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Microglia are the resident macrophages of the central nervous system (CNS)

that control brain development, maintain neural environments, respond to

injuries, and regulate neuroinflammation. Despite their significant impact on

various physiological and pathological processes across mammalian biology,

there remains a notable gap in our understanding of how microglia perceive

and transmit mechanical signals in both normal and diseased states. Recent

studies have revealed that microglia possess the ability to detect changes in

the mechanical properties of their environment, such as alterations in stiffness

or pressure. These changes may occur during development, aging, or in

pathological conditions such as trauma or neurodegenerative diseases. This

review will discuss microglial Piezo1 mechanosensitive channels as potential

therapeutic targets for Alzheimer’s disease (AD). The structure, function, and

modulation of Piezo1 will be discussed, as well as its role in facilitating

microglial clearance of misfolded amyloid-β (Aβ) proteins implicated in the

pathology of AD.

KEYWORDS
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Introduction

Alzheimer’s disease (AD) is a degenerative brain condition marked by gradual memory
loss, declining cognitive abilities, and alterations in behavior, culminating in significant
disruptions to activities of daily living. One of the most prominent hallmarks of AD and
other neurodegenerative disorders is the accumulation of misfolded protein aggregates

Abbreviations: Aβ, amyloid-beta; AD, Alzheimer’s disease; BBB, blood-brain barrier; CNS, central
nervous system; HFD, high-fat diet; TDP-43, transactive response DNA binding protein of 43 kDa.
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with age (Sadigh-Eteghad et al., 2015). Examples include Aβ

plaques and neurofibrillary tangles in AD, α-synuclein in
Parkinson’s disease, polyglutamine repeats in Huntington’s disease,
superoxide dismutase 1 in amyotrophic lateral sclerosis, TAR
DNA-binding protein 43 (TDP-43) in limbic-predominant age-
related TDP-43 encephalopathy, and prion diseases (Sweeney
et al., 2017). The presence of misfolded protein aggregates across
various neurodegenerative disorders underscores the imperative
of directing efforts toward targeting and degrading these aberrant
protein structures. Since misfolded proteins accumulate into toxic
aggregates, it is likely that the innate and adaptive immune
systems are involved in their clearance (Ciccocioppo et al.,
2020). While immune clearance is involved in numerous organs
and neurodegenerative disorders, there is still much to be
uncovered about the role of mechanical signals in modulating the
immunological response to proteinopathies.

A major component of the immunological response in the
CNS involves microglia. Microglia are specialized macrophages
of the CNS that sense neuropathological conditions by detecting
biophysical deviations from brain homeostasis to clear foreign
or abnormal formations of protein aggregates via phagocytosis
(Ayata and Schaefer, 2020). One of the most prominent
examples of such deviations would be stiff Aβ plaques that
are much more rigid than normal brain tissue. Recent studies
demonstrate that the mechanosensitive and nonspecific cation
channel Piezo1 plays an important role in perceiving cellular
mechanical stress and converting this into cellular signals.
Within microglia, these cellular signals trigger phagocytosis and
notably participate in the removal of Aβ plaques in AD animal
models (Jäntti et al., 2022). This insight forms the basis for
understanding the mechanisms through which Piezo1 can detect
abnormally stiff material in the parenchyma that results in the
corresponding signal transduction pathways for initiating the
innate immune response. Regulating microglial Piezo1 may be
a potential therapeutic strategy that warrants bridging the gap
between neuropathology and mechanobiology. In this review,
the different pharmacological and nonpharmacological approaches
to modulating Piezo1 will be explored in the context of
translational AD research.

