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Introduction: Cycloastragenol (CAG) has a wide range of pharmacological

effects, including anti-inflammatory, antiaging, antioxidative, and

antitumorigenic properties. In addition, our previous study showed that

CAG administration can promote axonal regeneration in peripheral neurons.

However, whether CAG can activate axon regeneration central nervous system

(CNS) remains unknown.

Methods: Here, we established a novel mouse model for visualizing spinal cord

dorsal column axon regeneration involving the injection of AAV2/9-Cre into the

lumbar 4/5 dorsal root ganglion (DRG) of Rosa-tdTomato reporter mice. We

then treated mice by intraperitoneal administration of CAG.

Results: Our results showed that intraperitoneal CAG injections significantly

promoted the growth of vitro-cultured DRG axons as well as the growth of

dorsal column axons over the injury site in spinal cord injury (SCI) mice. Our

results further indicate that CAG administration can promote the recovery of

sensory and urinary function in SCI mice.

Conclusion: Together, our findings highlight the therapeutic potential of CAG in

spinal cord injury repair.

KEYWORDS

cycloastragenol, dorsal column, axon growth, nerve injury, functional recovery, TERT,
spinal cord injury, p53

Introduction

Cycloastragenol (CAG) is the active form of astragaloside IV isolated from Astragalus
membranaceus (Fu et al., 2014; Li M. et al., 2020; Lin et al., 2022). This triterpenoid has
a wide range of pharmacological effects, including anti-inflammatory (Bagalagel et al.,
2022; Melin et al., 2022; Zhao et al., 2015; Zhu et al., 2021), antiaging (Cheng et al.,
2020; Zhang et al., 2023), antioxidative (Yu et al., 2018), and antitumorigenic (Deng
et al., 2022; Yang et al., 2022) properties. For example, CAG reduces tumor necrosis
factor-alpha (TNF-α) levels by inhibiting TXNIP/NLRP3 inflammasome activation, thus
exerting antioxidative activities (Zhao et al., 2015). Additionally, recent studies on
colorectal cancer organoids have revealed that CAG enhances the tumor-killing ability
of CD8 + T cells by binding to cathepsin B and thereby inhibiting the degradation
of major histocompatibility complex I (MHC-I) (Deng et al., 2022; Yang et al., 2022).
Meanwhile, regarding its neurological effects, CAG was shown to upregulate the expression
of nerve growth factor (NGF) in the cerebral cortex of mice (Ip et al., 2014) as well as,
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promote the proliferation and survival of neural stem cells in vitro
(Yu et al., 2018).

The World Health Organization (WHO) has estimated that
250,000 to 500,000 people worldwide suffer a spinal cord injury
(SCI) annually, with up to 90% of these cases being due to trauma.
SCI often leads to the loss of motor and sensory functions, and
restoring nerve function after SCI remains challenging. However,
there are currently no effective treatments for SCI. In the central
nervous system (CNS) of adults, neurons have limited regenerative
ability, and damage often triggers an inflammatory response that
further hinders axon regeneration (Bodnar et al., 2021; Kotaka et al.,
2017; Singh, 2022). In addition, when the spinal cord is damaged,
cells in the affected region release reactive oxygen species (ROS),
leading to the recruitment of a series of proinflammatory cytokines,
such as TNF-α, which can exacerbate mitochondrial damage and
DNA oxidation, forming a vicious cycle that eventually leads to
spinal cord cell apoptosis (Liu D. et al., 2023; Liu et al., 2020;
Yin et al., 2024). These proinflammatory factors contribute to the
formation of glial scars, which act as a physical barrier to axon
regeneration in the spinal cord (Li Y. et al., 2020; Liu et al., 2021).

Given that it has been demonstrated that CAG can inhibit ROS
production (Yu et al., 2018), in this study, we investigated whether
CAG can promote SCI repair via its antioxidative activities. For
this, we established a novel mouse model for visualizing spinal cord
dorsal column regeneration involving the injection of AAV2/9-Cre
into the lumbar 4/5 dorsal root ganglion (DRG) of Rosa-tdTomato
reporter mice. Once Cre recombinase is expressed, the LoxP site
in the Rosa-tdTomato mouse genome will be recognized and
excised, resulting in the expression of tdTomato, a red fluorescent
protein. This enables the visualization of whole axons as well as the
tracking of the growth of individual axons within the sciatic nerve
and spinal cord dorsal column. Previously, we showed that CAG
administration can promote axonal regeneration in peripheral
neurons in vitro (Ma et al., 2019). However, whether CAG can
activate axon regeneration in vivo remains unknown. Here, we
found that intraperitoneal CAG injections significantly promoted
the growth of vitro-cultured DRG axons as well as the growth of
dorsal column axons over the injury site in SCI model mice. Our
results further indicate that CAG administration can promote the
recovery of sensory, and urinary function in SCI mice. Together,
our findings highlight the therapeutic potential of CAG in spinal
cord injury repair.

