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Brain degenerations in sporadic Alzheimer’s disease (AD) are observed earliest 
in the locus coeruleus (LC), a population of noradrenergic neurons, in which 
hyperphosphorylated tau protein expression and β-amyloid (Aβ) accumulation 
begin. Along with this, similar changes occur in the basal forebrain cholinergic 
neurons, such as the nucleus basalis of Meynert. Neuronal degeneration of 
the two neuronal nuclei leads to a decrease in neurotrophic factors such as 
brain-derived neurotrophic factor (BDNF) in the hippocampus and cerebral 
cortex, which results in the accumulation of Aβ and hyperphosphorylated tau 
protein and ultimately causes neuronal cell death in those cortices. On the 
other hand, a large number of epidemiological studies have shown that tooth 
loss or masticatory dysfunction is a risk factor for dementia including AD, and 
numerous studies using experimental animals have also shown that masticatory 
dysfunction causes brain degeneration in the basal forebrain, hippocampus, 
and cerebral cortex similar to those observed in human AD, and that learning 
and memory functions are impaired accordingly. However, it remains unclear 
how masticatory dysfunction can induce such brain degeneration similar to AD, 
and the neural mechanism linking the trigeminal nervous system responsible 
for mastication and the cognitive and memory brain system remains unknown. 
In this review paper, we  provide clues to the search for such “missing link” 
by discussing the embryological, anatomical, and physiological relationship 
between LC and its laterally adjoining mesencephalic trigeminal nucleus which 
plays a central role in the masticatory functions.
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1 Introduction

Brain degeneration in sporadic Alzheimer’s disease (AD) is recognized earliest in 
the locus coeruleus (LC), a population of noradrenergic (NA-ergic) neurons, where 
hyperphosphorylated tau protein is expressed and β-amyloid (Aβ) gradually 
accumulates, resulting in up to 80% cell death of LC neurons (Vijayashankar and Brody, 
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1979; Bondareff et  al., 1982). In sporadic AD, cell death also 
occurs in basal forebrain (BF) cholinergic neurons (BFC neurons) 
(Whitehouse et al., 1981); especially up to 75% or more cell death 
in the nucleus basalis of Meynert (NBM) (Whitehouse et  al., 
1982). Degeneration or cell death of the two nuclei leads to a 
reduction of acetylcholine (ACh) and NA inputs projecting to the 
hippocampus and cerebral cortex. Subsequently, neurotrophic 
factors such as nerve growth factor (NGF) or brain-derived 
neurotrophic factor (BDNF) are reduced in the hippocampus and 
cerebral cortex, which causes the accumulation of Aβ and the 
generation of hyperphosphorylated tau protein, ultimately 
leading to neuronal cell death and brain atrophy in the 
hippocampus and cerebral cortex (Counts and Mufson, 2010; Liu 
et al., 2015; Ballinger et al., 2016; Chen et al., 2018). Thus, in 
addition to Aβ and hyperphosphorylated tau protein, 
neurotrophic factors such as NGF, BDNF, and neurotrophin-3 
(NT-3), and their receptors, TrkA/B/C, have been shown to 
be  involved in the onset and progression of AD (Chen et  al., 
2018). The cell deaths of the two core neuronal nuclei of LC and 
NBM (BF) which cause dementia were both established by 
1982 in AD patients (Bondareff et al., 1982; Whitehouse et al., 
1982), and subsequent studies based on these findings have 
revealed details of the crucial roles of LC and BF in learning, 
memory and cognitive functions (Ridley et  al., 1986; Aigner 
et  al., 1987; Aston-Jones et  al., 1991; Aston-Jones and 
Cohen, 2005).