Structure, function, and molecular
modulators of Piezo1
mechanosensitive ion channels

Piezo1 is a trimeric nonspecific cation channel that has
an important role in cellular mechanotransduction, in which
mechanical stimuli is converted into electrochemical signals (Coste
et al., 2010; Xu et al., 2021; Yaganoglu et al., 2023). Piezo1
is localized on many different types of tissues throughout the
body, including cardiovascular, musculoskeletal, gastrointestinal,
excretory, respiratory, nervous, reproductive, and immune systems
(Dienes et al., 2023). Membrane tension and shear stress force
these channels from closed to open conformations. Once the
force is no longer present, the receptors elastically return to
their closed confirmations like a spring recoiling (Lin et al.,
2019). Piezo1 has negatively charged aspartic and glutamic acid
residues that are concentrated at the cytosolic entrance and

throughout the pore, thereby attracting cations and repelling
anions (Fang et al., 2021). Human Piezo1 channels are permeable
to monovalent cations like lithium, sodium, potassium, and
cesium, but are also permeable to most divalent cations that
are alkali earth metals like magnesium, calcium, and barium,
but not transition metals like manganese (Gnanasambandam
et al., 2015). As shown in Figure 1, the opening of Piezo1 by
mechanical force allows for the influx of extracellular cations
including calcium, which generates a voltage, effectively converting
mechanical cues into electrical and chemical signals in cells (Liu
et al., 2022). In essence, the mechanosensitive nature of Piezo1 is
due to its flexibility and elasticity, while the cation-selective amino
acids dictate the voltage transduction. Both the structural and
biophysical components are important factors to consider when
designing novel therapeutic interventions that can modulate Piezo1
and other mechanosensitive ion channels. There are currently
a limited number of biomolecular agonists and antagonists that
effectively regulate Piezo1 cation channels despite their ubiquity
in different tissues (Romero et al., 2019). It is imperative to
understand Piezo1 function to refine the next generation of
mechanosensitive ion channel modulators (Tang et al., 2022;
Jiang et al., 2023).

Piezo1 has a three-bladed propeller-like structure, with each
blade consisting of peripheral transmembrane domains, an anchor
that penetrates the inner leaflet of the cell membrane, and a
beam that connects the blade to the central pore (Ge et al.,
2015; Zhao et al., 2018). The beam is approximately 90 nm long
and positioned at a 30-degree angle relative to the plane of the
cell’s plasma membrane (Wang and Xiao, 2017). The secondary
and tertiary structure of Piezo1’s C-terminal region is responsible
for the mechanically modulated physical and chemical properties
that determine whether ions permeate through the pore (Coste
et al., 2015). Piezo1 also has a unique 38-transmembrane helical
structure, and the trimeric propeller-like assembly is thought to

FIGURE 1

Effects of amyloid plaques (brown) on the closed (A; top) and open
(B; bottom) conformations of Piezo1 receptors. The black arrows
represent the mechanical force that induces the open
conformation of Piezo1 when microglial encounter stiff amyloid
plaques. Negatively charged aspartic (D; sphere) and glutamic acid
(E; sphere) residues are concentrated at the extracellular entrance
while negative charges line the channel pore. During mechanical
shear stress, cations such as calcium diffuse through the pore
resulting in either electrochemical stimulation (C) or modulation of
signal transduction pathways (D) to initiate phagocytosis.
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curve into the cytosol in its closed conformation (Jiang et al., 2021;
Yang et al., 2022).

Piezo1 channels function independently
of each other

As mentioned earlier, Piezo1 is found in a wide variety of
physiological organ systems and cell types. While some tissues
have a higher density of these ion channels than others, individual
Piezo1 receptors appear to function independently of each other
suggesting they behave as independent mechanotransducers across
the entire cell membrane (Lewis and Grandl, 2021). This finding
is important to underscore because it suggests the possibility of
activating or inhibiting some Piezo1 channels but not others, which
may be useful in different regions of the brain and at different
stages of AD progression. Given that microglia preferentially
migrate toward stiffer regions, individual Piezo1 or specific
clusters of them could be activated and inhibited separately for
precise immunomodulation and to avoid systemic inflammation
(Bollmann et al., 2015). The key to success for such an endeavor
would lie in the development of technologies and systems that
can selectively deliver chemical or mechanical modulators to
Piezo1 localized on specific cell types or in individual regions
of the brain.