Materials and methods

Animals

Adult ICR and Rosa-tdTomatof /f reporter mice were used
in this study. All experiments were performed on female mice
aged between 6 and 8 weeks. All the animals were housed in
a specific pathogen-free (SPF)-rated animal facility with a room
temperature of between 20 and 26◦C and a relative humidity
of 40% to 70%. Each cage contained five animals, and the
mice were provided with an adequate diet and clean drinking
water. All protocols involving animals were approved by the
Animal Experiment Ethics Committee of Soochow University
(Approval No.: SUDA20240307A03). Surgery was performed under

deep anesthesia and every effort was made to minimize the
suffering of the animals.

Drug administration

Mice were assigned to two groups—a Control group, in
which the animals were intraperitoneally injected with a solution
containing phosphate-buffered saline (PBS), 2% Tween 20, and
5% DMSO; and an experimental group, in which the mice were
intraperitoneally injected with the same solution supplemented
with CAG at a concentration of 2.5 mg/mL. The mice were dosed
twice daily, with a single dose set at 20 mg/kg. The CAG used
in this study (S26736, Yuanye Bio-Technology, Shanghai, China)
had a purity of ≥98% and the solvents used for preparation were
of sterile grade.

Cell culture

The L4–L6 DRG was removed and digested first with
collagenase for 1.5 h and then with TrypLE (Gibco, 25200-
056, USA) for 15 min. Then, washed with Minimum Essential
Medium (MEM) supplemented with 10% fetal bovine serum
(FBS) to terminate the digestion, and dissociated with a 1-mL
pipette. Subsequently, the cells were cultured in 24-well plates for
48 h at 37◦C with 5% CO2. The cell culture medium consisted
of basal medium (Gibco, 21103049), penicillin/streptomycin,
1 × GlutaMAX (Gibco, 35050061), and B-27 supplement (Gibco,
17504044). Cell morphology was analyzed using a Zeiss microscope
(Carl Zeiss, AXIO, Germany) and axon length was measured using
AxioVision 4.7 software. To assess the cell survival rate, the average
number of Tuj1-positive cells per square millimeter was calculated
using Image J software.

Dorsal column crush

Following anesthesia with 100 mg/kg ketamine and 10 mg/kg
xylazine, the spinal cord and the L4 DRG of the mice were
exposed via laminectomy. Under a microscope, 1 µL of AAV2/9-
Cre (HANBIO, 71090612, China) was injected into the DRG using
the Picospritzer III instrument (Parker Hannifin, Cleveland, OH,
USA) and a glass needle. Then, at the level of T12, the spinal cord
was crushed for 1s using custom-modified 5# forceps, after which
the muscles and skin were sutured with 4-0 nylon sutures. The
bladder of each animal was squeezed every day to ensure daily
urination (The number of animals subjected to each procedure is
six, n = 6).

Immunofluorescence staining

Cells were fixed in 4% paraformaldehyde (PFA) for 20 min
at room temperature and blocked with 2% BSA for 60 min. For
tissue section staining, animals were perfused with 4% PFA, and
the samples were dissected out. Tissue samples were cryosectioned
at a thickness of 12-µm and blocked with 10% FBS and 0.3% Triton
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X-100 for 1 h. Then, the samples (cells and tissue) were incubated
at room temperature for 90 min with primary antibodies and
with secondary antibodies for 60 min, also at room temperature.
The primary antibodies used were GFAP Rabbit mAb (1:200,
CST, 80788, USA), Tuj1 Rabbit polyclonal (1:200, Sigma, T2200,
USA), Tuj1 Mouse mAb (1:1000, Biolegend, 801202, USA), TGF-
beta Rabbit Ab (1:200, CST, 3711S), TNF-alpha Rabbit mAb
(1:200, CST, 11948S), iNOS Rabbit mAb (1:200, CST, 13120S).
The secondary antibodies included Alexa 488 goat anti-rabbit
IgG (Invitrogen, A11008, USA), Alexa 488 goat anti-mouse IgG
(Invitrogen, A11001), Alexa 594 goat anti-mouse IgG (Invitrogen,
A11005), and Alexa 594 goat anti-rabbit IgG (Invitrogen, A11012).