On the other hand, a large number of epidemiological studies 
have revealed an involvement of masticatory dysfunction in 
inducing dementia and AD (Kondo, 1990; Isse et al., 1991; Gatz 
et al., 2006; Ikebe et al., 2018). Consistent with the epidemiological 
studies, numerous studies in rats and mice showed that 
masticatory dysfunction caused cell death of NBM neurons 
(Terasawa et al., 2002), decreased ACh (Kato et al., 1997; Makiura 
et al., 2000) and BDNF (Lee et al., 2008; Furukawa et al., 2022), 
and subsequently caused accumulation of Aβ in the hippocampus 
and cerebral cortex (Ekuni et  al., 2011, 2013), resulting in 
synaptic dysfunction and cell death in the hippocampus and 
cortex (Taslima et  al., 2022). It has also been reported that 
learning and memory functions are impaired as a consequence of 
masticatory dysfunction (Kato et al., 1997; Yamazaki et al., 2008; 
Hirai et al., 2010; Ekuni et al., 2013; De Cicco et al., 2017). In 
addition to these studies in experimental animals, a significant 
negative correlation between the number of remaining teeth and 
tau degeneration/pathology in the LC and hippocampus was 
recently reported in a positron emission tomography study in 
human AD patients (Matsumoto et al., 2023). However, it remains 
unclear how masticatory dysfunction causes the decrease and/or 
accumulation of the key molecules, and the neural mechanism 
linking the trigeminal nervous system responsible for occlusal 
mastication function and the brain system of cognition and 
memory remains unclear.

In this review article, we  will discuss the embryological, 
anatomical, and physiological relationships between the BF/LC which 
play key roles in the pathogenesis of AD and the mesencephalic 
trigeminal nucleus (MTN) which plays a central role in occlusal and 
masticatory function, in order to facilitate the discovery of the 
missing link.

2 Current status of the research on 
the relationship between the 
trigeminal nervous system and AD 
studied using transgenic AD model 
mice

There is a very limited number of studies that investigated the 
relationship between the trigeminal nervous system and AD using 
transgenic AD mice. Recently, studies using 5xFAD mice, a type of 
AD model mice, revealed that at the age of 5 months Aβ is 
prominently accumulated in the trigeminal motor nucleus, resulting 
in cell death and atrophy of myofibers in the jaw-closing muscle (Kim 
et al., 2021). This finding indicates that masticatory function may 
be  impaired following the development of AD. However, such 
degeneration in the trigeminal motor nucleus has not been observed 
in the postmortem brains of human AD patients (Giess and Schlote, 
1995; Parvizi et al., 2001; Uematsu et al., 2018). Furthermore, even in 
9- to 15-month-old 5xFAD mice, cell death of only 10–20% of BFC 
neurons was observed (Yan et al., 2018), in contrast to the cell death 
of more than 75% of NBM neurons in human AD. Moreover, neither 
accumulation of Aβ and expression of hyperphosphorylated tau 
protein nor cell death of NAergic neurons were observed in the LC 
of 5-month-old 5xFAD mice, in contrast to human AD. Therefore, it 
is not easy to evaluate the relationship between human AD and cell 
death in the trigeminal motor nucleus due to Aβ accumulation 
demonstrated in 5-month-old 5xFAD mice.

The endogenous mechanism of cell death of LC neurons, which 
triggers the pathogenic cascade of AD (see below), has been well 
established by many studies (Burke et al., 1999; Kang et al., 2020, 
2022), and it has also been established that hyperphosphorylated tau 
protein expression and Aβ accumulation occur prior to other regions 
of the brain (Mather and Harley, 2016). In a study using 4- to 
5-month-old transgenic 3xTG-AD mice, it was observed that the Aβ 
accumulated in MTN neurons leaked out and diffused extracellularly 
when cell death of MTN neurons was induced by tooth extraction, 
triggering an inflammatory response in surrounding regions. 
Consequently, this caused cell death of adjacent LC neurons, resulting 
in memory impairment (Goto et  al., 2020). However, this is not 
consistent with the endogenous mechanism of cell death of LC 
neurons in AD (see below). In this study (Goto et al., 2020), neither 
hyperphosphorylated tau protein nor Aβ was detected in LC neurons 
themselves in contrast to human AD, suggesting that the endogenous 
mechanism of cell death of LC neurons in AD did not function. Thus, 
because the cell death of LC neurons appeared to be the result of a 
spillover of an inflammatory response, it could be an etiologic factor 
for other types of dementia, but not for AD. Therefore, it is not easy to 
find a rationale for such studies and it may be more reasonable to test 
the hypothesis that the endogenous mechanism of LC cell death is 
accelerated by the depletion of trophic factors paracrine-secreted from 
the adjacent MTN, in order to examine the possible involvement of 
MTN neurons in AD pathogenesis. In 5-month-old 5xFAD mice, Aβ 
accumulated not only in the trigeminal motor nucleus but also in the 
MTN, causing cell death, but no effect on LC was observed (Kim et al., 
2021). In the postmortem brains of AD patients, accumulation of 
hyperphosphorylated tau protein and Aβ in the LC has been observed, 
whereas no accumulation of Aβ in the MTN has been observed 
(Tables 6 and 7 in Giess and Schlote, 1995; Parvizi et al., 2001).
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Thus, the function of the trigeminal neural circuitry influencing 
the LC and BF has not yet been revealed and the neural linkage 
between the masticatory brain function and the cognitive brain 
function is still missing.

