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The significance of potassium channels in
neuropsychiatric disorders

Potassium (K+) channels are a diverse group of ion channels which regulate the

excitability and stability of biological membranes through their effects on inward K+

flux, leading to reduced excitability and hyperpolarization. Contemporary classifications

recognize anywhere from three to five subtypes of K+ channels, based on their

subunit composition, number of transmembrane domains, and functional properties.

The four most widely recognized subtypes are: (a) voltage-gated K channels (KV), (b)

calcium (Ca++)-activated K channels (KCa), (c) inward-rectifying K channels (KIR),

and (d) two-pore domain K channels (K2P). Apart from these, there are ligand-

gated K channels that are activated by specific molecules, such as cyclic nucleotides

(Kuang et al., 2015).

K+ channels are highly expressed in several brain regions, including the frontal

cortex, basal ganglia, hippocampus and amygdala, where they influence neuronal firing,

transmitter release, and neural plasticity. Mendelian disorders involving K+ channel-

related mutations in the brain have been associated with developmental delays, epilepsy,

and symptoms suggestive of anxiety, hyperactivity, and autism spectrum disorder (Alam

et al., 2023). This has led researchers to investigate the possible contribution of K+ channel

functioning to non-Mendelian psychiatric syndromes. Such research has found possible

evidence of altered K+ channel activity in schizophrenia, depression, and autism spectrum

disorders. This raises the possibility of novel therapeutic approaches aimed at modulating

the functioning of these channels (Vukadinovic and Rosenzweig, 2012; Cheng et al., 2021;

Meshkat et al., 2024). More recent research has highlighted the importance of K+ channels

in anxiety- and fear-related processes. In animal models, KV channels have been found to

play a key role in fear conditioning and anxiety-like behaviors (Stubbendorff et al., 2023;

Page and Coutellier, 2024). In humans, polymorphisms in genes encoding KV and KIR

channel subunits have been associated with vulnerability to anxiety disorders in youth

(Thapaliya et al., 2023). This paper examines recent translational evidence implicating

changes in K+ channel functioning in the pathogenesis of post-traumatic stress disorder.
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Understanding the neurobiology of
post-traumatic stress disorder

Post-traumatic stress disorder (PTSD) is a chronic psychiatric

syndrome caused by exposure either to a single, overwhelming

traumatic stressor or chronic traumatic stress. PTSD affects

about 6–8% of the global population, and is characterized by

intrusive “re-experiencing” of the traumatic event, increased

arousal, avoidance of trauma-related cues, and associated changes

in thought and mood, which can persist for months or years

after a traumatic exposure. Currently approved treatments for

PTSD include serotonergic antidepressants and specific types of

psychotherapy, but their efficacy is often limited (Lee et al., 2016).

The neurobiology of PTSD is complex and involves

dysregulation of neurotransmitter, neuroendocrine and immune-

inflammatory pathways (Ressler et al., 2022). The core features

of PTSD probably reflect dysregulation of fear-related processes,

involving neural circuits connecting the ventromedial prefrontal

and anterior cingulate cortices to the insula and limbic structures

such as the hippocampus and the central and basolateral regions

of the amygdala (France and Jovanovic, 2023). Distinct symptom

domains of PTSD may reflect alterations in discrete neural circuits.

For example, hypervigilance may reflect increased amygdala

activity, while alterations in sleep may result from additional

alterations in the functioning of the insula, hippocampus, and

dorsal anterior cingulate cortex (Ressler et al., 2022).

This neuroanatomical diversity reflects a diversity in

pathogenic cellular mechanisms. In a recent genome-wide

association study (GWAS) of over 150,000 patients with PTSD, 43

genes coding for neurotransmitter receptors, ion channels, neural

development, synaptic structure and function, and the regulation

of endocrine and immune responses were all associated with

vulnerability to this disorder. A common thread that unites this

diverse set of genes is that they all are involved in fear-, threat-

and stress-related psychophysiological responses (Nievergelt

et al., 2024). A smaller GWAS of trauma-exposed adults found a

suggestive association between a polymorphism of the DPP6 gene

and certain specific symptoms of PTSD, such as experiences of

unreality and detachment from one’s surroundings (Wolf et al.,

2014). DPP6 codes for a protein that is associated with a particular

subtype of voltage-gated (KV) K
+ channel, which is involved in

the regulation of dendritic excitability and synaptic integration of

information (Sun et al., 2011). This raises the possibility that K+

channel subtypes play a role in the development of specific PTSD

symptoms, and may even represent potential therapeutic targets.