Piezo1 agonists

Yoda1 was the first chemical activator developed for facilitating
the open conformation of Piezo1 and is typically given in
concentrations ranging between 2 and 20 µM (Syeda et al.,
2015). Yoda1 allosterically binds to a pocket approximately 40
Å from the central pore and acts as a molecular wedge that
facilitates force-induced conformational changes by lowering the
channel’s mechanical activation threshold (Botello-Smith et al.,
2019). This mechanism of action underscores the importance
of allosteric binding for inducing conformational shifts in
Piezo1 channels. More recent research on the activation
of Piezo1 by Yoda1 also emphasizes the significance of
energetically stabilizing the open conformations of the channel
while destabilizing its closed conformations, as well as the
dependence of Piezo1 modulation on membrane potential and
temperature (Wijerathne et al., 2022). These findings suggest
that membrane potential and temperature manipulation
as well as the energetic stabilization of desired structural
conformations or destabilization of undesired conformations
could be additional avenues of research for improving Piezo1
modulation. Yoda2 is a structurally modified version of
Yoda1 with the pyrazine ring replaced by 4-benzoic acid.
This substitution significantly improves Piezo1 agonist activity
with concentrations similar to those of Yoda1 (Endesh et al.,
2023). Like Yoda1, Yoda2 also stabilizes open conformations of
Piezo1, and its enhanced efficacy is likely due to the negative charge
and more desirable pharmacokinetic properties of 4-benzoic
acid at physiological pH relative to neutral pyrazine rings
(Parsonage et al., 2022).

In addition to Yoda1 and Yoda2, Piezo1 is activated by
Jedi1 and Jedi2 (Botello-Smith et al., 2019). Unlike Yoda1,
Jedi1/2 activation occurs on the extracellular side of the
channel’s three-bladed propeller-like structure (Wang et al.,
2018). Furthermore, Jedi1 and Jedi2 do not cross the cell
membrane, and therefore only activate Piezo1 from the
extracellular side (David et al., 2023). Both Jedi1 and Jedi2
are typically used in concentrations ranging between 5 and
200 µM (Wang et al., 2018). Yaddle1, a recently discovered
agonist, modulates Piezo1 channels in concentrations ranging
from 0.40 to 1.8 µM. Yaddle1 has a trifluoromethyl group
that is thought to wedge itself between the domains of Piezo1,
presumably lowering the channel’s mechanical activation threshold
and stabilizing its open conformation like the Yoda1/2 agonists
(Goon et al., 2024).

Piezo1 antagonists

In 2000, scientists isolated the GsMT×4 peptide from
tarantula spider venom that antagonizes Piezo1 (Suchyna et al.,
2000). This peptide has a reversible inhibitory effect on Piezo1
that is independent of voltage (Bae et al., 2011). Other
studies involving GsMT×4 have provided some important
insights for the current understanding of mechanosensation.
For instance, GsMT×4 contains six positively charged lysine
residues, effectively repelling cations from mechanosensitive Piezo1
channels (Gnanasambandam et al., 2017). These lysine residues
are positioned in the cell membrane immediately surrounding
the Piezo1 pore (Suchyna, 2017). This demonstrates the utility of
electrostatics in repelling or attracting ions to and from Piezo1
channels. Because GsMT×4 is a peptide from tarantula venom,
it can cause substantial pain and can quickly become toxic to
the organism. GsMT×4 can therefore only be given in small
doses, with concentrations typically ranging from 0.01 to 3 µM
(Gnanasambandam et al., 2017).