3 Is Aβ the most upstream signaling 
factor responsible for the 
development of AD?

Postmortem brain autopsies of senile people who did not show 
cognitive impairment and those who had been diagnosed with AD 
revealed that most of the senile plaques in both groups were Aβ42-
immunopositive, but the proportion of senile plaques that were also 
Aβ40-immunopositive was slightly higher in the AD group than in 
the non-AD group (25% vs. 13%) (Fukumoto et al., 1996). Based on 
these observations, it was concluded that there are no significant 
qualitative differences in the pattern of Aβ types of senile plaques, 
suggesting the presence of preclinical AD (Fukumoto et al., 1996). 
Recently, however, it has become known that Aβ42-positive diffuse 
senile plaques are more common in normal senile patients, while 
Aβ40-positive typical senile plaques with core formation are more 
common in AD patients than in normal senile patients, along with 
diffuse senile plaques (Thal et al., 2006). Furthermore, it has recently 
been proposed that the N-terminal pyroglutamylation and 
hydrophobicity of Aβ42 enhances the aggregation of Aβ42-positive 
diffuse senile plaques as well as the formation of Aβ40-positive 
senile plaques, which play a critical role in the priming and 
maturation of pathogenic senile plaque formation (Michno et al., 
2019). However, a clinical trial using the Aβ vaccine AN-1972 
reported that the progression of cognitive dysfunction itself was not 
inhibited by the vaccine although senile plaques themselves were 
significantly reduced (Gilman et al., 2005). In addition, it is known 
that metabolites of NA induce Aβ production in LC neurons, as 
described below (Burke et  al., 1999). Therefore, it remains to 
be determined whether Aβ is truly the most upstream signaling 
factor responsible for AD. Nevertheless, it is known that Aβ 
accumulation begins 15–20 years before cognitive impairment and 
leads to the generation of hyperphosphorylated tau protein and 
neurofibrillary tangle (NFT), and that people with senile plaque 
accumulation or decreased cholinergic nerve fibers are at high risk 
of developing AD (preclinical AD) even if they do not show 
cognitive impairment (Jacobs et al., 1995; Beach et al., 1997; Jack 
et al., 2010). Therefore, Aβ is still considered to be involved in the 
most upstream process of AD pathogenesis.

In 1987, a gene which is involved in the production of Aβ in 
familial AD patients was identified (Goldgaber et al., 1987), and the 
mutations in normal genes and the extent to which Aβ is overproduced 
compared to normal genes were also elucidated (Citron et al., 1992). 
Since then, more than 200 types of transgenic mice in which DNAs 
encoding amyloid precursor protein and presenilin were mutated have 
been developed to overproduce Aβ and hyperphosphorylated tau 
protein. The neurotoxicity of Aβ and NFTs has been investigated using 
such genetically engineered mice. Aβ causes membrane potential 
depolarization (Good et al., 1996; Blanchard et al., 1997), and triggers 
a neurotoxic cascade of responses including oxidative stress, 
mitochondrial depolarization, and apoptosis (Mattson, 2006). 

Alternatively, it activates microglia and induces neuroinflammation 
(Olmos-Alonso et al., 2016).

However, even in these studies using transgenic AD model mice, 
the pathogenesis of AD remains to be  established, and it must 
be  questioned whether Aβ is truly responsible for the upstream 
processes. In fact, transgenic mice overproducing Aβ or NFTs failed 
to induce marked cell death of NBM neurons, in contrast to human 
AD (Yan et al., 2018). To clarify the role of BFC neurons such as in 
NBM in AD pathogenesis, selective lesioning of BFC neurons was 
made using the immunotoxin p75-saporin in such transgenic mice. 
The lesioning of BFC neurons resulted in an earlier appearance of Aβ 
accumulation and memory impairment in the cortex and 
hippocampus (Laursen et al., 2013; Ramos-Rodriguez et al., 2013). It 
was also found that lesioning of BFC neurons caused a decrease in 
neurotrophic factors in the cortex and hippocampus, resulting in 
enhanced production of Aβ, but not NFT generation (Turnbull and 
Coulson, 2017).

