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Mathematical models of C-type
and N-type inactivating
heteromeric voltage gated
potassium channels

Kees McGahan* and James Keener

Math Department, University of Utah, Salt Lake City, UT, United States

Voltage gated potassium channels can be composed of either four identical,

or di�erent, pore-forming protein subunits. While the voltage gated channels

with identical subunits have been extensively studied both physiologically

and mathematically, those with multiple subunit types, termed heteromeric

channels, have not been. Here we construct, and explore the predictive outputs

of, mechanistic models for heteromeric voltage gated potassium channels

that possess either N-type or C-type inactivation kinetics. For both types

of inactivation, we first build Markov models of four identical pore-forming

inactivating subunits. Combining this with previous results regarding non-

inactivating heteromeric channels, we are able to define models for heteromeric

channels containing both non-inactivating and inactivating subunits of any ratio.

We simulate each model through three unique voltage clamp protocols to

identify steady state properties. In doing so, we generate predictions about the

impact of adding additional inactivating subunits on a total channel’s kinetics.

We show that while N-type inactivating subunits appear to have a non-linear

impact on the level of inactivation the channel experiences, the e�ect of C-type

inactivating subunits is almost linear. Finally, to combat the computational issues

of working with a large number of state variables we define model reductions

for both types of heteromeric channels. For the N-type heteromers we derive

a quasi-steady-state approximation and indicate where the approximation is

appropriate. With the C-type heteromers we are able to write an explicit model

reduction bringing models of greater than 10 dimensions down to 2.

KEYWORDS

mathematical modeling, ion channel kinetics, heteromeric potassium ion channels, KV
channels, Kv1 channels

Introduction

Potassium channels are an evolutionarily conserved set of membrane spanning

proteins (Harding et al., 2022; MacKinnon, 2003). While the singular role of these

channels is to permit the flux of potassium ions across the impermeable cell membrane,

this seemingly simple function is responsible for a wide range of complex physiological

processes. In excitable cells, such as neurons, muscle cells and pancreatic β-cells, the

primary purpose of potassium channels is to change the shape of, or terminate, action

potentials. For non-excitable cells, potassium channels are responsible for functions like

volume regulation, maintaining cell shape and electrolyte balance, and neurotransmitter

release (Barfield et al., 2005; Ghatta et al., 2006; Hoshi et al., 1990; Miller, 2000).
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Although some of these channels are constitutively open, the

majority are gated. Gated potassium channels are divided into

three main subsets: ligand gated (Kir), calcium activated (KCa), and

voltage gated (KV ) channels (Coetzee et al., 1999; Harding et al.,

2022). Contained within each of these classes are a number of

unique channels which all have a distinct set of kinetic properties.

The KV family has roughly 40 genes, which each encode a single

α-protein subunit. A total of 4 of these subunits are required to

form a functional tetrameric KV channel (Harding et al., 2022;

Cordeiro et al., 2019). Experimentally it has been shown that these

4 subunits need not be identical. When they are identical, the

channels are referred to as homomeric channels, but in the cases

when more than 1 subunit type is present, a heteromeric channel

is formed (Cordeiro et al., 2019; Al-Sabi et al., 2013). The existence

of these heteromeric KV channels is a relatively recent discovery,

and has lead researchers to start investigating heteromeric channel

properties in relation to the homomeric channels comprised of

similar subunits.

Through a variety of experimental techniques, including

mathematical modeling, researchers have begun developing a

clearer picture of the role and function of heteromeric KV

channels. Working with cone snail toxins, Cordeiro et al.

(2019) demonstrated that these snails have naturally occurring

compounds designed to target heteromeric KV channels with

specific combinations of subunits in their prey. Al-Sabi et al.

(2013) showed using concatemeric KV1.1/KV1.2 constructs that

heteromeric channels have activation open probability curves that

lie between those of the related homomeric channels. Furthermore,

they found a nonlinear shift in these open probability curves

as additional KV1.2 subunits were included in the heteromeric

concatemers. In previous modeling work, we replicated the Al-

Sabi et al. (2013) observations about heteromeric channels with a

mechanistic Markov model. We also showed the model’s predictive

ability in relation to a number of cDNA expression experiments

(McGahan and Keener, 2022). While these studies have elucidated

certain features of heteromeric channels, the emphasis has been on

studying KV channels with little to no inactivation.

