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The Aryl hydrocarbon receptor (AHR) is a cytosolic receptor and ligand-activated 
transcription factor widely expressed across various cell types in the body. Its 
signaling is vital for host responses at barrier sites, regulating epithelial renewal, 
barrier integrity, and the activities of several types of immune cells. This makes 
AHR essential for various cellular responses during aging, especially those 
governing inflammation and immunity. In this review, we provided an overview of 
the mechanisms by which the AHR mediates inflammatory response at gut and 
brain level through signals from intestinal microbes. The age-related reduction of 
gut microbiota functions is perceived as a trigger of aberrant immune responses 
linking gut and brain inflammation to neurodegeneration. Thus, we explored gut 
microbiome impact on the nature and availability of AHR ligands and outcomes 
for several signaling pathways involved in neurodegenerative diseases and 
age-associated decline of brain functions, with an insight on Parkinson’s and 
Alzheimer’s diseases, the most common neurodegenerative diseases in the 
elderly. Specifically, we focused on microbial tryptophan catabolism responsible 
for the production of several AHR ligands. Perspectives for the development 
of microbiota-based interventions targeting AHR activity are presented for a 
healthy aging.
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1 Introduction

The Aryl hydrocarbon receptor (AHR) has been identified as a crucial point of convergence 
among various cellular signaling pathways implicated in aging, as those governing 
inflammation and immunity in both the gut and the brain, as well as cell proliferation and 
differentiation. This is especially relevant in the context of inflammaging and neurodegenerative 
diseases. There is a growing recognition of the gut microbiota’s role in initiating chronic 
inflammation by disturbing intestinal balance. Numerous cross-sectional studies have 
highlighted alterations in microbiota composition among patients with neurodegenerative 
conditions such as Alzheimer’s (AD) and Parkinson’s diseases (PD), compared to healthy 
individuals. AD is a multifactorial disease where neuroinflammation, accumulation of beta-
amyloid (Aβ) plaque, and neurofibrillary tau tangles in the brain are the causative agents of 
the progressive loss of memory, language, and cognitive ability in affected individuals 
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(Alzheimer’s Association, 2024). In PD, the progressive loss of neurons 
in the substantia nigra pars compacta results in dopamine depletion 
in the dorsal aspect of the putamen, a part of the basal ganglia. This 
depletion gives rise to the most prominent signs and symptoms of PD, 
including unintended or uncontrollable movements, such as shaking, 
stiffness, and difficulties with balance and coordination (Simon et al., 
2020). The specific mechanisms and molecular pathways linking gut 
microbiota alteration and neurodegenerative diseases still remain in 
their infancy in terms of comprehensive understanding. The AHR has 
been frequently implicated as a target and mediator of metabolites 
derived from commensal microbes, in particular those resulting from 
tryptophan (trp) catabolism (Barroso et al., 2021). Recent research 
studies evidence that the AHR might serve as a crucial link between 
dysfunctional microbiota and neurodegeneration both through its 
direct activation in CNS resident cells or by AHR contribution to 
peripheral modulation of immune cells and inflammatory responses.

The recognition of AHR pathways modulation upon microbial 
stimulation and its impact on cellular and tissue balance in processes 
encompassing neurodegenerative phenotype development may 
orientate the identification of effective and innovative microbiota-
based interventions in the treatment of neurodegenerative diseases.

2 AHR in the regulation of immune/
inflammatory response in gut and 
brain

The gut-brain axis has emerged as a critical area of study, shedding 
light on the intricate bidirectional communication between the 
gastrointestinal system and the central nervous system (CNS). This 
interaction is considered a key factor in the pathogenesis and 
progression of several neurological disorders, including 
neurodegenerative diseases. Within this context, the AHR has 
garnered significant attention due to its pivotal role in modulating 
immune responses, barrier function, and neurotransmitter 
production. CNS-resident cells harbor the AHR; immune and 
inflammatory pathways, triggered peripherally by AHR activation, 
can travel to the brain and affect its physiology. Here, we will describe 
the involvement of AHR in immune/inflammatory response along 
this axis.

The AHR is a cytosolic receptor and a ligand-activated 
transcription factor widely expressed by different cell types throughout 
the body. AHR signaling is considered a key component of the 
immune response at barrier sites, regulating epithelial renewal, barrier 
integrity, but also the activities of many immune cell types, as 
intraepithelial lymphocytes (IELs), T helper 17 cells (Th17), 
macrophages and others (Lamas et al., 2018). All these functions make 
AHR crucial for intestinal homeostasis, where it modulates 
physiological processes in response to environmental toxins (i.e., 
2,3,7,8-tetrachlorodibenzo-p-dioxin and polycyclic aromatic 
hydrocarbon compounds), endogenous ligands (i.e., 
6-formylindolo[3,2-b] carbazole and leukotrienes), and many trp 
metabolites including those processed by gut microorganisms (Safe 
et al., 2018).

AHR is present in the cytoplasm in a transcriptionally inactive 
state highly affine to its ligands, forming a complex with two heat 
shock protein 90 (HSP90), the X-associated protein 2 (XAP2), the 
co chaperone p23 and the protein kinase SRC. Upon ligand binding, 

AHR is activated and translocates to the nucleus where dimerizes with 
the AHR nuclear translocator (ARNT) forming a functional 
DNA-binding transcription factor (Figure  1). This heterodimer 
interacts with specific DNA sequences (dioxin/xenobiotic response 
element - DRE/XRE) in the regulation site of AHR-responsive genes 
leading, among the other events, to the degradation of AHR ligands 
(Figure  1). By interacting with other transcriptional factors and 
co-activators, AHR can also impact the transcription of genes that do 
not harbor DRE/XRE consensus sequences (recently reviewed by 
Sondermann et  al., 2023). Additionally, AHR is also involved in 
epigenetic mechanisms, e.g., by controlling histone acetylation and 
methylation, long non-coding RNA, or microRNAs (Schnekenburger 
et al., 2007; Chang et al., 2014; Liu et al., 2018; Figure 1).