It has also been reported that activation of nicotinic receptors in 
cortical pyramidal cells by the activity of BFC neurons may cause the 
production of neurotrophic factors in pyramidal cells (Hotta et al., 
2009). Thus, the lesioning of BFC neurons promoted the accumulation 
of Aβ, but transgenic AD model mice alone, which overproduce Aβ 
or NFT, did not cause early and pronounced cell death of BFC 
neurons, in contrast to human AD (Yan et al., 2018). On the other 
hand, it has been reported in human studies using MRI that 
degeneration of BFC neurons precedes the degenerative expansion in 
the cerebral cortex and can predict its extent in AD patients (Schmitz 
et al., 2016). Since the development of various transgenic AD model 
mice, there has been much debate as to whether AD begins in the BF 
or the hippocampus, but by 2016, many studies had concluded that 
AD begins in the BF (Ballinger et al., 2016; Schmitz et al., 2016), which 
also put a question on the Aβ-most upstream theory and revealed the 
importance of BFC neurons. These results suggest that the decrease in 
neurotrophic factors due to cell death of BFC neurons may be a more 
upstream process in the pathogenesis of AD than Aβ production 
(Hotta et al., 2009; Ramos-Rodriguez et al., 2013; Ballinger et al., 2016; 
Turnbull and Coulson, 2017).

4 Functional effects of the LC-NA 
system on the cerebral cortex

The LC-NA system plays an important role in determining 
cognitive function in old age; the LC is often the first brain region in 
which AD-related pathology is found, with most people showing at 
least some tau pathology by their mid-20s (Mather and Harley, 2016). 
In AD, extensive cell death in the LC precedes that of the cortex and 
hippocampus (Mather and Harley, 2016; Schmitz et al., 2016).

NA, a neurotransmitter of the LC, activates β adrenergic receptors 
(ARs) in cortical and hippocampal pyramidal cells, causing paracrine 
secretion of NGF and BDNF, and inhibiting oxidative stress, 
mitochondrial depolarization, and caspase activation caused by Aβ 
(Counts and Mufson, 2010). NA also suppresses neuroinflammatory 
responses in the brain; microglia stimulated by NA suppress 
Aβ-induced production of cytokines and chemokines and increase 
microglial migration and phagocytosis of Aβ (Heneka et al., 2010). 
Furthermore, it has been reported that NA deficiency induces 
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increased Aβ deposition in the cerebral cortex of AD model mice 
(Heneka et al., 2010). Based on the discovery of significant LC cell 
death in senile AD and the neuroprotective effects of noradrenaline, 
the “Noradrenergic Theory of Cognitive Reserve” was proposed 
(Robertson, 2013). The theory proposed that upward regulation of the 
LC-NA system through lifelong education and learning stimulates and 
improves cognitive function and contributes to cognitive reserve to 
prevent neurodegeneration.

5 MTN neuronal activity may influence 
survival and maintenance of LC 
neurons

Interestingly, it is reported that the differentiation and development 
of LC in the late embryonic period are dependent on the presence of 
adjacent MTN in which Onecut factors play not only a cell-
autonomous role in its differentiation and development but also play 
a non-cell autonomous role in LC development (Espana and Clotman, 
2012). Thus, it was suggested that the presence of the MTN would 
be required for the maintenance of the noradrenergic phenotype of the 
LC neurons. Therefore, it is possible that MTN, which is supposed to 
be located in the ganglion outside the brain, is located adjacent to the 
LC (Figure 1). Even after maturation, viability of LC neurons may 
be  maintained by the function of a trophic factor, NT-3, that is 
paracrine secreted from MTN depending on muscle spindle activity. 
The secretory molecule of NT-3 is normally produced by muscle 
spindles (Ernfors et al., 1994; Tessarollo et al., 1994), and is released 
activity-dependently to bind to TrkC receptors expressed on peripheral 
fiber endings of primary sensory neurons innervating muscle spindles, 
and is taken up into nerve endosomes and transported to the cell body 
of MTN neurons via retrograde axonal transport (Friedel et al., 1997).