Cryosection and cultured cell images were acquired using
an inverted light microscope (Zeiss Axiovert 200, Carl Zeiss
MicroImaging), which was outfitted with epifluorescence optics
and a charge-coupled device (CCD) camera. The microscope was
operated using Axiovision software (Carl Zeiss MicroImaging) to
control the CCD camera and capture the images.

Western blot

Samples were lysed with RIPA buffer (Beyotime, China) and
total protein concentrations were determined with a BCA kit
(Beyotime). Proteins were separated using sodium dodecyl sulfate–
polyacrylamide gel electrophoresis, transferred to a polyvinylidene
fluoride membrane, blocked with 5% skimmed milk powder, and
incubated first with primary antibodies for 12 h at 4◦C (GAPDH
Rabbit mAb [1:1000, CST, 2188], β-actin Rabbit mAb [1:1000, CST,
4970], TERT Rabbit mAb [1:200, Abcam, ab32020], p53 Mouse
mAb [1:200, Abcam, ab26]) and then with secondary antibodies at
room temperature for 1 h. Bands were developed with Immobilon
Western Chemiluminescent HRP Substrate (MILLIPORE, 638173,
USA) and band intensity was quantified using ImageJ software.

Behavioral tests

Hot plate experiments: The pain threshold for thermal
stimulation in mice was determined using an X2026TBD intelligent
thermostatic hot plate instrument. The hot plate was preheated to
55± 0.1◦C. Mice were placed on the surface of the hot plate and the
time it took for them to start jumping or licking the hindfoot was
measured and used as a pain threshold indicator. To prevent foot
burns, mice were removed from the hot plate after 40 s; the pain
threshold was calculated as 40 s for mice that did not jump or lick
their hind feet during this time.

Micro-CT scanning

Mice were scanned with the NEMO Micro-CT (Pingsheng
scientific, Kunshan, China) at the same time every day. The
parameters were set as follows: Tube voltage 60 kV, tube current
0.11 mA, imaging speed 20 frames/s, transverse field-of-view
(fov) 50 mm, and axial fov16 mm. After data reconstruction,
the maximum cross-section of the bladder was selected for
comparative analysis.

Quantitative real-time PCR

For total RNA extraction, samples were homogenized in TRIzol
Reagent (Invitrogen,15596026) and precipitated with chloroform,
isopropanol, and 75% ethanol. The RNA concentration was
measured using a NanoDrop at 4◦C. The mRNA was reverse
transcribed into cDNA (42◦C for 60 min, 70◦C for 5 min) using
the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific,
01016280, USA). Quantitative real-time PCR was performed with
iTaq Universal SYBR Green Supermix (1725124, USA) using the
following cycling conditions: 95◦C for 10 s for initial denaturation,
followed by 40 cycles of denaturation at 95◦C for 15 s, annealing
at 55◦C for 30 s, and extension at 72◦C for 30 s. The fold change
of the genes of interest were calculated using the 2−11Ct method.
The primer sequences were as follows (5′–3′):

Tp53-F: CGA CGA CAT TCG GAT AAG, Tp53-R: TTG CCA
GAT GAG GGA CTA;
Tert-F: TGG TGG AGG TTG CCA, Tert-R: CCA CTG CAT
ACT GGC GGA TAC;
Tnf -F: ATG TCT CAG CCT CTT CTC ATT C, Tnf -R: GCT
TGT CAC TCG AAT TTT GAG A;
Il10-F: TTC TTT CAA ACA AAG GAC CAG C, Il10-R: GCA
ACC CAA GTA ACC CTT AAA G;
Tgfb-F: CCA GAT CCT GTC CAA ACT AAG G, Tgfb-R: CTC
TTT AGC ATA GTA GTC CGC T;
Gapdh-F: AGG AAT TGA CGG AAG GGC ACC, Gapdh-R:
GTG CAG CCC CGG ACA TCT AAG;
Il1b-F: CAC TAC AGG CTC CGA GAT GAA CAA C, Il1b-R:
TGT CGT TGC TTG GTT CTC CTT GTA C.