Various genes associated with inflammatory responses contain 
multiple DREs in their upstream sequences (Figure  1). Notable 
examples include the inflammatory mediators IL-6, the inducible 
nitric oxide synthase and cyclooxygenase-2 (Hollingshead et al., 2008; 
Lee Y. et  al., 2015). Finally, AHR also interacts with the nuclear 
factor κB (NF κB) that is involved in the expression of pro-inflammatory 
and cell survival genes (Figure 1). AHR regulates NF κB signaling 
directly by interacting with RELA, RELB and other members of the 
NF κB pathway and indirectly through suppressor of cytokine 
signaling 2 (SOCS2) dependent mechanisms. Similarly, an intricate 
crosstalk of reciprocal control has been reported between AHR and 
the signal transducer and activator of transcription (STAT), crucially 
involved in the immunoregulation (Sondermann et al., 2023). Thus, 
AHR can switch from the pro-inflammatory to the anti-inflammatory 
activity playing different roles in the regulation of immune responses 
that are extremely important at epithelial barriers, such as the 
intestinal epithelial barrier (Esser and Rannug, 2015). In the context 
of the gastrointestinal tract, AHR is expressed in immune, epithelial, 
endothelial, and neuronal cells. Here, its role is to influence different 
aspects of intestinal barrier function, such as the intestinal epithelial 
cells (IECs) renewal and turnover, development, function and 
maintenance of mucosal immune system, and colonic peristalsis. Mice 
with genetic deletion of AHR show impaired proliferation of colonic 
crypt stem cells (Han et al., 2020); the specific deficiency of AHR at 
the intestinal epithelium results in enhanced apoptosis of epithelial 
cells in a mouse model of Dextran Sodium Sulfate (DSS)-induced 
intestinal inflammation (Chinen et  al., 2015). The influence on 
intestinal epithelium can also derive from the expression and 
activation of AHR in immune cells residing in the gut, impacting on 
their ability to maintain barrier function and protection against 
infective insults. Different intestinal cells of the innate and adaptive 
immune response, such as IELs, Th17 cells, innate lymphoid cells 
(ILCs), macrophages, dendritic cells (DCs), and neutrophils, express 
AHR (Stockinger et al., 2021). Under homeostatic conditions, AHR 
activation through specific ligands from the diet or microbiota 
metabolism is crucial for preserving the integrity and functionality of 
the intestinal barrier. This signaling results in the production of IL-22, 
the induction of IL-10 receptor expression, reinforcement of tight 
junctions, and impacts on colonic neurons. IL-22, predominantly 
produced by type 3 innate lymphoid cells (ILC3s) under steady-state 
conditions, induces the secretion of antimicrobial peptides (for 
example, RegIIIbeta and RegIIIgamma) by IECs for barrier protection 
(Liang et al., 2006). AHR is also highly expressed in intestinal FoxP3+ 
Treg cells that balance the tissue inflammation by secreting IL-10 and 
TGF-beta. On contrary, a lack of AHR leads to an imbalance in 
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immune cell populations, an increase in pro-inflammatory cytokines 
[tumor necrosis factor (TNF), IL-6, IL-17, and interferon-gamma 
(IFNγ)], vascular permeability, reduced mucus layer, and disruption 
of the barrier, including impaired tight junctions’ expression (Ye et al., 
2017; Yu et  al., 2018). Recently, AHR expression has also been 
identified in the colonic enteric nervous system (ENS) where the loss 
of Ahr results in delayed transit time that can lead to bacterial 
overgrowth and chronic constipation (Obata et al., 2020).

AHR is also widely expressed in the CNS from several neuronal 
cell types, including brain microvessels, neurons, astrocytes and 
microglia, where it modulates their activity during neurodevelopment 
and neuroinflammation (Juricek and Coumoul, 2018). Microglia and 
astrocytes play an important role in the control of the inflammation 
in the CNS by sensing and coordinating the reactions to endogenous 
and environmental stimuli, including AHR ligands. Thus, AHR can 
mediate pro-inflammatory and anti-inflammatory effects in the CNS 
depending on the availability of exogenous AHR ligands (Lee Y. et al., 
2015). Noteworthy, deletion of AHR in both astrocytes and microglia 
is associated with dysregulated pro-inflammatory response and 
worsening of inflammatory demyelinating disease (Rothhammer 
et al., 2018). A central role in CNS inflammation is played by the 
complex interactions between the AHR and NF-κB that impact on the 
signaling between astrocytes and microglia. In both glial cells the 
activation of AHR by its ligands limits NF-κB activation in a SOCS2-
dependent manner suppressing NF-κB control of glial responses,  
as demonstrated in a model of experimental autoimmune 

encephalomyelitis (EAE). Rothhammer et al. demonstrated that, in 
the EAE mouse model, deletion of AHR in microglia triggered 
exaggerated inflammatory responses in  local astrocytes, thus 
microglial AHR expression limits pathogenic activities of astrocytes 
in chronic autoimmune inflammation (Rothhammer et al., 2018).

In summary, AHR plays a pivotal role in maintaining the integrity 
and function of the gut barrier, regulating immune responses, and 
modulating neuroinflammation in the brain. Peripheral homeostasis 
modulated by AHR can affect CNS resident cells and brain 
inflammatory processes, warning a critical mediator role for AHR in 
the gut-brain axis.

Altogether the activation of AHR at peripheral and central level 
upon different signals is a hotspot of modulation of inflammatory 
response as well as crucial to govern inflammatory route of the 
bidirectional communication between gut and brain.