Among all the primary sensory neurons, MTN neuron is only 
exceptionally located in the brain and medially adjoins LC (Copray 
et al., 1990; Takahashi et al., 2010; Figure 1). As such, they receive a 
variety of synaptic inputs including abundant NA-like projections 
from the LC (Takahashi et al., 2010). MTN neurons are also known 
to undergo somatic exocytosis during neuronal activity (Zhang et al., 
2012). Therefore, if NT-3 is paracrine secreted from the cell body of 
MTN neurons and taken up by binding to TrkC receptors (Merlio 
et al., 1992; Sandell et al., 1994, 1998) expressed on nerve endings 
projecting from the LC to the MTN, NT-3 may be useful for the 
maintenance of function and/or the survival of LC neurons and may 
be a mechanism to prevent cell death as reported previously (Arenas 
and Persson, 1994).

The parabrachial nucleus (PBN), along with the 
pedunculopontine tegmental nucleus, plays a central role in the 
arousal system through projections to the thalamus and BF as the 
center of the reticular activation system (Fuller et al., 2011). It is also 
interesting to note that the medial PBN (MPB) laterally adjoins the 
MTN. The impairment of these neural circuits between the 
LC-MTN-MPB (Figure 2) may be involved in the pathogenesis of 
AD, and further studies are warranted.

Sensory information in the trigeminal nervous system plays an 
important role in the activation of the arousal system. On the other 
hand, the loss of multiple teeth is considered to cause Alzheimer’s-type 
learning and memory deficits as a result of reduced sensory 
information. However, it has also been reported that elevation of the 
height of the occlusion can cause learning and memory impairment 
(Piancino et al., 2019; Toyoda et al., 2023), and it has been proposed 
that the cause is not a decrease or increase in input information, but 
the stress caused by the dysfunction of masticatory motor control 
system due to the error or decrease in such sensory information 
(Budtz-Jorgensen, 1981; Piancino et al., 2019, 2020; Toyoda et al., 2023).

FIGURE 1

Location of nerve nuclei in a coronal section of the rat brainstem (Bregma, −9.68  mm; Paxinos and Watson, 1996). From medial to lateral, Locus 
coeruleus (LC), mesencephalic trigeminal nucleus (MTN), and medial part of the parabrachial nucleus (MPB) are located adjacent to each other.

https://doi.org/10.3389/fncel.2024.1425645
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Kang et al. 10.3389/fncel.2024.1425645

Frontiers in Cellular Neuroscience 05 frontiersin.org

6 How are LC neurons involved in 
occlusal masticatory function?

The firing activity of LC neurons transiently increases in response 
to panic and mental stress (Valentino and Foote, 1988; Curtis et al., 
1997), which is known to be caused by the activation of corticotropin-
releasing factor (CRF) receptors by CRF (Van Bockstaele et al., 1998; 
Koob, 1999) secreted in response to stress from the bed nucleus of the 
stria terminalis (BNST), hypothalamus and amygdala (Valentino et al., 
1983; McCall et al., 2015) and especially from the central nucleus of 
the amygdala (CeA) (Tjoumakaris et al., 2003). It is also reported that 
CRF and glutamate are frequently colocalized in axon terminals 
arising from CeA to make synaptic contacts onto dendrites of LC 
neurons (Valentino et al., 2001).

In the case of normal masticatory movement commanded by the 
cortical mastication area, MTN neurons act as primary sensory neurons 
by faithfully transmitting information arising from muscle spindles to 
motor neurons, and are involved in the masticatory motor control 
(Figure 3). On the other hand, there is another jaw-closing movement 
that occurs with the involvement of LC (Figure  4), as the neural 
projections from LC to MTN have already been reported (Copray et al., 
1990; Takahashi et al., 2010). Such neural projection would act to induce 
an attacking-bite against the enemy when aggression is heightened in 
response to encountering the enemy. It has been shown that stress and 
aggressive emotions can activate CeA (Haller, 2018) which sends direct 
excitatory glutamatergic inputs to MTN (Shirasu et al., 2011; Zhao et al., 
2022). Then, during an attack-biting, both LC and CeA would 
be simultaneously activated. Simultaneous activation of these two inputs 
results in an amplification of glutamatergic currents in MTN neurons 
by the action of NA-ergic inputs, causing MTN neurons to fire in bursts 
(Kawasaki et al., 2018; Figure 4). Such burst firings can rapidly trigger 