ROS assay

After washing with PBS, the samples were incubated with
10 µM dihydroethidium (Beyotime) at 37◦C for 1 h, incubated with
DAPI for 15 min, washed with PBS, and mounted with Mowiol.

Statistical analysis

All data are presented as means± standard deviation (SD) and
were analyzed using GraphPad Prism 8.0.2 software. Comparisons
among three or more groups were performed by one-way ANOVA.
The student’s t-test was used for comparisons between two groups.
A p-value < 0.05 was considered significant.

Results

CAG promoted axon regeneration in
peripheral sensory neurons

We first investigated the promotive effect of CAG on peripheral
nerve axon growth. For this, CAG was administered to adult ICR
mice (twice daily at a single dose of 20 mg/kg) by intraperitoneal
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FIGURE 1

Cycloastragenol (CAG) promotes axon regeneration in peripheral sensory neurons. (A) Representative images of Tuj1 (green) immunofluorescence
staining in dorsal root ganglion (DRG) neurons obtained from mice after 7 days of CAG administration and subsequently cultured for 48 h. Scale
bar = 100 µm. (B) Axon length measurements showed that the in vivo administration of CAG promoted axon growth in in vitro-cultured DRG
neurons (n = 3, ***p < 0.001). (C) CAG administration did not affect the survival of DRG neurons after 3 days of culture (n = 3).

injection. After 7 days, DRG sensory neurons were obtained from
mice, and cultured in vitro for 48 h. As shown in Figures 1A, B,
the administration of CAG accelerated the growth of DRG axons
without affecting neuronal survival (Figure 1C). These results
indicated that CAG could promote axonal growth in peripheral
sensory neurons.

A novel model for visualizing dorsal
column regeneration

Next, to investigate whether CAG can stimulate SCI repair,
we established a novel model for visualizing dorsal column axon
regeneration using the Cre recombinase system. AAV2/9-Cre was
injected into the lumbar 4/5 DRG of Rosa-tdTomato floxed mice,
allowing tdTomato protein to be expressed in DRG neurons

following Cre-mediated recombination. We traced tdTomato-
positive axons in the peripheral nervous system (PNS) and found
that approximately 84% of DRG neurons were fluorescently
labeled (Figures 2A, B). Individual tdTomato-positive axons were
also detected in the sciatic nerve (Figure 2A). Additionally, we
observed numerous tdTomato-labeled axons in both cross-sections
(Figure 2C) and sagittal sections (Figure 2D) of the dorsal column.

CAG promoted axon regeneration in the
dorsal column after SCI

Although we have previously shown that CAG can promote
axon regeneration in peripheral neurons (Ma et al., 2019), whether
it can exert similar effects in the CNS remains unknown. Thus, we
next investigated whether CAG could promote axonal growth in
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FIGURE 2

A novel model for the visualization of dorsal column axon regeneration. (A) Immunofluorescence staining of dorsal root ganglion (DRG) and sciatic
nerve sections showed a high DRG sensory neuron transfection rate 4 weeks after the injection of AAV2/9-Cre into the lumbar (L) 4/5 DRG of
ROSA-tdTomato floxed mice. Green: Tuj1 staining, red: transfected sensory neurons, blue: DAPI staining. Scale bar = 100 µm (n = 3).
(B) Quantification of the transfection rate in panel (A). (C) Immunofluorescence staining of a spinal cord cross-section showing the presence of
numerous tdTomato-labeled axons in the dorsal column 6 weeks after AAV2/9-Cre injection into the L4–5 DRG of ROSA-tdTomato floxed mice.
Red: tdTomato-positive axons, blue: DAPI staining. Scale bar = 200 µm. (D) Immunofluorescence staining of a sagittal section of the spinal cord
showing the presence of numerous tdTomato-positive axons in the dorsal column 6 weeks after AAV2/9-Cre injection into the L4–5 DRG of
ROSA-tdTomato floxed mice; red: tdTomato-positive axons, blue: DAPI staining. Scale bar = 35 µm.

the dorsal column of the spinal cord using our newly established
model. After 6 weeks of intraperitoneal CAG injection, almost no
tdTomato-positive axons were detected in the rostral part of the
lesion site either in control or CAG-treated mice (Figures 3A, B).
However, after 12 weeks of treatment, some tdTomato-positive
axons were observed over the lesion site, with the longest
tdTomato-positive axons extending 1,500 µm rostral to the crush
site (Figures 3C, D). These results indicated that CAG promotes
axon regeneration in the dorsal column in vivo.