3 Age-related microbiota changes and 
neurodegenerative diseases

Inflammaging is an excessive inflammatory process occurring 
during aging that significantly influences the development of various 
age-related diseases. At central level, persistent neuroinflammation 
can flow into the development of neurodegenerative disorders such as 
AD and PD (Kempuraj et al., 2015; Bostanciklioğlu, 2018). Several 
pathophysiological mechanisms have been considered for these 

FIGURE 1

Representation of signaling pathways of AHR. In the absence of ligand, AHR is present in the cytoplasm in an inactive state forming a complex with two 
HSP90, XAP2, the co chaperone p23 and the protein kinase SRC. Upon ligand binding, AHR translocases to the nucleus and dimerizes with ARNT. The 
heterodimer interacts with specific DNA regions containing DRE sequences in the regulation site of AHR-responsive genes (such as CYP1A1, AHRR, 
IL-6, iNOS and COX-2). AHR can also impact the transcription of genes that do not harbour DRE/XRE consensus sequences by epigenetic mechanisms 
and the interaction with other transcriptional factors (such as NF-kB). AHRR, AHR Repressor; ARNT, AHR Nuclear Translocator; COX-2, 
Cyclooxygenase-2; CYP1A1, Cytochrome P450 1A1; DRE/XRE, Dioxin/Xenobiotic response element; HSP90, Heat Shock Protein 90; iNOS, Inducible 
Nitric Oxide Synthase; NF-κB, Nuclear Factor-κB; SOCS2, Suppressor of Cytokine Signaling 2; STAT, Signal Transducer and activator of Transcripton; 
XAP2, X-Associate Protein 2.
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neurodegenerative diseases, encompassing genetic, environmental, 
and endogenous factors that sustain persistent inflammatory 
responses in the brain, including peripheral inflammation triggered 
by gut dysbiosis. In fact, a growing body of evidence links the 
neuroinflammation observed in AD and PD with alteration in gut 
microbiota composition, suggesting a role for microbial-derived 
metabolites and host-related responses in the pathogenesis and 
progression of the diseases.

Changes in the composition of the gut microbiota occur in elderly 
and are associated with increased inflammation in various tissues and 
organs including brain tissue (Sarkar and Pitchumoni, 2017; Giau 
et al., 2018). Hallmarks of aging include genetic instability, cellular 
senescence, augmented oxidative stress, an imbalance of key 
messengers (as decline in growth factors), and finally, physiological 
changes in the gastrointestinal tract. In the intestine, these changes 
include hypochlorhydria, gastric motility disorders, malabsorption, 
diarrhea or constipation, degenerative changes in the ENS, all together 
eliciting dramatic effects on the composition and function of the gut 
microbiome, whose stability deteriorates in old age (Haran and 
McCormick, 2021). Many triggering factors as modified diets, use of 
drugs and reduced physical activity can impact on the gut microbiota 
of older individuals. A decreased diversity (Biagi et  al., 2010), 
enrichment in pathobionts, and a reduction of bacteria with anti-
inflammatory and immunomodulatory properties such as 
Bifidobacterium, Bacteroides, Lactobacillus, and Akkermansia have 
been reported (Biagi et  al., 2016; Ruiz-Ruiz et  al., 2019). From a 
functional perspective, a link between aging and the reduction of 
microbial pathways associated with trp, and indole production and 
metabolism has been proposed. Ruiz-Ruiz et  al., by shotgun 
proteomics identified functional microbiome deficits associated with 
aging. They found that the synthesis of proteins involved in trp and 
indole production and the fecal concentrations of trp metabolites were 
progressively decreased with age (Ruiz-Ruiz et al., 2019). The trp and 
its metabolites are known to play fundamental roles in health and 
neuroprotection. Their production and catabolism have been found 
decreased in patients with a number of disorders, including 
neurodegenerative diseases, such as AD and PD (Favre et al., 2010; 
Vujkovic-Cvijin et al., 2013; Sandgren and Brummer, 2018; Platten 
et al., 2019; Chojnacki et al., 2020; Song et al., 2023).

3.1 Alteration of gut microbiota profiles in 
Alzheimer’s disease

The increase of specific bacterial species has been associated to 
AD dementia, including taxa known to cause inflammatory states, 
such as the gram negative Bacteroides vulgatus (Haran et al., 2019). 
Haran et  al. identified a dysbiotic pattern among AD elders in 
comparison to those without dementia or with other dementia 
types. They reported a reduction in species producing short-chain 
fatty acids (SCFAs), with an increase in species known to have 
associations with either neurological disorders via inflammation or 
other colonic inflammatory states (Haran et al., 2019). Lower levels 
of SCFAs can affect intestinal barrier integrity and permeability 
allowing the entry of pro-inflammatory bacterial components, like 
lipopolysaccharide (LPS), into the systemic circulation. LPS, 
reaching the brain, activates microglia and can promote 
neuroinflammation and neurodegeneration.