Potassium channels in animal models
of fear-related phenomena

Research involving rodent models of fear memory,

conditioning and extinction has found that at least three types

of K+ channels are involved in these processes. Kir3 channels,

also known as GIRK channels, are tetrameric, G-protein-gated

inwardly rectifying (KIR) K
+ channels, which exist in four varieties

labeled GIRK1 through GIRK4. GIRK1 and GIRK2 are more

highly expressed in the brain. Activation of these channels with

an experimental agent has been found to facilitate the extinction

of conditioned fear responses in mice, probably through increased

GIRK inhibitory tone in the basolateral amygdala (BLA) (Xu et al.,

2020). GIRK channels can be activated by the neurotransmitter

gamma-aminobutyric acid (GABA) through GABAB receptors,

and it has been found that GIRK-mediated currents in the

prelimbic area of the medial prefrontal cortex are stronger in male

than in female mice. These gender differences in GIRK-mediated

fear extinction may account for the increased susceptibility of

women to PTSD following exposure to trauma (Fernandez de

Velasco et al., 2015).

KCNQ, a type of KV K+ channel, appears to inhibit the

consolidation of fear-related memories in the BLA. The use of a

KCNQ agonist was associated with impaired fear consolidation in

mice. Inhibition of the KCNQ-mediated current through direct

antagonism, or through the activation ofmuscarinicM1, adrenergic

β2, or dopaminergic D5 receptors, had the opposite effect, leading

to enhanced fear consolidation. This suggests that monoamine

transmitters may influence fear memory consolidation through

their effects on this channel (Young and Thomas, 2014). In

primates, activation of the α1 adrenergic receptor in the prefrontal

cortex has complex effects: postsynaptic α1 receptors on dendritic

spines lead to KCNQ opening and reduced cortical activity,

while presynaptic α1 receptors increase cortical activity. It has

been hypothesized that the former mechanism is operative at

high levels of stress, leading to reduced cortical regulation of

subcortical fear and stress responses (Datta et al., 2019). This

may explain why the α1-receptor antagonist prazosin is effective

in some patients with PTSD. More importantly, these results

highlight the importance of considering the localization of K+

channels when evaluating their effects on fear-related disorders.

In this case, KCNQ activation in the amygdala appears to

protect against PTSD, but may have the opposite effect in the

prefrontal cortex.

SK channels, which are KCa-type K
+ channels, may also have

significant effects on fear conditioning in mice. More specifically,

they may inhibit the activity of infralimbic cortical neurons

involved in fear extinction. In rats undergoing fear conditioning,

blocking SK channels had no immediate effect on fear responses,

but increased the extinction of fear responses on the next day;

activation of SK channels led to hyperpolarization of infralimbic

neurons and reduced fear extinction (Criado-Marrero et al.,

2014). A somewhat different picture was obtained in the mouse

amygdala, where fear conditioning was associated with reduced

SK2 channel expression in the BLA, while fear extinction was

associated with increased numbers of synaptic SK2 channels, an

effect which appeared to be mediated by the synaptic regulator

protein membrane palmitoylated protein 2 (MPP2) (Peng et al.,

2023). KCa channel activation may also inhibit the increased

excitability of the lateral amygdala caused by chronic stress in rats

(Rosenkranz et al., 2010). These results are remarkably similar to

those observed with KCNQ. Overall, potassium channel activation

in the BLA may inhibit the consolidation of fear memories, while

activation of the same channels in adjacent regions of the medial

prefrontal cortex may inhibit their extinction (Criado-Marrero

et al., 2014).
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Potassium channels in animal models
of PTSD