and recruit the jaw-closing motoneurons, causing rapid and powerful, 
i.e., ballistic, jaw-closing movements. The involvement of the CeA in 
attacking-bite has been reported previously, but a pathway through the 
parvocellular reticular nucleus to the trigeminal motor nucleus has been 
proposed (Han et al., 2017). However, the central pattern generator 
(CPG), which receives input from the masticatory cortex for normal 
masticatory movements, is also believed to include the parvocellular 
reticular nucleus (Nozaki et al., 1993). Therefore, further verification is 
needed to determine whether such a multisynaptic circuit can function 
as a neural circuit to trigger ballistic biting attacks, which are rapid and 
powerful non-rhythmic jaw-closing movements, in contrast to normal 
slow rhythmic masticatory movement.

The biting attack is common to all animal species. For all 
carnivores, the two most important behaviors are the capture and 
eating of prey with the mouth and the attacking bite when attacking 
an enemy. The jaw-closing movements during biting attacks are 
ballistic movements, and the firing patterns and functions of MTN 
neurons are different between ballistic and isometric jaw-closing 

FIGURE 2

Relationship between the LC-MTN-PBN neural circuit and the basal 
forebrain (BF), cortex (Cx) and hippocampus (Hipp). LC projections to 
MTN and PBN exert excitatory and inhibitory effects through the 
activation of α2A adrenergic receptor (AR), respectively. LC also 
projects to BF. Glutamatergic PBN is the core nucleus of the 
ascending arousal system, and activates MN and the bed nucleus 
stria terminalis (BNST) that activates LC. The activity of 
γ-motoneurons (γMN) produces neurotrophic factor NT-3 in muscle 
spindles, which is transported retrogradely to MTN and subsequently 
can be paracrine secreted from MTN. The viability of Cx and Hipp 
cells is maintained by noradrenergic (NA) and cholinergic (ACh) 
inputs, while conversely AD develops due to the impairment of LC 
and BF.

FIGURE 3

Primary sensory neuron mode. A functional mode that faithfully 
transmits the impulse activity arising from muscle spindles to 
α-motoneurons (αMN). Precise masticatory movements are possible.

FIGURE 4

Premotor neuron mode. When MTN neurons receive NA input from 
LC and glutamatergic input from central nucleus of the amygdala 
(CeA) at the same time, MTN neurons act as premotor neurons that 
fire in bursts and thereby powerfully drive αMN, without impulses 
from muscle spindles (MS), to perform biting attacks and predatory 
activities. Glutamate receptor (GluR) current is enhanced by 
inhibition of h-current (Ih) as a result of activation of α2A AR by LC 
inputs (Kawasaki et al., 2018; Toyoda et al., 2022).
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(Tsukiboshi et  al., 2012) observed during attacking bite and 
mastication, respectively (Figures  3, 4). Therefore, vertebrates, 
including humans, are thought to have developed specialized brain 
circuits to attain such movements. These may be one of the reasons 
why the MTN is located in the brain as the only exception in spite of 
being primary sensory neurons, and why it came to be located lateral 
to the LC.

7 Discussion

The occlusal and masticatory dysfunctions induce stress while 
stress induces bruxism and clenching, which leads to the temporo-
mandibular joint (TMJ) disorder and other occlusal and masticatory 
dysfunctions, thus causing a negative or vicious circle. When this 
vicious cycle progresses, TMJ disorder or occlusal and masticatory 
dysfunctions are believed to result in brain dysfunctions such as 
depression or learning/memory impairment. Thus, it has been 
suggested that occlusal and masticatory dysfunctions may be involved 
in the pathogenesis of dementia. Nevertheless, the neural mechanism 
linking masticatory dysfunction and such dementia is not known yet.