Among the SCFAs, butyrate is the primary microbial metabolite 
in the gut, serving as a key energy source for colon cells. It binds to cell 
membrane receptors activating downstream signaling pathways or 
enters the cells and directly affects gene expression by inhibiting 
histone deacetylases. In addition to its local effects in the colon, such 
as maintaining gut barrier integrity and providing anti-inflammatory 
benefits, butyrate can also influence microbial signaling to the brain 
through various pathways. Butyrate impacts systemic inflammatory 
and gastrointestinal endocrine responses, can cross the blood–brain 
barrier (BBB), and communicates with the brain via vagal afferents 
(Stilling et al., 2016). By interacting with nearly all systems involved 
in gut-brain communication, reduced levels of butyrate can likely 
be linked to AD processes by affecting synaptic plasticity, amyloid-
beta and tau pathologies, and neuroinflammation (Qian et al., 2022). 
Accordingly, the microbiota composition of AD elders is characterized 
by lower proportions of key butyrate-producing bacteria, such as 
members of Butyrivibrio (B. hungatei and B. proteoclasticus) and 
Eubacterium (E. eligens, E. hallii, and E. rectale) genera, as well as 
Clostridium sp. strain SY8519, Roseburia hominis, and Faecalibacterium 
prausnitzii. Moreover, decreased levels of Bifidobacterium, Bacteroides, 
Lachnospira, and Ruminiclostridium_9 and increased abundances of 
Prevotella have also been observed in patients with AD (Vogt et al., 
2017; Guo et al., 2021). Experimental approaches modulating gut 
microbiota composition are defining functional roles for gut microbial 
communities in the progression of AD pathology but are also 
indicative of a possible therapeutic approach to ameliorate AD 
symptoms. Depletion of gut microbiota both in germ-free and 
antibiotic-treated transgenic AD mice induces reduction of cerebral 
Aβ amyloid pathology and neuroinflammation (Minter et al., 2016; 
Harach et al., 2017); in the ADLPAPT transgenic mouse model of AD, 
fecal microbiota transplantation from WT mice ameliorated the 
AD-like pathology in recipient mice, reversing also peripheral 
abnormalities related to intestinal macrophage activity and circulating 
blood inflammation (Kim M. S. et al., 2019). Multiple studies involving 
different AD rodent models have shown that probiotic interventions 
remodeled gut microbiota profile, SCFAs levels, inflammatory 
markers, and cognitive functioning (reviewed in de Rijke et al., 2022). 
Randomized, double blind, controlled trials with subjects diagnosed 
with AD found significant improvements in cognition after probiotic 
administration (Akbari et al., 2016; Tamtaji et al., 2019a). Beneficial 
effects of prebiotic and symbiotic consumption exerting healthy 
responses on gut microbiota and its metabolic products have also been 
recorded (Hoffman et al., 2019; Westfall et al., 2019; Wu et al., 2020; 
Xu et al., 2020; Deng et al., 2021; Gu et al., 2021; Lee et al., 2021; Liu 
et al., 2021).

3.2 Alteration of gut microbiota profiles in 
Parkinson’s disease

A pro-inflammatory gut microbiota, rich in gram negative 
bacteria, source of LPS, and deficient in anti-inflammatory SCFA-
producing bacteria has been identified in patients with PD. Although 
there are conflicting results, the PD-associated microbial profile seems 
to be  characterized by increased relative abundance of 
Enterobacteriaceae, Akkermansia, Lactobacillus, Bifidobacterium, 
Clostridium, and Ruminococcaceae, along with decreased abundance 
of Prevotellaceae, Lachnospiraceae and Faecalibacterium prausnitzii, 
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the latter being a putative SCFA-producing species (Scheperjans et al., 
2014; Keshavarzian et al., 2015; Hill-Burns et al., 2017; Aho et al., 
2019; Li et al., 2019). On the other hand, probiotics interventions 
improve gastrointestinal symptoms of PD patients, such as abdominal 
pain, abdominal distension and constipation together with markers of 
inflammation and cognitive impairment (Barichella et  al., 2016; 
Georgescu et al., 2016; Borzabadi et al., 2018; Tamtaji et al., 2019b; Tan 
et al., 2021). Several animal models of PD have also highlighted the 
important role of gut microbiota in influencing PD symptoms, 
progression, and treatment success. Bacteria of genus Desulfovibrio 
induced alpha-synuclein aggregation in the head region of a 
Caenorhabditis elegans model of PD. Noteworthy, some Desulfovibrio 
strains, isolated from PD patients, were more competent to induce 
alpha-synuclein aggregation compared to strains collected from 
healthy individual (Huynh et  al., 2023). Recently, we  have 
demonstrated that antibiotic-induced gut dysbiosis is able to worsen 
disease symptoms in a mouse model of PD. Reduction of bacterial 
diversity, of butyrate-producing bacteria and of fecal butyrate levels 
along with Ruminococcus lactaris increase were the main features of 
the gut microbiota of these mice. Notably, treatment with butyrate 
restored gut dysbiosis, gut permeability, positively impacting on motor 
symptoms and peripheral and central inflammation (Avagliano et al., 
2022; Turco et al., 2023).

Collectively these findings, even though mostly based on 
preclinical and cross-sectional studies, indicate that reconfiguration 
of gut communities during aging instigate toward elevate peripheral 
and central inflammation that are associated to the development of 
neurodegeneration in AD and PD. This picture prompts future 
investigations on both specific mechanisms and molecular pathways 
underlying these associations and the consideration of microbiota-
targeted approaches for the improvement of clinical outcomes.

4 Gut microbiota-derived tryptophan 
metabolites as ligands for AHR 
activation: relevance for gut-brain 
signaling

In the human body, the gut can accommodate an abundance of 
AHR ligands some of which are directly processed by commensal 
microorganisms. As such, there is much interest in the involvement of 
AHR as an integrator of microbial signals at intestinal and central 
levels to unveil gut-brain axis perturbation in neurodegenerative 
diseases. As mentioned above, AHR signaling participates in the 
gut-brain axis through multiple mechanisms ranging from the direct 
activation of AHR in CNS resident cells to AHR mediated peripheral 
modulation of inflammation. In the context of aging and 
neurodegenerative diseases, AHR ligands produced by gut 
microorganisms’ trp catabolism are under specific attention.

In the next paragraph, we will analyze the impact of microbiota-
derived trp metabolites on gut-brain axis through AHR signaling. 
Specifically, we will focus our attention on some trp metabolites with 
specific neuroactive features, whose imbalance or deficiency could 
be involved in the pathophysiology of aging-related brain diseases in 
the context of AHR signaling pathways and regulatory functions 
(Table 1).

Dietary trp can be transformed into different metabolites following 
three major pathways in the gastrointestinal tract: the biotransformation 

of trp in indoles by gut microbiota, the kynurenine pathway, and the 
serotonin production pathway (reviewed in Agus et al., 2018).