Ruthenium red, gadolinium, and Dooku1 also antagonize
Piezo1, but through varying mechanisms. Ruthenium red
and gadolinium are both nonspecific inhibitors of numerous
cation channels and they inhibit Piezo1 by blocking calcium
transport (Southam et al., 2017; Harraz et al., 2022). Ruthenium
red blocks the open conformation on the extracellular side
in a voltage-dependent manner while gadolinium binds to
phospholipids, thereby compacting the region of the cell
membrane surrounding the channel and preventing it from
opening (Mulhall et al., 2023; Savadipour et al., 2023). The
standard concentrations of both ruthenium red and gadolinium
are 10 µM (Vasileva et al., 2021; Yaganoglu et al., 2023).
Dooku1 was synthesized by modifying the pyrazine ring
of Yoda1, enabling the molecule to attach to the identical
binding domain without stabilizing the channel’s open
configuration. This modification allows Dooku1 to act as a
competitive inhibitor, thereby blocking agonists like Yoda1
from binding to and stabilizing the open conformation of
Piezo1 channels (Lacroix et al., 2018). Dooku1 concentrations
range between 1 to 10 µM depending on cell type and density
(Evans et al., 2018).
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Piezo1 expression and modulating
microglial Piezo1 to reduce Aβ

plaque burden

Microglial Piezo1 expression relative to
Piezo1 expression in other immune
system cells

Piezo1 expression is similar across different types of
macrophages throughout the body, including microglia in the
CNS, alveolar macrophages in the lungs, Kupffer cells in the
liver, and osteoclasts in bones (Tang et al., 2023). Piezo1 is also
expressed in immune system cell types including T cells (both
cytotoxic CD8s and helper CD4s) as well as memory B cells
(Kwak et al., 2023; Karkempetzaki and Ravid, 2024). Piezo1
expression levels in T and B lymphocytes are currently unknown.
Piezo1-mediated mechanotransduction activates both T (Liu
et al., 2018; Hope et al., 2022) and B cells (Wan et al., 2015;
George et al., 2023) via calcium influx. Calcium influx upregulates
nuclear factor of activated T cells, a transcription factor that
promotes the expression of regulator genes for T cells (Gwack
et al., 2007). In B cells, calcium influx activates proinflammatory
transcription factors that regulate B cells and promote antibody
secretion (Healy et al., 1997). These transcription factors include
nuclear factor kappa-light-chain enhancer of activated B cells
and c-Jun N-terminal kinase (Dolmetsch et al., 1997). Finally,
calcium initiates the differentiation of circulating monocytes
into macrophages in various tissues (Murthy et al., 2022) and
intercellular calcium signaling potentiates phagocytosis in
macrophages (Zumerle et al., 2019).

Microglial Piezo1 as a stiffness and force
sensor in the CNS

Microglia are specialized macrophages of the CNS that are
responsible for phagocytosing misfolded proteins and other toxic
materials in the extracellular matrices of the brain and spinal cord.
Piezo1 can alter microglial phenotypes and activity by sensing
differential mechanical stimuli in its environment (Zong et al.,
2023). Macrophages, including microglia, tend to migrate toward
stiffer and denser mechanical gradient regions in a process called
durotaxis (Blaschke et al., 2020). Aβ plaque burden is considered an
early pathological hallmark that drives AD progression due to the
neurotoxicity of these misfolded protein aggregates (Murphy and
LeVine, 2010; Mucke and Selkoe, 2012). Since Aβ plaques are more
rigid than the brain parenchyma, microglia migrate toward them
(Bolmont et al., 2008; Lewis, 2022). Furthermore, recent studies
have demonstrated that Piezo1 senses the abnormal rigidity of Aβ

plaques in the CNS via mechanotransduction and that this regulates
the microglial clearance of such plaques in AD murine models (Hu
et al., 2023). For macrophages to engage in durotaxis, they must be
able to detect differences in mechanical gradients, and in microglia,
this mechanotransduction is regulated by Piezo1 (Malko et al.,
2023). Given the pivotal role of microglia in the innate immunity
of the brain, the reduction of microglial Piezo1 expression or
impairment of its ability to detect stiffness likely plays a decisive role

in the progression of plaque pathology. Considering Aβ plaques
continue to accumulate with age and disease progression also
indicates that microglial clearance of misfolded protein aggregates
gradually fails over time.

