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Background: A number of drugs are toxic to the cochlear sensory cells known 
as hair cells (HCs), resulting in hearing loss. Treatment with survival-promoting 
growth factors, antioxidants, and inhibitors of cell death pathways or proteinases 
have been shown to reduce HC damage in in vivo and/or in vitro animal models. 
Conversely, translation to humans has often been disappointing. This may 
be due to the complexity of intracellular damage processes. We hypothesized 
that combining treatments targeting different cellular processes would be more 
effective.

Methods: Using an in vitro model of gentamicin ototoxicity for murine cochlear 
hair cells, we  screened all 56 possible combinations of inhibitors targeting 
five different cell damage mechanisms, plus the activator of one cell survival 
pathway, each of which have been shown to be singly effective in preventing 
HC loss in experimental studies. A high dose of gentamicin (200  μM) was used 
over three days in culture. All compounds were added at a dosage below that 
required for significant protection in the assay, and only this single dose was 
then employed. This was done so that we could more easily detect interactive, 
as opposed to additive, effects.

Results: Increasing protection of hair cells was observed as combinations 
of compounds were increased from two to four factors, although not all 
combinations were equally protective. The optimal combination of four 
compounds consisted of an anti-oxidant, an apoptosis inhibitor, an autophagy 
inhibitor and a protective growth factor. Increasing the number of factors to five 
or six resulted in decreased protection.

Conclusion: The results support the hypothesis that targeting multiple cellular 
damage or survival pathways provides more an effective hair cell protection 
approach. The results help to identify critical interactions among the cellular 
processes that operate in gentamicin ototoxicity. They also suggest that 
inhibiting too many biological processes impairs functions critical to HC survival, 
resulting in decreased protection.
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Highlights

 • The process of damage to cochlear sensory cells is complex, yet 
most prevention studies target only a single damage process.

 • We studied all 56 combinations of compounds targeting five 
distinct cellular mechanisms for protection against an ototoxin 
applied in vitro.

 • Increasing the number of compounds increased the level of 
sensory cell protection up to four, but protection declined with 
five or six.

 • The results implicate reactive oxygen species, apoptosis and cell 
proliferation as key damage mechanisms, while cell survival 
factors are also important.

1 Introduction

The loss of hearing is a common disorder that can be caused by 
exposure to loud sounds or certain drugs, aging, infections or genetics 
(Cunningham and Tucci, 2017). Severe hearing loss can cause 
substantial decreases in the quality of life (Punch et al., 2019), social 
interaction (Bennett et al., 2022) and employability (Graydon et al., 
2019). The prevention of hearing loss is thus an important concern. 
Changes in hearing thresholds are typically due to loss of cochlear 
sensory cells, known as hair cells (HCs) due to their ciliary arrays. 
HCs translate the mechanical vibrations of sound into neural impulses 
that activate the central auditory system. Protecting these cells is an 
important key to the preservation of hearing.

A number of cellular processes that participate in HC damage 
have been identified by studies in animals or cell lines. Evidence exists 
for the involvement of reactive oxygen species (ROS) (Seidman et al., 
2004; Kamogashira et al., 2015), stress kinase signaling (Ryals et al., 
2017), Ca++ regulation (Esterberg et al., 2014), inflammation (Frye 
et al., 2019) and apoptosis (Wu et al., 2020). Experimental inhibition 
of each of these processes has been shown to protect HCs in vitro and/
or in vivo. For adult mammalian HCs, which are post-mitotic, the 
induction of cell division can also induce cell death (Liu and Zuo, 
2008). Survival-promoting growth factors can protect HCs from 
damage (Yamahara et  al., 2015). The laboratory successes of HC 
protection have led to clinical trials to reduce hearing loss. However, 
translation to humans has had mixed results (Sha et al., 2006; Kocyigit 
et al., 2015; Suckfuell et al., 2014; Bagger-Sjoback et al., 2015; Bai et al., 
2022; Orgel et  al., 2023). Even successful trials in humans have 
generally been less effective than in animal experimental models.