4.1 Indole pathway

Through the indole pathway trp is transformed into several 
molecules, such as indole and its derivatives, many of which are ligands 
of the AHR able to induce AHR-dependent signaling for modulation 
of local inflammation or for neuromodulation (Table  1). Indole-
producing species are gram negative and positive bacteria (e.g., 
members of Bacteroides and Clostridium genera, E. coli and 
Desulfovibrio vulgaris) that express the enzyme tryptophanase; as 
widely reviewed by Roager and Licht (2018), trp is also transformed by 
gut commensal in the AHR agonists tryptamine (by Clostridium 
sporogenes and Ruminococcus gnavus), indolelactic acid (ILA; by 
Anaerostipes spp., Bacteroides spp., Bifidobacterium spp., Lactobacillus 
spp. Among the others), indoleacrylic acid (IA; by Clostriudium 
sporogenes and Peptostreptococcus spp.), indole-3-propionic acid (IPA; 
by members of Clostriudium and Peptostreptococcus spp.), indole-3-
aldehyde (IAld; by Lactobacillus spp.), indoleacetic acid (IAA; by 
Bacteroides spp., Bifidobacterium spp. and Clostridium spp. among the 
others), and the 3-methylindole (or skatole; by members of genera 
Clostriudium, Lactobacillus, Eubacterium, and Bacteroides 
thetaiotaomicron and Butyrivibrio fibrisolvens species). Commensal 
bacterial derived metabolites can be further metabolized by the host 
into other AHR agonists, such as the indoxyl 3 sulfate (I3S) formed in 
the liver starting from the bacterial indole (Banoglu and King, 2002). 
Evidence showed that indole-producers commensal bacteria might 
maintain the mucosal homeostasis and affect the immune system in the 
gut, as well as in systemic circulation and distal organs, through the 
AHR activation (Table 1). Indole derivatives produced by Lactobacillus 
spp., as ligands of AHR, reprogram naive CD4+ T helper cells into Treg 
cells (Cervantes-Barragan et al., 2017) and the polarization of Th17 cells 
(Wilck et al., 2017), keeping the Treg/Th17 balance whose alteration 
plays an important role in intestinal inflammatory diseases (Kim 
W. H. et al., 2019; Yan et al., 2020). The immunomodulatory benefits of 
indole and its derivatives are partly based on the AHR-driven 
mechanisms in intestinal DCs, IELs, and ILCs (Li et al., 2021) and AHR 
modulation of the T cell immunity through the alteration of Treg/Th17 
cells with Treg dominance (Quintana et  al., 2008). Thus, as AHR 
ligands, indole and some derivatives play a critical role in regulating 
epithelial integrity and the immune response, including intestinal stem 
cells (ISCs) and epithelial regeneration, intestinal barrier protection, 
and antimicrobial defense (Zelante et al., 2013; Cervantes-Barragan 
et al., 2017; Hendrikx et al., 2018; Hou et al., 2018; Busbee et al., 2020). 
Indole-3-ethanol, indole-3-pyruvate, and IAld ameliorate morbidity 
and inflammation of DSS-induced colitis in mice by maintaining the 
integrity of the apical junctional complex, a major regulator of intestinal 
permeability (Scott et al., 2020). Moreover, IA was reported to promote 
barrier function and immune tolerance in DSS-induced colitis mice by 
inducing the mRNA expression of the AHR target gene Cyp1a1 in the 
intestinal epithelium and immune cells (Wlodarska et al., 2017). By 
binding and activating AHR, indoles also promote the expression of 
IL-10 supporting barrier function (Powell et al., 2020). Maintenance of 
intestinal homeostasis and an anti-inflammatory state by gut microbes, 
through indole-dependent AHR activation, beneficially modulates 
bottom-up players of the gut-brain axis thus affecting brain functionality 
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TABLE 1 The role of tryptophan metabolites in gut-brain axis via AHR activation.

Pathway Metabolite Source AHR Activation in Gut AHR Activation in Brain References

Indole

Indole
Gut microbiota (e.g., Bacteroides spp., Clostridium 

spp., E. coli, Desulfovibrio vulgaris)

Modulates local inflammation; maintains 

mucosal homeostasis

Neuroprotective effects; activates AHR in 

CNS-resident cells (astrocytes, microglia)

Rothhammer et al. (2016, 2018), Roager and 

Licht (2018)

Tryptamine Clostridium sporogenes, Ruminococcus gnavus Immunomodulation
Neuroprotective effects: impacts Treg/Th17 

balance
Roager and Licht (2018), Dopkins et al. (2021)

Indole-3-propionic acid 

(IPA)
Clostridium spp., Peptostreptococcus spp.

Maintains intestinal barrier; anti-

inflammatory properties
Neuroprotective effects

Rothhammer et al. (2016, 2018), Roager and 

Licht (2018), Sun et al. (2022)

Indole-3-acetic acid (IAA)
Gut microbiota (e.g. Bacteroides spp., 

Bifidobacterium spp., Clostridium spp.)

Maintains intestinal barrier; anti-

inflammatory properties
Neuroprotective effects Roager and Licht (2018), Sun et al. (2022)

Indole-3-aldehyde (IAld) Lactobacillus spp.
Promotes barrier function and immune 

tolerance
Neuroprotective effects

Rothhammer et al. (2016, 2018), Cervantes-

Barragan et al. (2017), Roager and Licht (2018)

Indole-3-ethanol Gut microbiota Ameliorates inflammation in colitis models - Scott et al. (2020)

Indole-3-pyruvate Gut microbiota
Enhances epithelial integrity and 

antimicrobial defense
- Zelante et al. (2013), Scott et al. (2020)

Indolelactic acid (ILA)
Gut microbiota (e.g. Anaerostipes spp., Bacteroides 

spp., Bifidobacterium spp., Lactobacillus spp.)