Piezo1’s modulation of microglial
migration and proinflammatory cytokine
production

Neuroinflammation is one of the most salient and complicated
hallmarks of AD and other neurodegenerative disorders and is
often mediated by microglia (Subhramanyam et al., 2019). The
most recent studies predominantly suggest that microglial Piezo1
expression is typically upregulated during inflammation (Atcha
et al., 2021; Yu et al., 2023). Piezo1 channels in microglia regulate
the release of proinflammatory cytokines and cell migration in
a stiffness-dependent manner (Hong et al., 2023). Moreover, an
increase in cell migration was detected in stiff substrates compared
to those lacking Piezo1 in knockout microglia (Malko et al.,
2023). In rigid extracellular matrices, the upregulation of Piezo1
expression is associated with increased proinflammatory cytokine
production by microglia (Zhu et al., 2023). Similar results were
also found in astrocytes expressing Piezo1 (Velasco-Estevez et al.,
2018). Neurodegenerative disorders typically entail both misfolded
proteins and neuroinflammation, so the prospect that Piezo1
addresses both pathological characteristics warrants extensive
scientific investigation (Amor et al., 2010; Sweeney et al., 2017).
This realization may provide ideas for experiments that augment
the current understanding of fundamental mechanophysiology and
electrophysiology in the context of biomaterials in the CNS.

Mechanical gradients, microglial
durotaxis, and Piezo1-mediated
pro-inflammatory cytokines

The presence of Aβ plaques in the brain is sufficient
for the establishment of a mechanical gradient that enables
microglial durotaxis. Microglia lacking Piezo1 release fewer
proinflammatory cytokines while Yoda1 activation of Piezo1
increases IL-1β, IL-6, and TNF-α secretion (Zhu et al., 2023).
Zhu and colleagues also demonstrated that Piezo1 deficiency and
the resulting decreased secretion of proinflammatory cytokines
enhance microglial migration toward Aβ plaques, indicating that
microglia travel down the concentration gradient of such cytokines.
While the significance of these results should not be ignored, it
is important to underscore that these effects were examined in
microglial cell lines and further validation in whole animals is
needed. Their findings do suggest that microglial Piezo1 plays a
significant role in neuroinflammation initiation and maintenance
and that proinflammatory cytokines correlate with reduced
microglial migration to Aβ, perhaps highlighting an additional
factor contributing to the chronic neuroinflammatory phenotype
observed in AD. Microglia are known to phagocytose Aβ plaques
and other misfolded protein aggregates (Jäntti et al., 2022).
Additional studies are warranted to determine factors influencing
microglial durotaxis to enhance the clearance of Aβ plaques.

Frontiers in Cellular Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fncel.2024.1423410
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-18-1423410 June 13, 2024 Time: 17:6 # 5

Ikiz et al. 10.3389/fncel.2024.1423410

The interplay between respiratory
infection, microglial Piezo1, and Aβ

plaque deposition

Infection induces a systemic inflammatory phenotype to
initiate an immunological response and promote healing. Chronic
activation of this inflammatory response can have detrimental
consequences. Data from experiments conducted in APP/PS1
mice have shown that respiratory infections accelerate disease
progression in this AD model (McManus et al., 2014). Moreover,
bacterial infection substantially increases the expression of Piezo1
not only in microglia, but also in Aβ plaque-reactive astrocytes
and alveolar macrophages located throughout the body (Velasco-
Estevez et al., 2018; Geng et al., 2021). It is possible that there
is a neurophysiological or immunometabolic threshold that, once
exceeded, results in the dysfunction that is seen in dementia and
neurodegeneration.

Nonpharmacological methods for
modulating microglial Piezo1 and Aβ

plaque clearance

Disadvantages of using molecules to
modulate Piezo1 in microglia and other
cell types

The first disadvantage of using molecules to modulate Piezo1
is their inability to cross the blood-brain barrier (BBB). Certain
modulators like GsMT×4, are incapable of crossing the BBB due
to their polarity (Wang et al., 2016; Suchyna, 2017). Furthermore,
GsMT×4 and other ion channel-modulating peptides are derived
from venom and cause pain because due to their inherent
toxicity (Suchyna et al., 2000). Other Piezo1 antagonists like
ruthenium red and gadolinium contain heavy metals that are
toxic and can accumulate in adipose tissue (Mabuza et al.,
2018; Blythe et al., 2019; Takanezawa et al., 2023). Yoda1 has
poor solubility and stability while Dooku1, Jedi1/2, Yoda2, and
Yaddle1 are newer modulators and additional studies are needed
to determine potential adverse reactions (Wang et al., 2018;
Parsonage et al., 2022; Goon et al., 2024). The drawbacks of
these molecular modulators have forced researchers to examine
nonpharmacological methods to modulate Piezo1 receptors.