7.1 Modulation of neurotrophic relationship 
between LC and MTN by functional modes 
of MTN neurons

As mentioned above, MTN neurons have two functional modes: 
one mode is to faithfully transmit information from muscle spindles 
to motor neurons as primary sensory neurons (Figure 3), and the other 
mode is to act as premotor neurons (Figure 4), which are switched 
mainly by the action of six different ion channels (Saito et al., 2006; 
Kang et al., 2007; Chung et al., 2015; Kawasaki et al., 2018). When 
muscle spindle is most activated by isometric contraction during 
mastication (as in the primary sensory neuron mode), NT-3 produced 
by muscle spindle activity is released from it and binds to TrkC 
receptors expressed on the axon terminal of MTN neurons, and is 
subsequently taken-up into the axon of MTN neurons as endosomes. 
Axonal retrograde transport of the endosome of NT-3/TrkC complex 
occurs to accumulate NT-3 in the cell body of MTN neurons (Figure 5). 
NT-3 is then further secreted as paracrine molecule from the cell body 
in response to the increase in [Ca2+]i in the cell body caused by firing 
activity. Although it has been demonstrated electrophysiologically that 
paracrine secretion occurs in MTN neurons (Zhang et al., 2012), the 
replenishment of NT-3 may be delayed because the retrograde axonal 
transport of NT-3 all the way up to the cell body takes time (Chowdary 
et  al., 2012). However, whenever MTN neurons act as a primary 
sensory neuron mode, NT-3 should be  certainly replenished and 
accumulated in the cell body of MTN neurons (Chowdary et al., 2012).

Humans usually do not perform the aggressive attacking-bite. 
However, there would be a conserved pathway of CeA to MTN that is 
thought to be involved in causing bruxism (clenching/grinding) under 
stressful condition (Mascaro et al., 2009). Therefore, in contrast to this 
primary sensory neuron mode, when stress-induced clenching persists, 
LC and CeA may be activated and subsequently MTN neurons may 
continue to function in a premotor neuron mode, firing in bursts. In 
this case, since there is no activity of muscle spindles, there is no 
supplementation of NT-3 from muscle spindles and only unilateral 

paracrine secretion of NT-3, and consequently NT-3 is likely to 
be depleted in MTN neurons (Figure 6). These notions suggest that the 
amount of NT-3 accumulated in the cell body and paracrine secretion 
of NT-3 may differ depending on the functional mode of MTN neurons.

Although various ion channels are involved in switching the activity 
mode of MTN neurons (Saito et al., 2006; Kang et al., 2007; Chung et al., 
2015; Kawasaki et al., 2018), the switching is crucially dependent on the 
activation of α2A ARs by NA secreted as “volume transmission” from 
the axon terminal of LC neurons (Toyoda et al., 2022). Since LC neurons 
can induce burst firing in MTN neurons independently of the activity 
of the muscle spindles of the jaw-closing muscles required for the 
precise control of masticatory movements (Kawasaki et al., 2018), it is 
considered that the activity of LC neurons may interfere with the precise 
control of masticatory movements by the activity of muscle spindles and 
may further cause stress. Therefore, when masticatory dysfunction due 
to such as malocclusion is accompanied by mental stress, the functional 
relationship including the neurotrophic one between the LC and MTN 
may be affected, leading to the AD pathogenesis.

We have already mentioned that the paracrine secretion of NT-3 
from MTN may affect the maintenance of the function or the survival 
of LC neurons because MTN medially adjoins LC and receives TrkC-
expressing fiber projections from LC neurons (Merlio et al., 1992; 
Sandell et al., 1994, 1998). Despite the fact that LC and BF are neuronal 
populations that play a central role in the pathogenesis and progression 
of AD, there have been very few studies on their maintenance and 
survival. One study clearly demonstrated that NT-3 suppressed 
6-OH-dopamine-induced cell death in LC (Arenas and Persson, 1994) 
while there have been numerous studies showing that AD pathogenesis 
is facilitated when BF and LC are lesioned (Laursen et  al., 2013; 
Coradazzi et al., 2016).

7.2 Chronic stress can increase NT-3 in LC 
neurons in a manner independent of 
muscle spindle activity

Astrocytes or interneurons surrounding the MTN would 
be  activated by glutamatergic inputs from CeA, which primarily 