Regulates Treg/Th17 balance; anti-

inflammatory effects
-

Cervantes-Barragan et al. (2017), Roager and 

Licht (2018)

Indoleacrylic acid (IA) Clostridium sporogenes, Peptostreptococcus spp. Promotes barrier function; maintains 

intestinal homeostasis and immune tolerance.
-

Roager and Licht (2018)

3-methylindole (skatole)

Gut microbiota (e.g. Clostridium spp., 

Lactobacillus spp., Eubacterium spp., Bacteroides 

thetaiotaomicron, Butyrivibrio fibrisolvens)

Regulation of intestinal epithelial function - Roager and Licht (2018), Kurata et al. (2023)

Indoxyl-3-sulfate (I3S) Liver (from bacterial indole)
Supports AHR signaling in systemic 

circulation
Neuroprotective effects Banoglu and King (2002)

Kynurenine

Kynurenic acid (KA) Host, gut microbiota Promotes intestinal homeostasis CNS neuroprotective properties Giil et al. (2017), Miyamoto et al. (2023)

Quinolinic acid (QA) Host, gut microbiota -

Neurotoxic effects; contributes to 

neurodegenerative processes, increases 

during inflammation

O’Farrell and Harkin (2017), Dehhaghi et al. 

(2019)

Xanthurenic acid (XA) Host, gut microbiota Promotes intestinal homeostasis Not specifically noted for CNS effects Han et al. (2001), Chen et al. (2023)

Cinnabarinic acid Host, gut microbiota Induces AHR-dependent genes that promote 

intestinal homeostasis

Not specifically noted for CNS effects Chen et al. (2023)

3-Hydroxykynurenine 

(3-HK)

Host, gut microbiota Modulates immune responses; potential AHR 

activation in gut

Neuroprotective effects; influences CNS 

excitotoxicity

Han et al. (2001), O’Farrell and Harkin (2017), 

Dehhaghi et al. (2019)

3-Hydroxyanthranilic acid 

(3-HAA)

Host, gut microbiota Anti-inflammatory effects; modulates 

immune response

Neuroprotective effects; modulates 

neuroinflammation

O’Farrell and Harkin (2017)

Serotonin
5-Hydroxytryptamine 

(Serotonin, 5-HT)
Gut enterochromaffin cells, brain

Regulates AHR ligand availability; promotes 

sustained AHR signaling

Influences neurobiology and behavior via 

gut-brain axis

Yano et al. (2015), Agus et al. (2018), Manzella 

et al. (2020)
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and behaviour. Gut indoles can also reach the brain, where, interacting 
with the AHR expressing cells, exert a potent neuroprotective effect 
(Table 1). For example, indole, I3S, IPA, IAld and tryptamine generated 
from dietary trp by the different pathways harbored in commensal 
bacteria can activate AHR signaling in CNS-resident cells, namely 
astrocytes and microglia, limiting neuroinflammation (Rothhammer 
et al., 2016, 2018; Dopkins et al., 2021). Recently, Wei et al. showed that 
microbiota-derived indole elicits also neurogenic effects in the adult 
mouse hippocampus by AHR activation, being neurogenesis not 
induced in AHR KO mice (Wei et al., 2021).

4.2 Kinurenine pathway

Dietary trp is mainly metabolized toward the kynurenine pathway 
(KP) by the host enzymes trp 2,3-dioxygenase (TDO) and indoleamine 
2,3-dioxygenase (IDO), expressed in liver and other cells (such as 
intestinal cells, microglia, astrocytes, macrophages, and neuronal 
cells). The KP is induced in times of stress and/or immune activation, 
and it is associated with inflammatory response, cancer, and 
neurological disorders (AD, amyotrophic lateral sclerosis, Huntington 
disease, and PD), through the production of different neuroactive 
metabolites (Guillemin and Brew, 2002; Dehhaghi et al., 2019). This 
catabolism is mediated in the gut by the rate-limiting enzyme IDO1 
and leads to the production of kynurenine, and the downstream 
products such as quinolonic acid (QA), niacin, nicotinamide adenine 
dinucleotide, and kynurenic acid (KA). Gut microbes encode enzymes 
homologous to those of the eukaryotic KP and can also produce 
kynurenine and downstream metabolites with neurotoxic effects, as 
the 3-hydroxyanthranilic acid (Vujkovic-Cvijin et al., 2013).

The KP is differently activated in the periphery and CNS. Microbial 
stimuli (as LPS), cytokines, amyloid peptides, and inflammatory 
molecules (IFNγ) can induce IDO1  in the gut to control host 
immunity. Elevated concentrations of kynurenines, as in chronic 
inflammatory diseases, regulate immune homeostasis by acting as 
AHR ligands and allow the generation of Treg cells, which protect 
from chronic hyperinflammatory responses (Romani et al., 2008). 
This can be protective against pathogens insult, where the activation 
of Treg cells via AHR prevented the infection and significantly reduced 
clinical signs of Streptococcus arthritis (Bessede et al., 2014). Moreover, 
at intestinal level, KA, xanthurenic acid, and cinnabarinic acid can 
bind the AHR and induce the expression of AHR-dependent genes 
that promote intestinal homeostasis (Chen et al., 2023; Table 1). Thus, 
a decreased production of KA can result in gut barrier imbalance and 
loss of integrity, with augmented local and systemic inflammation.

Within the CNS the KP is differentially compartmentalized within 
astrocytes and microglia. The trp uptake and metabolism in astrocytes 
lead to the production of the KA, reported to have neuroprotective 
properties in the CNS, due to its action as an antagonist at the N-methyl-
D-aspartate receptor (NMDAR; Giil et  al., 2017). In microglia, 
metabolism of trp gives rise to metabolites with reactive oxidative 
properties including 3-hydroxykynurenine, 3-hydroxyanthranilic acid, 
and QA that act as agonists at the NMDAR and may contribute to 
excitotoxicity and neurotoxicity (Table 1). The concentrations of QA in 
the human brain can increase drastically in inflamed tissues (O’Farrell 
and Harkin, 2017). QA causes neuronal degeneration, destabilizes the 
cytoskeleton, triggers pro-inflammatory responses and apoptosis of 
neurons and astrocytes, as well as disrupts the BBB (O’Farrell and 

