temporal patterns of action potentials; 
shortly following the stimulus offset, MNTB neurons have a brief 
window of quiescence and then gradually resume their spontaneous 
discharge rate (Kulesza et al., 2003; Kulesza, 2007; Kadner et al., 2006; 
Kadner and Berrebi, 2008; Kopp-Scheinpflug et al., 2008). This post-
stimulus interruption in MNTB responses to pure tone-pips is essential 
in the formation of offset responses in the SPON (Kulesza et al., 2003; 
Kadner et al., 2006). Together, these findings suggest that glycinergic 
input from the MNTB likely reaches the vMG before any other lemniscal 
inputs, but more importantly provides fast and temporally precise 
inhibition. Additionally, based on our tracer injections in the IC and 
MG, it appears that the MNTB projection to the vMG has very few if any 

FIGURE 7

Tracer injection sites in the MG. Injection sites for the six control animals are shown in panel (A) and those for the six VPA-exposed animals are shown 
in panel (B). These cases were selected to match injections site size and rostrocaudal distribution of injections between control and VPA-exposed 
animals. The scale bar is equal to 200  μm. D, Dorsal; dMG, Dorsal nucleus of the medial geniculate; m, Medial nucleus of the medial geniculate; M, 
Medial; vMG, Ventral nucleus of the medial geniculate.
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collaterals to the CNIC (Figure 8)—this is unique among nuclei in the 
CN, SOC and NLL projecting to the thalamus. The reason for this 
projection pattern is unclear but we propose that maintenance of the 
timing and integration of this glycinergic input is functionally important 
for at least a subset of functionally distinct vMG neurons (see below).

In vivo recordings in rabbits reveal that about 8% of neurons in the 
rabbit vMG respond to pure tones with offset responses and about 3% of 
neurons respond to pure tone-pips with on/off responses (Cetas et al., 
2002). Similar offset-type responses have been found in and around the 
vMG of other species (guinea pig: Yu et al., 2004; cat: Aitkin and Prain, 
1974, mouse: Anderson and Linden, 2016). Our immunolabeling for the 
glycine receptors in the dMG and vMG is largely somatic, similar to what 
is found in the SPON (Kulesza and Berrebi, 2000), where glycinergic 

inputs play an essential role in forming offset responses (Kulesza, 2007; 
Burchell et al., 2022). Based on the role of the MNTB in forming offset 
responses in the SPON and the distribution of glycine receptor positive 
puncta in the vMG, we hypothesize that the MNTB input to this region 
functions, at least in part, to create responses timed to the stimulus offset.

Impact of VPA exposure on connectivity in 
the auditory brainstem

In control animals, we estimate about 20,326 total neurons in the 
SOC (LSO, MSO, MNTB, SPON, VNTB, LNTB and DMW). 
However, in VPA-exposed animals, there are only 15,136 total 

FIGURE 8

Injection sites in the MG. Representative examples of recovered injections sites in the MG are provided for control (A–C) and VPA-exposed animals 
(D–F). The images were taken with simultaneous illumination with white light and a mercury lamp with a UV filter cube. Myeloarchitecture is shown in 
gray and the tracer injection in white. The scale bar is equal to 200  μm. D, Dorsal; dMG, Dorsal nucleus of the medial geniculate; m, Medial nucleus of 
the medial geniculate; M, Medial; vMG, Ventral nucleus of the medial geniculate.
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neurons in these nuclei—this equates to a 26% decrease in the total 
number of neurons in the SOC. However, VPA exposure results in 
approximately a 49% decrease in the SOC projection to the CNIC 
(Zimmerman et al., 2020) and a 73% decrease in the SOC projection 
to the MG (Mansour et  al., 2021b; Mansour and Kulesza, 2021). 
Additionally, VPA exposure appears to result in a significant 
reorganization of the olivogeniculate projection in rats. VPA exposure 
results in a 20% decrease in the total number of MNTB neurons 
(Zimmerman et al., 2018) but a 96% decrease in the total number of 
MNTB neurons projecting to the MG (Mansour et al., 2021b). VPA 
exposure results in a 25% decrease in the total number of LSO 
neurons (Zimmerman et al., 2018). The ascending projection from 
the LSO to the ipsilateral CNIC is inhibitory and likely glycinergic, 
while the projection to the contralateral CNIC is glutamatergic (Ito 
and Oliver, 2010). VPA exposure results in a 34% decrease in the 
ipsilateral projection and a 47% decrease in the contralateral 
projection from the LSO to the CNIC (Zimmerman et al., 2020). 