There are multiple reasons for this discrepancy, which is all too 
frequent in the translation of laboratory results to clinical practice 
(Fernandez-Moure, 2016). Animal and in vitro models of HC 
protection involve carefully controlled damage and drug delivery, 
while patients often have variability in both damage and delivery of 
drugs to the cochlea (Nyberg et al., 2019). HC damage in humans 
often occurs over longer time periods than in experimental studies. 
Species differences in drug responses between humans and animals 
may play a role. In addition, most treatments employed in clinical 
trials address a single cellular process or pathway. However, damage 
to cells generally involves multiple parallel, overlapping and competing 
intracellular processes (Weng et al., 1999; Bhalla, 2003). The various 
cellular interactions can act in a manner similar to a microprocessor, 

integrating pathway outputs to determine cell fate. Inhibiting one 
damage process, or boosting a single survival pathway, may therefore 
be  insufficient to protect HCs from damage. While many of the 
determinants of translation failure are difficult to address, the 
complexity of cellular damage can be  approached by combining 
treatments targeting different involved processes (Chen and 
Lahav, 2016).

We previously performed several in vitro screens of different 
cellular damage processes using primary mammalian hair cells. These 
screens employed compound libraries of antioxidants, protein kinase 
inhibitors, autophagy inhibitors, proteinase inhibitors and 
phosphatase inhibitors for protection against gentamicin ototoxicity 
(Ryals et al., 2017; Noack et al., 2017; Hur et al., 2018; Lim et al., 2018; 
Draf et al., 2021). In each case, only a small fraction of antioxidants or 
inhibitors proved to provide protection, and most of those were only 
partially effective. Many other laboratories have also identified 
treatments that provide experimental HC protection, as 
reviewed above.

We reasoned that combining treatments identified by our and 
other groups’ experiments could enhance HC protection. 
We  identified five damage processes for combinatorial inhibition: 
ROS, stress protein kinases, autophagy, apoptosis and cell division. In 
addition, we also integrated protection by survival-promoting growth 
factors. We  identified six compounds with demonstrated HC 
protective activity for each of these processes, and tested the various 
combinations in an in vitro murine HC assay of gentamicin ototoxicity 
to determine if they provide better protection to hair cells compared 
to each compound used alone. All possible combinations of the six 
compounds are tested to evaluate the impact of their addition on the 
hair cell survival from gentamicin-induced damage, demonstrating 
potential interactive effects that could inform therapeutic strategies.

2 Materials and methods

2.1 Ethics statement

Experiments were performed to National Institutes of Health 
(NIH) guidelines for the safe and humane treatment of animals. The 
study was approved by the Institutional Animal Care and Use 
Committee of the San Diego VA Medical Center.

2.2 Animals

All studies were performed on transgenic mice in which the 
expression of eGFP was driven by an 8.5 kb pou4f3 promoter construct 
(Masuda et al., 2011). This strain expresses eGFP, that in the organ of 
Corti, the cochlear sensory epithelium, is restricted to both inner and 
outer HCs.

2.3 Explant preparation

The organ of Corti was micro-dissected from the cochleas of 
3–5 day old pou4f3/eGFP mouse pups. The apical portion of the 
epithelium, which is much less sensitive to ototoxicity, was discarded. 
The basal and middle turns, which we have found respond similarly 
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to the high dosage of gentamicin employed, were divided with a 
diamond scalpel into micro-explants, each consisting of ~20 inner 
HCs and the associated outer HCs, totaling ~80 HCs in each assay. 
Explants were plated singly into the wells of flat-bottom 96-well plates, 
in media consisting of DMEM:F-12 plus Pen/Strep and 5% 
FBS. Streptomycin was kept below the HC damage threshold. DMSO 
was included at 0.1%, necessary to enhance the cell permeability of 
some compounds. Explants were allowed to attach to the wells for 24 h.

2.4 Compound combinations

The antioxidant (AO) chosen for the study was N-acetyl choline 
(NAC), which has been reported to offer protection in animal and 
human studies (Bai et al., 2022; Orgel et al., 2023; Feghali et al., 2001). 
The kinase inhibitor (KI) was C. difficile toxin B (CDTB), which 
inhibits upstream kinase elements of the Jun kinase (JNK) stress 
pathway (Bodmer et al., 2002). The cell proliferation inhibitor (PI) was 
fascaplysin, which blocks the protein expression of CDK4 and cyclin 
D1 (Soni et  al., 2000). The calcium channel blocker (CI) was 
nimodipine, which stabilizes L-type calcium channels in their inactive 
conformation (Bean, 1984). The apoptosis inhibitor (AI) was ZVAD-
FMK, which irreversibly binds the catalytic site of caspases (Van 
Noorden, 2001). The growth factor (GF) used was insulin-like growth 
factor-1 (IGF-1), known to promote HC survival (Yamahara et al., 
2015). The concentrations employed for each compound were just 
below the threshold for HC protection when used alone (see Table 1).