FIGURE 5

When MTN neurons act as primary sensory neurons, secretory NT-3 
produced by muscle spindles (MS) is taken up by endocytosis after 
binding to TrkC receptors expressed in the axon terminal and 
transported retrogradely as endosomes through the axon to the cell 
body of the MTN neuron, from which NT-3 can be further paracrine 
released to the LC.
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activates MTN neurons under stressful conditions. NT-3 release from 
astrocytes or interneurons in response to glutamatergic inputs 
(Lessmann et al., 2003; Bronzuoli et al., 2017) may be taken up by 
TrkC receptors expressed in adrenergic terminals of LC neurons 
under stress condition. Furthermore, mRNA levels of NT-3 in LC 
neurons are increased under repeated restraint stress (Smith et al., 
1995) whereas endogenous expression of NT-3 is absent in normal 
condition (Akbarian et al., 2001). Thus, only under stress conditions, 
NT-3 emerges in LC neurons endogenously and exogenously through 
activation of TrkC receptors. This may be necessary to protect LC 
neurons from excitotoxicity induced by activation of glutamate and 
CRF receptors under stress condition, as NT-3 can protect neurons 
from excitotoxicity presumably by stabilizing [Ca2+]i (Cheng and 
Mattson, 1994; Safina et al., 2015). In spite of such neuroprotective 
mechanisms, LC neurons are very vulnerable to chronic stress 
(Sanchez-Padilla et al., 2014; Wang et al., 2020; Evans et al., 2022), 
suggesting that NT-3 brought about by such mechanisms may not 
be able to cope with chronic or severe stress.

On the other hand, BDNF in hippocampus is decreased by 
reduced mastication (Fukushima-Nakayama et  al., 2017) or by 
restraint stress but is restored by active mastication (Lee et al., 2008). 
Considering the role of NA inputs to hippocampus/cerebral cortex in 
producing BDNF in those cortices (Counts and Mufson, 2010), those 
findings suggest that LC neurons under stress would not contribute to 
the production of BDNF in those cortices whereas active mastication 
plays a crucial role in maintaining the functional role of LC neurons 
to produce BDNF in those cortices. Thus, in terms of neuroprotective 
action through activation of β AR in those cortices (Counts and 
Mufson, 2010), higher frequency phasic firing in LC neurons under 
stress condition may not be so effective than slow tonic firing under 
normal condition, as reported in the signal transduction in α2A ARs 
previously (Toyoda et al., 2022). NT-3 produced by muscle spindle 
activity may be useful to maintain normal neuronal activity of LC 
neurons while under severe stress condition NT-3 would be necessary 
to just protect LC neurons from excitotoxicity. Nevertheless, persistent 
overexcitation of LC neurons under chronic stress would lead to their 
degeneration due to the endogenous production of 
3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) and tau protein.

7.3 Endogenous mechanism of cell death 
of LC neuron in AD and its modification by 
NT-3

In LC neurons, NA is metabolized by mitochondrial 
monoamine oxidase A (MAO-A) to produce DOPEGAL. Since 
DOPEGAL produces free radicals, its cytotoxicity has been studied 
extensively (Burke et al., 1999; Kang et al., 2020). Recently, it was 
shown that DOPEGAL activates asparagine endopeptidase, 
resulting in the production of hyperphosphorylated tau protein and 
Aβ (Kang et al., 2020) and leading to AD (Kang et al., 2020, 2022). 
However, why and how free NA accumulates in the cell bodies of 
LC neurons has not been questioned. Until this is clarified, it 
remains unclear why DOPEGAL is overproduced in the cell body 
(Burke et al., 1999) and whether it can be the earliest pathogenesis 
of AD. Normally, free NA is internalized into vesicles by vesicular 
monoamine transporter 2 (vMAT2) rather than metabolized by 
MAO-A into DOPEGAL, and vesicles containing NA are paracrine 
secreted from the cell body upon neuronal activity. This is because 
vMAT2 has a higher affinity for NA than MAO-A has (Chaudhry 
et al., 2008; Meiser et al., 2013). Thus, the mechanism by which NA 
accumulates in the cell body is still unknown and has not ever been 
focused on.

It is also not known yet how NT-3 modulates these endogenous 
mechanisms of LC degeneration. Stress and/or glucocorticoid 
exposures lasting 24 h or longer have been associated with greater 
MAO-A levels/activity (Filipenko et al., 2002; Ou et al., 2006). NT-3 
can protect neurons from excitotoxicity presumably by stabilizing 
[Ca2+]i (Cheng and Mattson, 1994; Safina et  al., 2015). Because 
MAO-A is known to be activated by [Ca2+]i increase (Cao et al., 2007), 
it would be  interesting to examine whether activity of MAO-A is 
suppressed by NT-3 or not.
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FIGURE 6

When MTN neurons function as premotor neurons, there is no 
replenishment of NT-3 from muscle spindles (MS). Then, NT-3 would 
be finally depleted after secretion of NT-3, without replenishment, by 
the bursting activity of MTN neurons evoked by coactivation of LC 
and CeA.
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