However, VPA exposure resulted in a 57% decrease in the ipsilateral 
projection (glycine) but a 172% increase in the contralateral 
projection to the MG from the LSO (Mansour et al., 2021b). The MSO 
projection to the MG is likely glutamatergic. VPA exposure results in 
a 57% decrease in the total number of MSO neurons (Zimmerman 
et al., 2018), a 74% decrease in the number of MSO neurons projecting 
to the CNIC (Zimmerman et  al., 2020) and 74% decrease in the 
number of neurons projecting to the MG (Mansour et al., 2021b). The 
SPON projection to the MG is most likely GABAergic (Kulesza and 
Berrebi, 2000). VPA exposure results in a 43% decrease in the total 
number of SPON neurons (Zimmerman et al., 2018), a 61% decrease 
in the number of SPON neurons projecting to the CNIC and a 66% 
decrease in the total number of SPON neurons projecting to the MG 
(Mansour et al., 2021b). While VPA exposure results in significant 
reorganization of the olivogeniculate projection (Figure 5G), there is 
still a net reduction in the number of SOC neurons projecting to the 
thalamus. Specifically, the proportion of VNTB and DMW neurons 

FIGURE 9

VPA exposure abolishes the projection from the MNTB to the MG. Retrograde labeling from a deposit of FG in the MG is shown for control (A1, B1) and 
VPA-exposed animals (C1,D1). Panels (A1,A2,B1,B2) are from two different control animals; panels (C1,C2,D1,D2) are from two different VPA-exposed 
animals. Retrogradely labeled neurons are pseudocolored cyan and Neurotrace counter-stained cells are shown in red (NT). Retrogradely labeled 
neurons are indicated with cyan arrowheads. Panels (A2,B2,C2,D2) show Neurotrace counter-stained sections without the tracer label for reference. 
The scale bar in panel (C1) is equal to 200  μm and applies to all images. D, Dorsal; FN, Facial nerve; LNTB, Lateral nucleus of the trapezoid body; M, 
Medial; RF, Reticular formation; Tz, Trapezoid body; VNTB, Ventral nucleus of the trapezoid body.
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projecting to the MG increases (Figure 5G), but there is an overall 
reduction in the number of neurons projecting to the MG from these 
nuclei (Table 1, column K). The only exception to this pattern is from 
the contralateral LSO (Table  1, column K). There are glycinergic 
neurons in the rat LSO, VNTB and LNTB (Wenthold et al., 1987; 
Rampon et al., 1996) and changes in projections from these nuclei 
may compensate for the loss of glycinergic input from the MNTB, 
although they likely cannot provide the same temporal precision. 
Besides the MNTB, these results do not currently provide a clear 
pattern for the impact of in utero VPA exposure on projections of 
specific nuclei or neurotransmitter systems in the auditory brainstem. 
VPA has been shown to inhibit neurite outgrowth (Qian et al., 2009), 
and we propose that the drastic reduction in the thalamic projection 
of the MNTB is due to the impact of VPA on developing axons. 
Nonetheless, these results emphasize two important points. First, our 
findings are consistent with loss of projections to both the CNIC and 
MG beyond what is predicted from neuron loss alone (Table  1, 
column K). Second, VPA exposure seems to have a preferential 
impact on longer axonal projections and the MNTB projection to the 
thalamus in particular.