CAG promoted the recovery of sensory
function in SCI model mice

Next, we investigated the effect of CAG on the recovery of
sensory function in mice using the hot plate experiment. After
6 weeks of CAG administration, there was no difference in the
recovery of sensory nerve function between control and CAG-
treated mice (Figure 4A). However, after 12 weeks of treatment,
sensory nerve function was significantly better in CAG-treated
mice than in control animals (Figure 4A), while the urine retention
volume was significantly lower in the CAG group than in the
control group (Figures 4B, C). Consistent with these observations,

CT scans also showed that bladder size in the CAG group was
significantly reduced compared with that in the control group after
12 weeks of CAG treatment (Figures 4B, C). This data indicated that
CAG could promote the recovery of sensory function and urinary
system function.

CAG upregulated the expression of
telomerase reverse transcriptase (TERT)
and p53

It has been reported that CAG can upregulate TERT expression
in the PNS (Ip et al., 2014; Ma et al., 2019), and TERT and p53 could
regulates the PNS axon regeneration (Ma et al., 2019). Accordingly,
we determined whether CAG could also induce TERT and p53
expression in the dorsal column axon regeneration. Western blot
analysis showed that, after 7 days of CAG administration, TERT
and p53 protein levels in DRG were increased in the CAG group
compared with that in the controls (Figures 5A, B). In line with
these findings, the mRNA levels of Tert and Tp53 in DRG were also
significantly increased after 7 days of CAG treatment (Figure 5C).
Similarly, immunofluorescence staining also supported that CAG
upregulates TERT expression in DRG (Figure 5D). Combined,
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FIGURE 3

Cycloastragenol (CAG) promotes axon regeneration in the dorsal column of mice after spinal cord injury (SCI). (A) After 6 weeks of intraperitoneal
CAG injection, immunofluorescence staining of sagittal sections of the spinal cord showed that relatively few tdTomato-positive axons had grown
over the lesion site in the dorsal column. All the tdTomato-positive axons stopped in the caudal part of the injury site in both control and
CAG-treated mice. Green: GFAP staining. Scale bar = 100 µm. (B) Statistics for the axon length across the lesion site in panel (A) (n = 6). (C) After
12 weeks of intraperitoneal CAG injection, immunofluorescence staining of sagittal sections of the spinal cord showed that a greater number of
tdTomato-positive axons had grown over the lesion site in the dorsal column and had entered the rostral part of the lesioned spinal cord compared
with that seen in the control group. Green: GFAP staining. Scale bar = 100 µm. (D) Statistics for the axon length across the lesion site in panel (C)
(n = 6, *p < 0.05, **p < 0.01, ****p < 0.0001).

FIGURE 4

Cycloastragenol (CAG) promotes the recovery of both sensory functions in spinal cord injury (SCI) mice. (A) The results of the hot plate experiment
showed that CAG administration markedly promoted the recovery of sensory function in the hind limbs of mice 6 and 12 weeks after SCI (n = 6,
*p < 0.05, ***p < 0.001, ****p < 0.0001). (B) Representative micro-CT image showing that, compared with control mice, bladder size was
significantly reduced in CAG-treated mice after 12 weeks of treatment (n = 5), Scale bar = 10 mm. (C) Quantification results showed that the urine
retention volume was significantly decreased in SCI mice after 6 and 12 weeks of CAG administration, (n = 6, *p < 0.05).
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FIGURE 5

Cycloastragenol (CAG) upregulates TERT and p53 expression. (A) Representative western blot showing that TERT and p53 expression levels were
increased in sensory neurons after 7 days of intraperitoneal CAG injection. (B) Quantification of TERT and p53 protein contents in panel (A), (n = 3,
*p < 0.05, **p < 0.01). (C) Quantitative PCR analysis showed that TERT and p53 mRNA levels in sensory neurons were increased after 7 days of
intraperitoneal CAG injection, (n = 3, **p < 0.01, ****p < 0.0001). (D) Immunofluorescence staining showed that TERT expression was increased in
dorsal root ganglion (DRG) sensory neurons after 7 days of intraperitoneal CAG injection. Scale bar = 100 µm (n = 3, **p < 0.01).

these findings suggested that CAG may mediate dorsal column
axon regeneration by upregulating TERT and p53 expression in the
soma of DRG neurons.