PTSD-like behavior can be induced in animals through

exposure to experimental trauma, which involves prolonged

immobilization and forced swimming (single prolonged stress,

SPS) either alone or in combination with electric foot shock

(single prolonged stress and shock, SPS&S) (Zhang et al.,

2019). These animal models of PTSD have also been studied

in relation to potential changes in K+ channel expression

and functioning. Hyperpolarization-activated cyclic nucleotide-

gated channel 1 (HCN1), a six-transmembrane domain K+

channel highly expressed in brain regions such as the frontal

cortex and hippocampus (Zhao et al., 2023), was examined

in rats exposed to SPS&S. It was found that inhibition of

HCN1 alleviated PTSD-like behaviors, while administration of

a HCN1 activator increased them. These behavioral changes

appeared to be related to the brain-derived neurotrophic

factor (BDNF)-mTOR signaling pathway, which is involved

in synaptic plasticity, and activation of HCN1 appears to

antagonize this pathway (Ni et al., 2020). In a separate

study of mice, prenatal exposure to alcohol increased the

likelihood of PTSD-like behavior in offspring exposed to electric

foot shock. This susceptibility was associated with increased

expression of HCN1 in the prefrontal cortex, but not the

hippocampus, and administration of a HCN1 antagonist increased

fear extinction and reduced PTSD- and depressive-like behavior

(Yao et al., 2023). In an independent study of the SPS&S

model of PTSD in rats, exposure to SPS&S was associated

with increased expression of HCN1 and reduced expression

of BDNF. Administration of ketamine, an antagonist of the

N-methyl d-aspartate (NMDA) glutamate receptor, ameliorated

PTSD-like behavior and led to reduced HCN1 expression

and increased BDNF levels. Overall, a negative correlation

was observed between prefrontal BDNF and HCN1 expression

(Hou et al., 2018). Similar results were found in an SPS

model of PTSD in mice, where the administration of ketamine

reduced PTSD-like behavior and normalized stress-induced

elevations in HCN1 in the prefrontal cortex, but not in the

hippocampus (Zhang X. et al., 2021). The consistency and

replicability of these findings suggest that prefrontal HCN1 K+

channel expression increases after traumatic stress, and may

contribute to PTSD symptoms through an apparently antagonistic

effects on the neurotrophic and neuroplasticity-enhancing effects

of BDNF.

Two other K+ channel subtypes have been tentatively

implicated in mouse models of PTSD. In the first, PTSD-like

behavior and hippocampal expression of the KIR channel Kir4.1

were reduced by the administration of a ginsenoside, and increased

by intra-cerebroventricular injection of the pro-inflammatory

cytokine TNFα in mice exposed to SPS (Zhang Z. et al., 2021). In

the second, apparent improvements in PTSD-like behavior in an

SPS&S model were observed with a polyherbal extract, and these

beneficial changes were associated with increased phosphorylation

of the KV channel Kv4.2 in the hippocampus (Park et al., 2023).

As these results have not yet been replicated, their significance

is uncertain.

Other possible links between
potassium channels and PTSD

There are other indirect sources of evidence linking altered K+

channel functioning to PTSD, derived from research not directly

involving animal models of this disorder. Increasing the expression

of the outward rectifying KV channel Kv1.1 through a viral vector

is associated with reduced BLA firing and reduced hippocampal

neurogenesis in rats, though the relevance of these changes to PTSD

is uncertain (Kirby et al., 2012). Animals exposed to chronic stress

exhibit increased K+ channel opening in the prefrontal cortex,

which appears to be mediated by the activation of α1-adrenergic

receptors and D1 dopamine receptors (Datta and Arnsten, 2019).

Conversely, the “anti-stress” peptide transmitter neuropeptide Y

(NPY) has been associated with activation of GIRK channels,

leading to reduced activity of the BLA which may protect against

the development of PTSD (Tasan et al., 2016).

The evidence reviewed above is summarized in Figure 1 below.

Limitations of the available evidence

The realistic appraisal of the evidence presented above requires

an acknowledgment of both conceptual and methodological

limitations. First, it is not clear to what extent animal models of

PTSD, such as SPS and SPS&S, truly overlap with the syndrome of

PTSD in trauma-exposed humans. Second, findings of K+ channel

alterations in murine and primate brains may not “translate”

directly to human brain physiology: therefore, these results require

replication in humans. Third, the relationship between K+ channel

activity and PTSD-like phenomena is complex, and depends

crucially on factors such as the specific model of PTSD, the

species being studied, the brain region being studied, and the

pharmacological agents used to activate or block specific K+

channels. Finally, it is likely that specific K+ channel subtypes

represent only one of many molecular mechanisms involved in

PTSD, and that their activity depends crucially on levels of specific

neurotransmitters, hormones, and even immune-inflammatory

regulatory proteins. These limitations highlight the need for

research on altered K+ channel functioning in humans with PTSD

and other disorders related to traumatic stress.

Summary and conclusions

The evidence available from animal models suggests that K+

channels from several families—voltage-gated, inward rectifying

and calcium-activated—could play a role in the pathogenesis of

PTSD-like phenomena following exposure to traumatic stress. At

the cortical level, K+ channel activation may maintain PTSD

symptoms by interfering with neural plasticity and fear extinction;

at the limbic level, and particularly in specific regions of the

amygdala, K+ channel activation may help in fear extinction

and reduce PTSD symptoms. Pharmacological therapies aimed

at “balancing” or “stabilizing” K+ channel activity between these

brain regions may offer advantages over existing treatments

for PTSD, and it is possible that some emerging treatments
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FIGURE 1

Di�erential e�ects of potassium channel subtype activation in the medial prefrontal cortex and the basolateral amygdala in rodent models of

post-traumatic stress disorder. See the text for explanations of potassium channel nomenclature.

for this disorder, such as ketamine and prazosin, may act

partly through their effects on K+ flux through specific channel

types. The development of clinically effective and safe activators

or antagonists of these channel subtypes may represent a

significant step forward in the management of this chronic and

disabling condition.
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