As we have previously shown, the number of neurons from the 
VCN and most SOC nuclei projecting to the MG are fewer than those 
projecting to the CNIC. There are however two exceptions to this: the 
DMW and MNTB (Burchell et  al., 2022). In control animals, 
we estimate that only about 810 DMW neurons (combined ipsilateral 
and contralateral) project to the CNIC but 1,286 neurons project to 
the vMG (1.6-fold larger thalamic projection). In VPA-exposed 
animals we estimate that 174 DMW neurons project to the CNIC and 
about 583 neurons project to the vMG (3.3-fold larger thalamic 
projection). This is mainly attributable to a nearly 10-fold decrease in 
the projection from the ipsilateral DMW to the vMG after VPA 
exposure. In control animals, we estimate that only about 145 MNTB 
neurons project to the CNIC but 2,256 neurons project to the vMG 
(16-fold larger thalamic projection). In VPA-exposed animals 
we  estimate that approximately 80 MNTB neurons project to the 
CNIC and only about 85 neurons project to the vMG. This difference 
in the number of MNTB neurons projecting to the MG compared to 
the CNIC in VPA-exposed animals is essentially 0 and is consistent 
with abolishment of the thalamic projection from the MNTB 
(Figure 1). This finding is based on injections of the retrograde tracer 
FG into the MG. Anterograde tracing experiments will undoubtably 
provide additional insight into course, collaterals and distribution of 
MNTB axons beyond the SOC. It is not clear to what degree MNTB 
projections to the CN, SPON, MSO, LSO and NLL are impacted by in 
utero VPA exposure, but we  will explore these projections in 
future studies.

Impact of loss of MNTB input to the vMG

The role of glycinergic input to the VNLL, INLL or vMG from 
the MNTB is not well characterized, so we can only speculate on the 
impact of losing this projection. Again, we propose that at least in 
the vMG, the MNTB input contributes to formation of offset 
responses. VPA exposure appears to abolish this projection to the 
vMG and so we  hypothesize that VPA-exposed animals have 
significantly fewer offset responding neurons in the vMG. While 
there are significantly fewer MNTB and SPON neurons in 

VPA-exposed animals, we have not examined the distribution of 
glycine receptors or glycine-immunoreactive puncta in the 
SPON. MNTB principal neurons are characteristically CB+, but VPA 
exposure results in reduced CB immunolabeling in the MNTB, and 
many MNTB neurons have CB immunoreactivity restricted to the 
nucleus (Zimmerman et al., 2018), so counting CB+ puncta may not 
be a viable metric to quantify this projection to the SPON, VNLL or 
INLL. Regardless, VPA exposure results in near complete loss of 
MNTB input to the vMG. Since the MNTB input would provide a 
fast, glycinergic input to vMG neurons we  hypothesize that 
VPA-exposed animals have reduced coding of temporal information 
in the auditory thalamus. This most likely impairs coding of complex 
sounds such as vocalizations.

Interestingly, the physiological impact of abolishing the thalamic 
projection from the MNTB may not be so clear cut. Mice with deletion 
of the transcription factor En1, lack MNTB and VNTB neurons but 
neurons in the LSO and SPON still receive glycinergic innervation 
(Jalabi et al., 2013; Altieri et al., 2014). Mice lacking an MNTB had 
normal sound-evoked startle responses, but elevated thresholds to 
pure tones, significantly reduced amplitude of wave III, which is 
attributed largely to the MNTB and reduced sound localization 
abilities (Jalabi et al., 2013). However, these mice have fewer GlyT2+ 
puncta in the LSO but no change in the SPON. The development of 
these GlyT2+ puncta in the LSO even followed a similar time course 
as control animals, but was delayed in the SPON (Altieri et al., 2014). 
In fact, strychnine-sensitive offset responses could still be elicited in 
the SPON, despite there being no MNTB neurons (Jalabi et al., 2013). 
The origin of these glycinergic inputs to the SPON and LSO in the 
absence of MNTB neurons has not been resolved, but likely arise from 
the contralateral VCN (Jalabi et al., 2013).

Our tract tracing studies show that the projection to the MG from 
the contralateral VCN is greatly reduced in VPA-exposed animals 
(Table 1). Specifically, deposits of retrograde tracers in the MG results 
in labeling of about 7,166 VCN neurons in control animals but only 
825 neurons in VPA-exposed animals (Mansour et al., 2021b)—this 
equates to a 88% decrease. While the VCN may reprogram to 
compensate for loss of local glycinergic projections in En1 deficit 
animals, this does not appear likely for long-range projections in 
VPA-exposed animals. Therefore, we hypothesize significant loss of 
glycinergic innervation of the vMG and dMG in VPA-exposed 
animals. Regardless, our results are consistent with significantly 
reduced and disproportionate ascending thalamic projections in 
VPA-exposed animals. These changes likely translate into impaired 
temporal and spectral coding of auditory information in the MG and 
auditory cortex and provide evidence that certain projections may 
be preferentially impacted in animal models of ASD.
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