2.5 Combination testing

Negative and positive control explants were placed into culture in 
media alone for 24 h to allow for attachment (Day 0). Negative control 
explants then remained in media for an additional 72 h (Days 1–3). 
Positive control explants were then treated for three days with 200 μM 
gentamicin. Experimental explants treated with compound 
combinations were pre-treated with the combination during the 24 h 

attachment period (beginning on Day 0). They were then treated with 
the combination plus gentamicin at the beginning of Day 1, and 
cultured for three days (Days 1–3). Media for all conditions included 
0.1% DMSO. Culture media were not changed after Day 0.

Cultures were conducted in triplicate, as for our prior compound 
screens (Ryals et  al., 2017; Noack et  al., 2017; Draf et  al., 2021). 
Different ototoxin batches produced different levels of HC damage in 
our positive controls and presumably for our compound combinations, 
while some negative control explants varied in their survival over 
days. This required verification that control conditions were consistent 
plate-to-plate. Thus, negative and positive controls were included in 
each 96-well plate and were used for analysis of that plate’s compound 
treatment results.

GFP-positive cells were imaged by fluorescence microcopy at the 
end of the attachment period on Day 0, and at the end of Days 1, 2 and 
3 post gentamicin treatment. Any micro-explant that did not attach 
and flatten in the well after attachment was excluded and repeated, 
since HC counts could not be accurately quantified at that time. HC 
counts, including both inner and outer HCs, were evaluated in ImageJ 
by two independent observers blinded to treatment. Counts on Days 
1–3 were compared to the number of HCs present at the end of Day 
0, prior to gentamicin treatment, by ANOVA and t-test with 
Bonferroni correction. The counts were then converted to percent of 
HCs present at the end of Day 0. HC survival curves were generated 
for both controls and for each experimental compound combination.

2.6 Data analysis

Comparisons of treatment counts to matching negative or positive 
control counts on the same culture plate were performed by t-tests 
with Bonferroni correction for multiple tests. Significant differences 
were replicated for confirmation. Statistical comparison across the 
different combinations were not possible, due to variability in control 
values between plates. Comparisons mentioned below are 
observational only. HC counts were converted to percentages, 
compared to those present at the end of Day 0, for the purposes of 
illustration in the figures.

3 Results

3.1 Controls

Figure 1 illustrates a representative micro-explant at the end of 
four days in culture. Negative and positive control explants were 
placed into culture in media alone for 24 h to allow for attachment 
(Day 0). Figure  1A shows a positive control explant treated with 
200 μM gentamicin at the beginning of Day 1. Significant loss of outer 
HCs and a minor loss of inner HCs was observed at the end of Day 1. 
By Day 2, essentially all outer HCs and some inner HCs were missing. 
By Day 3, only a remnant of inner HCs remained. In Figure 1B, the 
negative control explant showed minimal loss of HCs on Days 1 and 
2, but scattered primarily outer HCs were missing on Day 3.

Figure  2 illustrates the combined quantitative data from all 
negative and positive control micro-explants. Day 0 represents first 
day in culture but where the gentamicin treatment has not started yet. 
Negative controls showed the loss of a few percent of HCs on Day 1, 

TABLE 1 The six compounds evaluated and their combination assays 
screening concentration.

Class Acronym Name Concentration

Antioxidant AO
N-acetyl 

choline (NAC)
5.0 mM

Kinase 

inhibitor
KI CDTB 1.0 ng/mL

Calcium 

channel 

blocker

CI Nimodipine 10 nM

Proliferation 

inhibitor
PI Fascaplysin 500 nM

Apoptosis 

inhibitor
AI ZVAD-FMK 5.0 μM

Growth Factor GF IGF-1 10 nM

Concentrations were just below the threshold for HC protection when used alone. The 
compounds target five specific damage processes and include survival-promoting growth 
factor.
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5–10% on Day 2 and 30% on Day 3. In contrast, positive explants lost 
45% of HCs on Day 1, 94% on Day 2 and 96% on Day 3.