Harkin, 2017). All these neurotoxic effects can be implicated in the 
pathology of neurodegenerative and neuropsychiatric disorders 
(Dehhaghi et al., 2019). The gut microbiota may indirectly influence the 
levels of circulating trp and kynurenine metabolism and consequently 
those KP metabolites that are AHR agonists. Germ-free and antibiotic 
treated animals, as result of lack of IDO stimulation upon bacterial 
TLRs activation, present higher serum trp and lower kynurenine levels 
along with a tendency for anxiety-like behavior and cognitive deficits 
(Campbell et al., 2014; Desbonnet et al., 2015). Moreover, as mentioned 
above, gut microbiota can synthesize kynurenine metabolites: some 
bacteria harbor an enzyme aspartic transaminase which transaminates 
kynurenine and 3-hydroxykynurenine to KA (Han et al., 2001); recently, 
Miyamoto and co-authors unraveled a bacterial trp metabolism gene 
(EC:1.13.11.11) that collaborates with intestinal cells in the biosynthesis 
of KA. This metabolite resulted a key element in the recruitment of 
pathogenic macrophages and the subsequent induction of Th17 cells 
promoting EAE in the CNS (Miyamoto et al., 2023). Other bacterial 
products influencing KP are several group B vitamins that are cofactors 
of some enzymes of KP, and the post-biotic butyrate that has been 
shown to reduce IDO transcription, thus blocking the kynurenine 
production (Więdłocha et  al., 2021). Finally, lower kynurenine 
concentrations can also result from decreased trp availability associated 
with bacterial indole metabolism and serotonin synthesis.

4.3 Serotonine pathway

The serotonin (5-hydroxytryptamine, 5-HT) production pathway 
is the third route of trp metabolism that partially occurs in the brain, 
while for the 90% in the intestinal enterochromaffin cells via Trp 
hydroxylase 1 (TpH1) under the control of gut microbiota (Agus et al., 
2018.). Gut-derived 5-HT is a key regulator of AHR ligand availability 
and receptor activation (Table 1). 5-HT is a CYP1A1 substrate that 
competes with AHR ligands for CYP1A1 degradation. Thus, via the 
inhibition of the enzymatic clearance of AHR ligands, 5-HT promotes 
sustained AHR signaling. In accordance, lack in the gut of 5-HT 
intracellular transport via the plasma membrane 5-HT transporter 
(SERT) impairs intestinal AHR activation (Manzella et al., 2020). Gut 
and brain 5-HT levels are correlated to specific members of the gut 
microbiota (Yano et al., 2015; Pirozzi et al., 2023), thus gut bacteria 
participate in several physiological functions that depend on 5-HT 
levels, such as intestinal motility and absorption of nutrients, but also 
in the underlying neurobiology of different behaviors. Gut microbial 
communities bidirectionally interact with host 5-HT (reviewed by 
Everett et al., 2022). Luminal 5-HT levels can favor certain species, 
some of those can increase 5-HT concentrations by changing the 
expression levels of genes involved in its synthesis, metabolism, 
secretion, or transport. Additionally, via the gut-brain axis, microbiota 
can affect brain 5-HT levels by modulating trp brain influx based on 
trp bacterial metabolism in the gut, but also influencing expression of 
5-HT-related genes at central level. For example, bacterial extracellular 
vesicles derived from Akkermansia muciniphila cause an increase of 
colonic and hippocampal 5-HT levels, by up-regulating 5-HT synthesis 
enzymes both in the gut and, probably by crossing the BBB, in the 
brain. On these bases, changes in 5-HT induced by gut microbiota may 
contribute to various neurological conditions (Yaghoubfar et al., 2020).

Overall, a balance among the three pathways for trp catabolism 
is essential to maintain intestinal and central homeostasis and 
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functionality. An excess or change in the ratio of trp pathways’ 
by-products could be responsible for several consequences, including 
neurological disturbances (Figure 2). For example, IDO1 pathway 
over-activation by intestinal mononuclear cells, which induces 
massive production of kynurenine, causes a deficiency of trp in brain 
and in 5-HT production, with consequent neurological disturbs. The 
over-activation of IDO1 may also decrease the gastrointestinal 
availability of trp, contributing to lower production of bacterial AHR 
agonists. In support of this evidence, the supplementation of trp or 
trp-derived agonists can limit CNS inflammation (Rothhammer 
et al., 2016). Based on the bacterial contribution to trp availability for 
each pathway, this balance strongly depends on gut microbiota 
membership. Neurodegeneration can be  linked to alteration of 
microbiota structure and composition through modulation of several 
pathways involving gut microorganisms’ metabolic functions of trp 
catabolism (Figure 2).

5 Convergence of AHR signaling and 
aging-related brain diseases 
encompasses trp metabolism 
derivatives of gut microbiota

Despite a plethora of factors have been recognized as playing an 
important role in the onset of neurodegenerative diseases, AHR 

signaling is gaining attention due to the link with gut commensal trp 
derivatives and the control of CNS inflammation.

We will here consider the convergence of AHR signaling in PD 
and AD in which chronic inflammation represents a crucial cause of 
brain cell damage and death. Aberrant microbiota profiles described 
in patients with AD and PD could promote neuroinflammation by 
affecting local trp metabolism and AHR-dependent mechanisms that 
are critical regulators of inflammatory players at both gut and 
central level.

Abnormal levels of AHR have been found in post-mortem brains 
and circulation of AD patients (Rothhammer and Quintana, 2019; 
Ramos-García et al., 2020). Among the key features marking the gut 
microbiota alteration identified in patients with AD, reduction in 
species able to produce AHR ligands has also been described. 
Specifically, Bifidobacterium, Bacteroides, and several members of 
Firmicutes phylum, such as Lactobacillus spp. that are reduced in 
patients with AD, are indole-producing bacteria. Notably, long-term 
dietary supplementation of probiotics containing Lactobacillus and 
Bifidobacterium strains showed positive impact on cognitive function, 
learning and memory in a rat model of AD (Rezaeiasl et al., 2019). 
Moreover, fecal metabolomics profiling identified a disturbance of trp 
metabolism in AD patients, particularly related to metabolites 
processed by gut commensals, being the levels of trp host derivatives 
kynurenine and KA not changed. Interestingly, metabolites in the 
serotonin pathway, co-produced by host and gut microbiota, and 