Dietary fatty acids

A rich source of biomodulators in the CNS are fatty acids that
constitute the building blocks of cell membranes (Tracey et al.,
2018). Variations in lipid bilayer composition can significantly
modify membrane mechanics and therefore Piezo1 activity and
function (Ivkovic et al., 2022). This is why fatty acids and other
lipids modulate Piezo1 activity and its mechanotransduction in
microglia for immunomodulation of the brain parenchyma. While
these fatty acids may play important roles in the brain, they do
not readily cross the BBB, and must therefore be transported

via various metabolic mechanisms such as esterification (Pifferi
et al., 2021). However, during AD progression, the BBB breaks
down, thereby allowing fatty acids to more readily traverse across
the microvasculature (Solis et al., 2020). Thus, any therapeutic
strategy aiming to utilize fatty acids must take the BBB into
account, whether that be a prodrug that can be metabolized into
a suitable compound or some other noninvasive or minimally
invasive method of delivery.

Recent evidence suggests that microglial metabolism is
dynamic and constantly evolving to meet the needs of the brain,
thereby altering its pathological and neuroinflammatory responses
(Bernier et al., 2020). Given that diet and exercise are known to
affect metabolism, modifiable lifestyle changes may mitigate the
progression of neuroinflammatory pathologies like Alzheimer’s,
Parkinson’s, and Huntington’s diseases. Diet can significantly alter
gene expression, and experiments have demonstrated that Piezo1
is elevated in both high-fat diet (HFD) fed male and female mice
(Zhao et al., 2019). An HFD also induces metabolic syndrome and
chronic inflammation (Duan et al., 2018), which are risk factors
for developing AD. Our prior research has shown that a HFD
does not affect plaque burden but exacerbates neuroinflammation
in the APP/PS1 model of AD (Hascup et al., 2019). Overall, this
may provide further explanation as to the brain health benefits
associated with a Mediterranean versus Western diet since the
primary differences between the two are the types of fatty acids
consumed (Simopoulos, 2016).

Dietary fatty acids may also provide a means of therapeutic
intervention. The types of lipids consumed can alter membrane
stiffness, which directly affects mechanosensitive ion channels
(Cordero-Morales and Vásquez, 2018). As shown in Figure 2,
saturated fatty acids are densely packed together and therefore
increase the stiffness of cell membranes. Thus, more mechanical
force is required to induce Piezo1 from a closed to an open
conformational state (Romero et al., 2020). This may also explain
why Piezo1 is upregulated in rodents that are fed a diet high
in saturated fats; as a compensatory mechanism to account for
the decrease in membrane fluidity (Zhao et al., 2019). Limiting
the intake of saturated fatty acids could reduce the mechanical
force needed to activate microglial Piezo1 channels and help the
clearance of toxic aggregates of misfolded proteins in the brain.
Furthermore, phospholipids containing polyunsaturated fatty acids
have been shown to enhance cellular mechanosensation in the
CNS (Vásquez et al., 2014). Hence, increasing polyunsaturated
fatty acid consumption could improve Piezo1 sensitivity and
therefore microglial clearance of protein aggregates. A dietary
contrast that holds notable significance concerning fatty acids
is the distinction between omega-3 and omega-6. The former
is regarded as healthier and linked to the Mediterranean diet,
whereas the latter is associated with Western dietary patterns
(Simopoulos, 2016). Omega-6 fatty acids, such as linoleic acid
and docosahexaenoic acid, cause ion channel dysfunction in
both Piezo1 and Piezo2, which is homologous to Piezo1
(Romero et al., 2023). On the other hand, omega-3 fatty acids
like eicosapentaenoic acid significantly increases Piezo1 activity
(Fatkin et al., 2022). This information can be used to either
inactivate Piezo1 with omega-6 fatty acids or activate it with
omega-3 fatty acids to control inflammatory responses and
microglial clearance.
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FIGURE 2