3.2 Compound combinations

The six compounds used resulted in 15 unique combinations of 
two factors. Figure 3 shows the survival curves for all two-compound 
combinations. Seven of these pair combinations showed significant 
protection compared to gentamicin-treated micro-explants at the end 
of Day 1 post gentamicin treatment. This decreased to three at the end 

of Days 2 and 3. Figure 4 further illustrates HC survival on Day 3 for 
all combinations of 2-pair factors. Significant protection was noted for 
three of the pair combinations. The proliferation inhibitor was present 
in all three, in binary combination with the kinase inhibitor, the 
apoptosis inhibitor or the calcium channel blocker, with the latter 
resulting in 49% HC survival on Day 3. Compared to gentamicin 
alone, this represented an increase in survival by 2.7 fold.

Figure 5 shows HC survival on Day 3 for all 20 combinations of 
three factors. Five combinations produced significant protection. All 

FIGURE 1

GFP expression (green) in micro-explants made from the isolated cochlea of transgenic pou4f3/eGFP mice. (A) Positive control explant treated with 
200  μM gentamicin at end of Day 0, and maintained in culture for four days. (B) Negative control micro-explant also maintained in culture for four 
days.

FIGURE 2

Quantitation of percentage of HCs remaining in negative control 
explants maintained in culture media alone, or in positive control 
explants after 1, 2 or 3  days of gentamicin treatment (200  μM).

FIGURE 3

HC survival curves for all combinations of two factors pairs, before 
and for three days after co-treatment with gentamicin. Factors were 
provided at concentrations just below that which produces 
significant HC protection (Table 1). AO, antioxidant (NAC); KI, kinase 
inhibitor (CDTB); CI, calcium blocker (Nimodipine); PI, proliferation 
inhibitor (Fascaplysin); AI, apoptosis inhibitor (ZVAD-FMK); GF, growth 
factor (IGF-1).
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five included the proliferation inhibitor. Three protective combinations 
included the calcium channel blocker, three the apoptosis inhibitor, 
two the kinase inhibitor, two the growth factor, but none the 
antioxidant. The maximum protection achieved was 40%. Compared 
to gentamicin alone, this represented an increase in survival by 
5.5 fold.

Figure 6 illustrates HC survival on Day 3 for all 15 combinations 
of four factors. Five combinations achieved significant protection 
against gentamicin. Again, all five included the proliferation inhibitor. 
Four included the calcium channel blocker, four the antioxidant, three 
the apoptosis inhibitor, two the growth factor and two the kinase 
inhibitor. The maximum protection achieved was 87%, by the 
combination of the proliferation inhibitor, the antioxidant, the 
apoptosis inhibitor and the growth factor. Compared to gentamicin 
alone, this represented an increase in survival by 7.9 fold.

Figure 7 shows HC survival achieved by the six combinations of 
five factors, plus by all six factors combined. Two of the five-compound 
combinations were significantly protective. One of these lacked the 
calcium channel blocker, while the other lacked the kinase inhibitor. 
The maximum HC protection of 52% was observed for the combination 
of the antioxidant, the proliferation inhibitor, the calcium channel 
blocker, the apoptosis inhibitor and the growth factor. Compared to 
gentamicin alone, this represented an increase in survival by 5.2 fold. 
All six compounds resulted in 47% HC survival at Day 3. Compared 
to gentamicin alone, this represented an increase in survival by 4.7 fold.

4 Discussion

4.1 Protective effects of factor 
combinations on HC survival

The results indicate that combinations of factors targeting different 
processes related to HC damage, delivered individually at 
sub-protective concentrations, interact to produce protection. The 
most protective combination of two factors increased the number of 
HCs surviving after three days of gentamicin by 2.8 times. The best 
combination of three factors increased HC survival by 5.5 times, and 
for four factors by 7.9 times. Survival enhancement then decreased to 
4.7 times for the best five-factor combination, and by 4.4 times for all 
six factors. Increasing the number of factors also enhanced the 
percentage of combinations that were protective.