CAG reduced the inflammatory response
at the site of SCI

Local inflammation induced by injury is one of the factors
limiting spontaneous axon regeneration after SCI. It has been
reported that mitigating oxidative stress or reducing the release
of proinflammatory cytokines is beneficial for SCI repair (Yu
et al., 2018). Additionally, studies have shown that CAG has
anti-inflammatory properties (Zhao et al., 2015). Consequently,
we next explored whether CAG administration can reduce the
inflammatory response at the site of SCI. We found that the level
of dihydroethidium (DHE, a ROS probe) at the SCI site was
significantly lower in CAG-treated mice than in control animals
after 7 days of treatment (Figure 6A). Furthermore, the expression
levels of proinflammatory cytokines, such as TNF-α and inducible
nitric oxide synthase (iNOS), were significantly lower in CAG-
treated mice than in the controls (Figure 6B), as were the mRNA
levels of Tnf -α and Il-1β (Figure 6C). In contrast, the mRNA
levels of the anti-inflammatory cytokines Il10 and Tgf-β were
upregulated following CAG administration (Figures 6D, E). These

results suggested that CAG inhibits the inflammatory response at
the site of SCI.

Discussion

Axons in the CNS have limited regenerative ability after injury
(Saijilafu et al., 2013). DRG contain the cell bodies of primary
sensory neurons, which are responsible for transmitting and
receiving sensory stimuli, such as touch and pain (Hill and Bautista,
2020; Lin and Chen, 2018; Nguyen et al., 2021). DRG neurons
are pseudo-unipolar; their cell body extends a short axon, which
then divides into two branches, namely, a peripheral, descending
axon branch that innervates peripheral sensory receptors, and an
ascending central branch that projects into the dorsal column
of the spinal cord to convey sensory information to the brain
(Saijilafu et al., 2011). Interestingly, the peripheral branches of
DRG neurons can efficiently regenerate after injury. Damage to the
peripheral branches of DRG neurons can activate the expression
of regeneration-associated genes in their soma, such as GAP-43,
ATF3, and SMAD1 (Parikh et al., 2011; Seijffers et al., 2007; Van
der Zee et al., 1989). However, damage to the central branches of
DRG neurons in the dorsal column does not lead to the activation
of their intrinsic axon-regenerating ability, thereby limiting their
regeneration after injury. In this study, we established a novel
experimental model for investigating axon regeneration in the
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FIGURE 6

Cycloastragenol (CAG) suppressed the inflammatory response at the site of spinal cord injury (SCI). (A) Immunofluorescence staining showed that
reactive oxygen species (ROS) contents at the site of SCI were decreased after 7 days of intraperitoneal CAG injection, (n = 3, **p < 0.01).
(B) Immunofluorescence staining showed that TNF-α and iNOS expressions at the site of injury was decreased after 7 days of intraperitoneal CAG
administration, (n = 3, *p < 0.05). (C) The mRNA expression of Tnf-α and Il-1β was decreased at the site of injury after 7 days of intraperitoneal CAG
injection, (n = 3, **p < 0.01). (D) The mRNA expression of Tgf-β and Il10 at the site of SCI was elevated after 7 days of intraperitoneal CAG injection,
(n = 3, *p < 0.05, **p < 0.001, ***p < 0.001). (E) Immunofluorescence staining showed that TGF-β expression at the site of injury was elevated after
7 days of intraperitoneal CAG administration, (n = 3, **p < 0.01).
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dorsal column of the spinal cord via Cre-mediated recombination.
The induction of the Tomato protein expression in DGR neurons
allowed the visualization of the morphology of the entire cell,
including both peripheral and central branches. Additionally,
by tracing tdTomato fluorescence, we could clearly measure or
detect regenerating central branch axons in the dorsal column.
After the injection of AAV2/9-Cre into the lumbar 4/5 DRG
of Rosa-tdTomato floxed mice, we found that approximately
84% of DRG neurons expressed tdTomato fluorescent protein.
In addition, individual tdTomato-positive axons could be clearly
observed in the sciatic nerve, indicating that our experimental
model was also useful for studying peripheral sensory axon
regeneration. Importantly, our method is more efficient and easier
to execute compared with traditional electroporation methods.
It was reported that the efficiency of DRG transfection using
electroporation is only approximately 43% (Saijilafu et al., 2011).
In addition, in rats, the injection of choleragenoid conjugated to
horseradish peroxidase (B-HRP) into the sciatic nerve has also been
used to retrogradely label regenerating axons in the dorsal column
(Neumann and Woolf, 1999). However, the associated dye leakage
often reduces the labeling rate, and sometimes further staining
is required to visualize dye-positive axons. Therefore, our new
method not only simplifies the experimental procedure but also
greatly improves its accuracy and reproducibility.