Voltage gated potassium channel inactivation has been shown

to take two forms: N-type and C-type inactivation. N-type

inactivation is believed to be a voltage insensitive process by which

a single “tethered ball” segment at the N-terminal of a subunit binds

to, and occludes, the open channel pore (Holmgren et al., 1996;

Sukomon et al., 2022; Hoshi et al., 1990; Miller, 2000). Meanwhile,

C-type inactivation is believed to be an internal conformational

change happening either near the mouth of the channel, or

in the selectivity filter (Tan et al., 2022; Cuello et al., 2010;

Hoshi et al., 1990; Miller, 2000). These inactivation mechanisms

have been studied in homomeric KV channels using techniques

such as cryo–electron microscopy, mathematical modeling, and

deletion/mutation experiments (MacKinnon et al., 1993; Hoshi

et al., 1990; Miller, 2000; Al-Sabi et al., 2011). One prominent

modeling study conducted in 2011 by Bett et al. (2011), used

mutated KV1.4 channels to derive and fit Markov models for N and

C type inactivating homomeric channels.

In spite of this work, and the plethora of experimental

techniques and computing power available, the understanding

of N-type and C-type inactivation in heteromeric channels

is incomplete. What is known regarding heteromeric channel

inactivation, is that a single subunit from an inactivating

homomeric channel is sufficient to confer inactivation kinetics in

a heteromer. By combining specific mutations with the effects of a

scorpion toxin, MacKinnon et al. (1993) were able to demonstrate

the existence of this property in Shaker potassium channels. Related

to this work, Hashimoto et al. (2000) created mutated KV1.4

channels with different numbers of tethered inactivation N-Balls

to explore the impact of each additional ball on the homomeric

channel. Much later, in 2011, Al-Sabi et al. (2011) showed that

the N-type inactivation prevention domains of KV1.6 subunits

could be used to reduce, or eliminate, the effects of a single KV1.4

subunit’s N-type inactivation in a heteromeric concatemer. Yet

to be addressed experimentally, or via modeling, are questions

surrounding the impact of including additional N-type or C-

type inactivating subunits and the resulting heteromeric channel’s

overall kinetic properties. In particular:

1. What mathematical model structure for the homomeric

channels is necessary to ensure a heteromeric channel with

single inactivating subunit will inactivate?

2. Do more N-type/C-type subunits cause greater level of channel

inactivation and slow the rate of recovery?

3. Is the relationship between number of N-type/C-type subunits

and the level of inactivation linear, or is it nonlinear as was

observed with the activation curves of KV1.1/KV1.2 (Al-Sabi

et al., 2013)?

4. Are there distinguishable differences between the impact that C-

type versus N-type inactivating subunits have on a heteromeric

channel?

Building upon previous experimental and modeling results,

with the goal of addressing these types of questions, we propose

novel, biophysically detailed mathematical models for heteromeric

channels with either N-type or C-type inactivating subunits. We

begin by briefly outlining the model used for non-inactivating,

homomeric and heteromeric voltage gated potassium channels

(McGahan and Keener, 2022). Then, using the (Bett et al.,

2011) models as a guideline, we construct homomeric N-type

and C-type inactivating channel models. Finally, for both N-

type and C-type inactivation, we describe how to extend the

homomeric models to heteromeric channels, show the response

of every heteromeric and homomeric model to a series of

complex voltage clamp protocols, and outline any relevant

model reductions.