Experimental combinatorial studies have been recognized as 
useful to identify optimal combinations for the treatment of many 
disorders (Editorial, 2017), including cancer, (Lopez and Banerji, 
2017; Wei et al., 2024) prior to any clinical trials. However, translating 
of the identified combination of treatments into clinical use would 
face significant difficulties. Translation from in vitro to in vivo, and 
from animal to human, are well-known hurdles (Van der Worp et al., 
2010). Even if these barriers can be crossed, the use of the best factor 
combination in patients would require cochlear safety trials for each 
factor separately, and possibly trials for different factor combinations, 
in addition to the final four-factor combination (Patera et al., 2023). 
These difficulties make the use of the treatment combinations 
identified here for preventing HC loss in patients a distant goal. The 
value of the present study is rather to identify cellular processes that 
contribute to HC damage and protection, to provide evidence 
regarding their relative importance, and to document interactions.

It is immediately clear from the results that prevention of HCs 
from entering the cell cycle was a critical factor in preventing HC loss. 
The role of cell cycle inhibition in HC survival well known from 
studies of HC regeneration (Groves, 2010), and is mediated by the 
expression of the cyclin-dependent kinase inhibitor INK4dD (Chen 
et al., 2003). However, its importance in ototoxicity has not been as 
well recognized. All three of the combinations of two compounds that 
remained significantly protective through Day 3 included the cell 
proliferation inhibitor fascaplysin, as did the five protective 
combinations of three factors, the five protective combinations of four 
compounds, the two protective combinations of five factors, and of 
course the combination of all compounds. These data support a major 
role for induction of the cell cycle in ototoxic HC damage.

Three out of five protective combinations of three factors included 
the calcium channel inhibitor nimodipine, as did four out of the five 

FIGURE 4

HC survival at the end of three days of gentamicin treatment for all 
combinations of two factors (*p <  0.05). AO, antioxidant; KI, kinase 
inhibitor; CI, calcium blocker; PI, proliferation inhibitor; AI, apoptosis 
inhibitor; GF, growth factor.

FIGURE 5

HC survival at the end of three days of gentamicin treatment for all 
combinations of three factors (*p <  0.05). AO, antioxidant; KI, kinase 
inhibitor; CI, calcium blocker; PI, proliferation inhibitor; AI, apoptosis 
inhibitor; GF, growth factor.
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protective four-factor combinations, and one of the five-factor 
combinations. Calcium increases in mitochondria are well-known to 
be a critical component of aminoglycoside-induced HC loss (Esterberg 
et al., 2014).

For the four-factor combinations, the most protective combination 
identified consisted of the proliferation inhibitor fascaplysin, the 
apoptosis inhibitor ZVAD-FMK, the growth factor IGF-1, and the 
antioxidant NAC. Fascaplysin, ZVAD-FMK, and IGF-1 formed a 
three-factor combination that was highly protective, and the inclusion 
of NAC appeared to enhance this protective effect. Adding additional 
factors to form a five or six factor combination, such as the calcium 
channel inhibitor nimodipine or the kinase inhibitor CDTB, 

maintained a strong protective effect but did not appear to enhance it 
further. The specific reasons for this outcome remain unclear, since 
nimodipine was often present in the protective combinations. The 
addition of these extra factors might disrupt critical cellular processes, 
as exemplified by CDTB, which inactivate Rho and related Rho family 
small GTPases (Bodmer et al., 2002).

4.2 Complexity of interactions in HC 
damage and protection

The interactions of cell damage and survival processes are highly 
complex, thus there are many potential means of interaction between 
the inhibitors and the growth factor used in this study. For example, 
cytoplasmic calcium is an important regulator of numerous cellular 
processes, thus understanding its role in any given situation is 
complex. However, increased levels of Ca++ are well known to stimulate 
cell division and/or apoptosis (e.g. Zhang et al., 2019), both of which 
are important to hair cell survival (e.g. Esterberg et al., 2014; Wu et al., 
2020). By limiting Ca++ influx from the extracellular medium via 
L-type channels, nimodipine has the potential to potentiate the effects 
of the apoptosis inhibitor ZVA-FMK and the cell division inhibitor 
fascaplysin. At low levels, ROS and calcium interact to regulate cell 
homeostasis. However, higher levels of ROS can target ER-based 
calcium channels, leading to increased release of calcium and 
additional increases in ROS levels. Increased ROS and calcium can 
open the mitochondrial permeability transition pore, resulting in the 
release of pro-apoptotic factors (Görlach et al., 2015). Antioxidants 
can thus potentially interact with nimodipine and/or ZVAD-
FMK. Growth factors stimulate cell survival signaling, including via 
ERK and AKT signaling to activate survival factors such as IAP 
(inhibitor of apoptosis) proteins (Vasudevan and Ryoo, 2015), and Bcl 
family members (Qian et al., 2022), providing a mechanism of for 
potentiation of ZVAD-FMK by IGF-1. The protein kinase inhibitor 
CDTB blocks the activation of Cd42, which is in the pathway linking 
K-Ras to activation of the transcriptional regulator JNK. The JNK 
pathway can also be  activated by ROS. JNK can mediate in the 
increased expression of pro-apoptotic genes including as TNF-α, Fas-L 
and Bak (Dhanasekaran and Reddy, 2017). Thus, NAC or CDTB could 
potentially interact with ZVAD-FMK. Given this level of complexity, 
we can only speculate on the contributions of these and other possible 
interactions to HC protection from gentamicin.