CAG is a triterpene saponin that is increasingly associated
with a wide range of pharmacological activities, including the
regulation of oxidative stress, neuroinflammation, and apoptosis
(Ikram et al., 2021; Yang et al., 2023). CAG can reportedly
stimulate the transcriptional activity of farnesoid X receptor (FXR),
a potential drug target for the treatment of non-alcoholic fatty
liver disease (Chiang and Ferrell, 2020; Gu et al., 2017). Moreover,
CAG can inhibit the DNA-binding activity of STAT3 and prevent
its activation in human gastric tumor cells (Hwang et al., 2019).
CAG can also upregulate SIRT1 expression as well as inhibit NF-
κB activation-induced neuroinflammation (Li M. et al., 2020),
indicating that CAG possesses anti-inflammatory properties. SCI
often leads to the production of inflammatory factors at the
site of injury, which impairs axon regeneration. Here, we also
found that CAG reduces ROS generation and blocks the release
of proinflammatory cytokines such as TNF-α, IL-1β, and iNOS,
which is accompanied by an increase in the expression of the anti-
inflammatory cytokines IL-10 and TGF-β. Together, these findings
demonstrate that CAG reduces the inflammatory response at the
site of SCI, and may accelerate the repair process. Our in vitro
cell culture data showed that CAG did not affect the survival of
DRG neurons. It has been reported that the highest CAG dose
administered to rats, 150 mg/kg bodyweight/day, equivalent to
10500 mg/day in a 70-kg human, was non-toxic to the animals
(Szabo, 2014). This means CAG were relatively safe for in vivo
administration.

Several studies have shown that CAG can activate telomerase
(Idrees et al., 2023; Ip et al., 2014; Khan et al., 2023; Wang
et al., 2022), the enzyme responsible for the maintenance of
telomere length in cells (Bernardes de Jesus and Blasco, 2013;
Mizukoshi and Kaneko, 2019). Telomerase consists of two subunits,
namely, TERT and TERC (telomeric RNA) (Hoffmann et al.,
2021; Roake and Artandi, 2020; Wang et al., 2019). CAG can
promote HEKn cell survival by inducing TERT expression, thereby
activating telomerase (Duman et al., 2021; Ip et al., 2014). CAG can

also prevent glucocorticoid-induced osteonecrosis by activating
telomerase, rendering it a candidate drug for the treatment of this
condition (Wang et al., 2024; Wu et al., 2021). Additionally, TERT
regulates the inflammatory response through the NF-κB signaling
pathway, and the loss of telomerase activity leads to a significant
increase in the production of the inflammatory cytokines TNFα,
IL-6, and CCL2 (Deacon and Knox, 2018; Indran et al., 2011;
Liu S. et al., 2023; Spilsbury et al., 2015; Wu et al., 2020). In
agreement with these reports, we also found that CAG treatment
upregulates TERT expression in mouse DRG. TERT is a key
regulator of telomerase activity. We and others have previously
demonstrated that the inhibition of TERT activity blocks peripheral
sensory axon regeneration in vitro and in vivo (Stenudd et al., 2015;
Ma et al., 2019). Thus, it is feasible that CAG promotes dorsal
column axon regeneration by activating TERT in the soma of DRG
neurons. Using our model, we found that CAG can promote axon
regeneration in the injured dorsal column in mice. After 12 weeks
of CAG administration, tdTomato-positive axons were clearly seen
growing over the lesion site and entering the rostral part of the
spinal cord. Behavioral assessments also demonstrated that CAG
significantly enhanced the recovery of sensory function.

Despite the importance of our findings, our study had some
limitations. Although CAG plays a positive role in SCI repair;
however, the underlying detailed molecular mechanism and its
functions on motor neuron remains unclear. The regenerative
ability of corticospinal tract axons is lower than that of dorsal
column axons. Indeed, corticospinal tract neurons have been
reported to have the weakest intrinsic axon regeneration ability of
all the nerve tracts in the spinal cord (Liu et al., 2010). Additionally,
clinical trials should be undertaken to confirm the applicability of
CAG in SCI treatment. In summary, our findings showed that CAG
has the potential to promote the recovery of patients following SCI,
thereby improving their quality of life.
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