FIGURE 2

Possible routes of AHR activation in the gut and brain during neurodegeneration. (1) Aberrant microbiota profiles with diversity decline, enrichment in 
pathobionts and reduction of beneficial bacteria have been associated to neurodegenerative diseases; reduction in indole-producing bacteria induces 
low indoles levels that are AHR ligands, this can affect both intestinal function (2a; imbalance in immune cell populations, increase in proinflammatory 
cytokines and permeability), and the immunological state and neurogenesis at central level (2b); increased gut permeability could favour the 
translocation of inflammatory bacterial components like LPS into the systemic circulation, that reaching the brain and activating microglia can promote 
neuroinflammation (3b); (2d) gram-negative bacteria are source of LPS that can increase local inflammation and upregulate IDO1 activity increasing 
the kynurenine pathway of tryptophan degradation (3a) leading to indoles and 5-HT reduction; systemic LPS (3b) reaching the brain affects tryptophan 
conversion reducing the production of KA in astrocytes (4a) and increasing other downstream metabolites of kynurenine pathway with negative effects 
on neuronal homeostasis (4b). 5-HT, 5-hydroxytryptamine; IDO1, indoleamine 2,3-dioxygenase 1; KA, kynurenic acid.
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some microbial indole derivatives, that are AHR ligands, were 
significantly decreased in AD (Wu et al., 2021). Decreased plasma 
levels of trp and ILA have also been associated with the progression 
of AD, suggesting enhanced trp degradation through the kynurenine 
pathway in AD (Shao et al., 2020). Recently, Sun et al. found abnormal 
levels of indole-producing bacteria in the APP/PS1 mouse model of 
AD; they demonstrated that treatment with indole and its derivatives 
(IAA and IPA) improved gut integrity and, by increasing the levels of 
AHR, reduced the inflammatory response and cognitive impairment 
of APP/PS1 mice (Sun et  al., 2022). In another study, Pan and 
co-authors also demonstrated that high-trp diet ameliorates cognitive 
dysfunction and decreases Aβ deposition in APP/PS1 mice (Pan et al., 
2023). Collectively, it is suggested that trp and its indoles derivatives 
could exert anti-neuroinflammatory effect by activating the AhR and 
restraining the NF-κB pathway in AD. Regarding KP by-products, 
whose levels can affect trp, 5-HT and indoles availability (Chatterjee 
et al., 2019), several evidences reported their abnormal levels both in 
patients and animal models of PD. Aberrant levels of QA, 
3-hydroxykynurenine, and KA together with increased expression of 
IDO1 have been associated with AD hallmarks (Chatterjee et  al., 
2019). This increase in the KP intermediates is mainly observed in 
microglia and astrocytes, which are the mediators of 
neuroinflammation in AD. The increased secretion of inflammatory 
signaling molecules can both further trigger Aβ generation and 
immune responses, and activate IDO1 resulting in increased trp 
degradation and increased KP metabolites. Thus, the establishment of 
a vicious circle that encompasses a reduction of gut bacterial indole-
producers can underlie the progression of neurodegeneration in AD.

Altered metabolism of trp and AHR activation has also been 
found in patients with PD and in animal models of the disease. The 
association between KP metabolites and PD has been extensively 
reviewed (Venkatesan et  al., 2020). In addition, levels of 
neuroprotective trp metabolites, such as IAA and KA, have been 
found reduced in patients with PD (Chen and Lin, 2022). Interestingly, 
dietary trp significantly ameliorates impaired motor function, 
up-regulates tyrosine hydroxylase expression (the enzyme responsible 
for dopamine and L-DOPA production), inhibits NF-κB in substantia 
nigra, and down-regulates the serum levels of pro-inflammatory 
cytokines in rotenone-induced rat model of PD; these effects are 
reversed by antibiotic treatment with ampicillin and by the inhibition 
of AHR pathway (Wang et al., 2021), suggesting a concerted activity 
between microbial metabolism of trp by gut microbiota and host AHR 
activation that can protect from rotenone-induced neurotoxicity.

Thus, seminal evidence underlies that impaired production of 
AHR ligands by the gut microbiota represents an important factor in 
AD and PD. Given the influence of gut microbiota and its metabolites 
in preventing local intestinal as well as central inflammation, further 
investigation should explore how microbiota-based interventions 
could stimulate AHR to provide its critical functions and their impact 
on neurodegeneration.

6 Conclusions and future perspectives

The literature review emphasizes the significant role of the 
interaction between gut microbiota, trp metabolism and AHR in 
regulating both host health and disease. In elderly individuals, 
alterations in gut microbiota composition, including a decrease in 

indole-producing bacteria, may contribute to age-related reduction in 
systemic levels of indoles, affecting AHR signaling. All this can impact 
the host physiology leading to inflammaging, neuroinflammation, and 
compromised neuroprotective mechanisms. Thus, future microbiota-
based interventions targeting AHR and its ligands show promise in 
reducing intestinal and CNS inflammation. Sustaining the production 
of indoles by the gut microbiota through dietary modifications (as 
dietary trp), prebiotics or probiotic therapies could benefit aging 
individuals by promoting adult neurogenesis. Additionally, 
administering peculiar postbiotics that are AHR ligands, namely 
indoles, could compensate for a suboptimal microbiota lacking 
indole-producing bacteria. This can represent a personalized therapy 
to counteract cognitive decline. Beside to be an important mediator 
in the interkingdom communication between gut bacteria and host 
by AHR signaling, indole is also an intra- and interspecies signaling 
molecule that, acting as signal of the quorum sensing, is able to 
influence the behavior of the gut microbe’s community members (Lee 
J. H. et al., 2015). This could favor the prevalence of bacterial species 
indole-responsive able themselves to produce AHR ligands helpful for 
immune modulation. Thus, indole may play a crucial role in reshaping 
disrupted gut microbial communities observed in patients with 
neurodegenerative diseases.
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