Methods

Voltage gated potassium channels: no
inactivation

To model a non-inactivating, homomeric, voltage gated

potassium channel, we assume there are 4 identical and

independent subunits, each of which can be in either the open or

closed conformation. Furthermore, all 4 subunits must be in the

open state to have a conducting channel, and only one subunit can

change state at a time. With these assumption, the probability of

having i subunits in the open state can be described with the master
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equation:

dpi

dt
= (4− i+ 1)αpi−1 + (i+ 1)βpi+1 − (4− i)αpi − iβpi, (1)

where α and β are the rates of a single subunit transitioning

from the closed to the open state and vice versa. This model

has classically been used to describe channels of this type, dating

as far back as the first mathematical description of potassium

channels by Hodgkin and Huxley (1952). The model detailed in the

groundbreaking work by Hodgkin and Huxley has been shown to

be an exact one dimensional model reduction of this more general

Markov scheme (Keener, 2009, 2010). Using the same assumptions

made for a homomeric channel, in earlier work we detailed how

to model a heteromeric channel lacking significant inactivation

kinetics (McGahan and Keener, 2022). In that work, we described

both a general Markov model and detailed a 2 dimensional model

reduction for each possible subunit ratio. These reduced systems

of differential equations were shown to be globally attracting

stable invariant manifolds, meaning the reductions were exact and

replicate the behavior of the full system as time is taken to infinity

(Keener, 2009, 2010).

The work below addresses homomeric and heteromeric

channels possessing inactivation kinetics. For both N-type and C-

type inactivation, we present and justify a homomeric channel

model, describe how to extend these models to heteromeric

channels, show the response of every model to a series of

different voltage clamp protocols, and outline any relevant

model reductions.

Voltage clamp simulations

With each homomeric and heteromeric model, for fitting and

analysis, we simulate the model using the three different voltage

clamp protocols whose schematics are shown in Figure 1.

In order, the voltage clamp protocols are referred to as

the activation protocol (Figure 1A), the inactivation protocol

(Figure 1B), and the recovery protocol (Figure 1C). The activation

protocol fixes the membrane potential at −90 mV and then, by

multiples of 10 mV , steps the membrane potential to some new

voltage value. From this protocol, 2 pieces of information are

extracted: the maximum open probability attained, and the time

constant, τ . By tracking the probability of the channel being in

the open state, O, during this simulation, the maximum open

probability is the maximum value O attains during the activation

protocol in response to the value the voltage was stepped to.

To remain consistent with previous experimental work, and the

relevant experimental data used for model fitting, the second

piece of information extracted from the activation protocol, for

only the homomeric channels, is a time constant τ . Both the

methodology for calculating τ , and the justification behind only

calculating τ for homomeric channel model fitting, can be found

in McGahan and Keener (2022). As more experimental data is

made available, the fitting techniques and analyses could easily be

adjusted to incorporate the entire time course traces seen during

these protocols.

The inactivation protocol (Figure 1B) provides steady state

inactivation information about the channel. In this protocol, the

FIGURE 1

Diagrams of the three di�erent voltage clamp experiments used for

model fitting and analysis. (A) The activation protocol begins by

holding the membrane potential at −90 mV and then, in increments

of 10 mV, steps and holds the membrane potential at some new

voltage between −90 mV and 50 mV. (B) The inactivation protocol

steps the voltage from −90 mV to a new voltage between −90 mV

and 50 mV where it is held for 5s. Then regardless of the initial

voltage step, the voltage is increased to 50 mV and held there for 1

second. (C) The recovery protocol performs 2 pulses P1 and P2

which are separated by a variable time duration 1t. In each pulse the

membrane potential is stepped from −90 mV to 50 mV.

channel is exposed to 2 different pulses P1 and P2. The P1 pulse is a

replica of the activation protocol, but is made to last for 5 seconds.

Then, regardless of the voltage the channel is set to, during P2 the

voltage is raised to 50 mV . The recorded output of this protocol

divides the maximum value of O during P2, by the maximum value

found during P1. This resulting ratio is then plotted in response to

the value the voltage was stepped to during P1.