4.3 Study limitations

There are a number of limitations of this study that must 
be considered in interpreting the results. First, the comparisons as 
mentioned above are only observational. The comparison across 
numbers of compounds were not statistically analyzed given the 
variability in controls. We acknowledge that differences in HC survival 
rates across these combinations could introduce biological variability 
that may affect the interpretation of our results.

We used a single low dose of each factor to allow the detection of 
interactive protection. Higher doses may well have produced different 
interactions. In particular, stronger drug dosages might increase the 
level of protection for some combinations, or decrease the potential 
for protection due to enhanced disturbance of critical cellular 

FIGURE 6

HC survival at the end of three days of gentamicin treatment for all 
combinations of four factors (*p <  0.05). AO, antioxidant; KI, kinase 
inhibitor; CI, calcium blocker; PI, proliferation inhibitor; AI, apoptosis 
inhibitor; GF, growth factor.

FIGURE 7

HC survival at the end of three days of gentamicin treatment for all 
combinations of five factors as well as all six factors (*p <  0.05). AO, 
antioxidant; KI, kinase inhibitor; CI, calcium blocker; PI, proliferation 
inhibitor; AI, apoptosis inhibitor; GF, growth factor.
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processes. Using multiple doses would have greatly expanded the 
scope of this project, especially if different dosages had been compared 
across compounds. Future studies will be required to use a range of 
dosages, to investigate these potential changes in interactions.

The decline in HC protection observed for combinations over time 
in culture (e.g. Figure 3) could reflect either increased damage from 
gentamicin and/or a decline in the concentrations of compounds. Given 
the volume difference between the culture well and the explant, and the 
relatively stable nature of the small molecule compounds employed 
(Elmlinger et al., 2005; Friciu et al., 2021; Green et al., 2004; Bharate 
et al., 2012), we would not expect significant changes in their levels over 
time in culture. Also, in the absence of proteases in the culture media, 
we would also not expect meaningful peptide degradation of IGF-1, 
CDTB or ZVAD-FMK. However, although we assume that compound 
concentrations did not change significantly over time in culture, it still 
remains a possibility and thus compound concentration changes 
remain a consideration when interpreting our data.

While damage to HCs from gentamicin decreases HC GFP+ 
fluorescence (see Figure  1), it is also possible that compounds or 
combinations could decrease GFP expression sufficiently to mimic 
HC loss. We think that if this occurred, it would most likely reflect 
additional HC damage rather than an effect limited to GFP. However, 
we did not see noticeable decreases in GFP fluorescence beyond those 
induced by gentamicin alone in our compound groups.

The in vitro method employed may well differ from that 
occurring in vivo. We studied immature hair cells, while most forms 
of ototoxic drug damage occurs in adults. The use of alternative 
modulators of each cellular process could also have affected the 
outcome. It should also be noted that this basic science study was 
not intended to lead to a human treatment. Rather, it was performed 
to identify critical processes in the hair cell damage mechanism and 
their relationships.

Finally, almost all pharmacological inhibitors affect additional cell 
processes, often in a dose-dependent manner. While the low dosages 
used were intended to minimize this issue, inhibition of an alternative 
cell process than the one intended could have affected HC protection.

5 Conclusion

The results support our prediction that combining protective 
factors would yield enhanced protection of HCs from ototoxicity. They 
also implicated cell division, ROS, apoptosis and protective growth 
factors as critical regulators of HC death, while calcium regulation and 
stress kinases appeared to be  less important. The reduced relative 
protection observed with added factors above the optimal four-
compound combination may have been the result of interfering with 
too many cellular processes, which itself could impair HC survival.
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