Influence of fatty acid composition on phospholipid bilayer fluidity
and Piezo1 receptor sensitivity. The fluidity of phospholipid bilayers
is modulated by both unsaturated and saturated fatty acids that
have an impact on the ability of Piezo1 to sense mechanical
stressors such as stiff amyloid plaques (brown). (A) Densely packed
saturated fatty acids decrease the membrane fluidity thereby
increasing the mechanical stress needed for Piezo1 to achieve an
open conformational state. (B) Incorporation of unsaturated fatty
acids to the phospholipid bilayer reduces its density, resulting in
enhanced fluidity and decreased mechanical force required to open
the Piezo1 pore.

Physical exercise

Exercise is a modifiable lifestyle factor and a risk reduction
strategy for AD. Considering Piezo1 is ubiquitously expressed
throughout various tissues in mammals, exercise positively
modulates Piezo1 activity (Dienes et al., 2023). Furthermore, Piezo1
receptors located on endothelial and immunological cells that
interact with the BBB are activated because of increased blood
flow (Rode et al., 2017). Voluntary physical exercise has been
observed to significantly reduce neuroinflammation and enhance
the clearance of Aβ plaques (He et al., 2017; Wang et al., 2023).
This strongly suggests that physical exercise has therapeutic effects
on neuroinflammatory conditions involving the accumulation of
misfolded protein aggregates.

Ultrasound

The biophysical activity of Piezo1 and other mechanosensitive
ion channels are stimulated by forces, including ultrasound.
Transcranial ultrasound with a frequency of 40 Hz has been
shown to activate microglial clearance of Aβ in AD mouse
models (Bobola et al., 2020). Given that high-frequency sound
waves are a form of mechanical force, and that the conformation
of Piezo1 is dependent on the presence or absence of such
forces, ultrasound at certain frequencies can induce an open
ion-conducting conformation (Ozkan et al., 2023). Ultrasound
affects the cell membrane and its Piezo1 in a similar way as
sensing stiff protein aggregates. Ultrasound effectively restored
microglial activation and reduced plaque burden in both sexes
of the 5×FAD amyloidogenic AD mouse model (Bobola et al.,
2020). It is important to note that while ultrasound may have
affected cell membranes and thereby the Piezo1 channels in it, it
is also possible that the frequencies used could be breaking up

the plaques. This would allow microglia to phagocytose smaller
fragments of Aβ, which would likely facilitate the clearance of
plaques from the brain. This procedure is like regular diagnostic
ultrasound, which is safe in both humans and non-human
primates, and therefore, has immediate translational implications
for human AD patients.

Optical control of Piezo1

Light therapy has been gaining recognition for its importance
in health and disease. While electromagnetic radiation may not
change the mechanical properties of cell membranes or be a
mechanical wave that must travel through a medium, it is effective
at transmitting energy. Recent studies have demonstrated that
light-induced molecular motion is capable of opening Piezo1 in
a manner like that of more traditional mechanical cues (Peralta
et al., 2023). It is likely that the initial application of optical control
for Piezo1 will be limited to researchers attempting to glean novel
insights pertaining to the channel’s structure and function.

Conclusion

This review discussed various functions of microglial Piezo1
in the context of CNS proteinopathies and its potential role as a
therapeutic target to treat AD. Considering that misfolded proteins
are the pathological hallmarks of several other neurodegenerative
disorders, Piezo1 modulation may also have broader therapeutic
potential. The methods of both activating and inhibiting Piezo1
that were mentioned in this review will likely increase in number
in the coming years and the ones that were discussed will
probably increase in sophistication and range of applications. Such
progress will make it an exciting time to study Piezo channels
but also mechanobiology and mechanotransduction in various
pathological contexts.
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