The last protocol is the recovery protocol (Figure 1C). This

experiment begins with the first pulse P1 by stepping the fixed

potential from−90mV up to 50mV and holding the voltage there

for 5 seconds. After these 5 seconds, the voltage is returned to

−90 mV for a variable time duration 1t, until it is forced back to

50 mV during P2. Similar to the inactivation protocol, the value of

interest is the maximum probability of the open stateO seen during

P2 divided by the value seen during P1. This ratio is then plotted in

response to the varying time duration 1t to get a metric of how

long it takes the channel to return to the closed, non-inactive, state.
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Results

Homomeric N-type inactivating channels

Here we detail a Markov model for N-type inactivating

channels. Work by Bett et al. (2011) mutated a KV1.4 channel

to reduce C-type inactivation capabilities resulting in a channel

with primarily N-type inactivation. Using this mutated channel,

a 6 state Markov model was proposed and fit for a homomeric

N-type inactivating KV1.4 channel by Bett et al. (2011). This

Markov model, with a minor adjustment for clarity as we extend

to heteromeric channels, is given below:

Similar to the homomeric channel lacking inactivation

described above, there are assumed to be four independently gated

subunits all of which must be in the open conformation to have a

conducting channel. From the open state O, the subunits can close

again, or a single lipophilic N-terminal “ball” region from one of the

subunits can bind to the channel opening, thereby transitioning the

channel to an inactive state (Holmgren et al., 1996; Sukomon et al.,

2022). As there are 4 subunits, each containing an N-terminus,

we write this transition rate from O to I as 4aI . However, as the

unbinding rate of the single bound N-terminal ball is independent

of the number of subunits, the transition rate from I to O is written

as bI . The differential equations describing this model are:

dCi

dt
= (4− i+ 1)a1Ci−1 + (i+ 1)b1Ci+1

−(4− i)a1Ci − ib1Ci, i ≤ 3

dO

dt
= a1C3 − 4b1O− 4aIO+ bII

dI

dt
= 4aIO− bII. (2)

Heteromeric N-type inactivating channels

Following in the spirit of the proposed model structure by

McGahan and Keener (2022), we assume that a heteromeric

channel still requires 4 activating gates, one per subunit type. To

account for the N-terminal “ball” binding to the channel pore in a

heteromeric channel, there is still only a singular inactive state as

in Figure 2. However, the transition rate from O to I now becomes

naI , where n is the number of N-type inactivating subunits in the

heteromer with 4aI the transition rate in the homomeric channel.

A general example Markov model scheme for a channel with 3 N-

type inactivating subunits, and 1 non-inactivating subunit is given

in Figure 3.

To examine the predictive outputs of this model scheme, we

consider heteromeric complexes forming with KV1.1 and Kv1.4

subunits (Harding et al., 2022; Bett et al., 2011). In an attempt

to accurately reflect the proper channel (and subunit) kinetic

properties, forward and backward activating and inactivating rates

are taken from Markov models that have been experimentally

fit using voltage clamp data. The transition rates for the KV1.1

subunits are drawn from Masoli et al. (2015). For KV1.4 channel

kinetics, we used the model fit by Bett et al. (2011) to voltage

clamp data for Kv1.4[K532Y] mutated channels which are known

to possess N-type, but lack C-type, inactivation. Parameterizing

the subunits in this manner, we took each possible subunit

FIGURE 2

A Markov model diagram for a homomeric N-type inactivating

channel. The states Ci denote the probability of having i subunits in

the open state. The probability of being in the conducting state is

given by O, where all 4 subunits are in the open state. I is the

probability of the channel having an N-ball bound to the pore and

being in the inactive state. The kinetic rates a1,b1 give transitions

between a single subunit going from closed to open state and vice

versa. The rate of a single N-ball binding to the pore is aI and the

unbinding is given by bI.

FIGURE 3

A Markov model diagram for a heteromeric channel with 3 N-type

inactivating subunits and 1 non-inactivating subunit. The state Ci, j is

the probability of having i N-type inactivating subunits in the open

state and j non-inactivating subunits in the open state. The states

O, I and rates a1,b1, aI,bI have identical meaning to that of Figure 2.

The rates a2 and b2 give the opening and closing transitions for the

non-inactivating subunit.

combination and exposed the corresponding heteromeric and

homomeric channels to the voltage clamp protocols described in

Figure 1. The results of these simulated experiments are shown in

Figure 4. We emphasize here that although the simulations here

are centered around KV1.4 and KV1.1 heteromeric channels, the

methodology and proposed model scheme is widely applicable

provided the channels follow the identical and independently

operating subunit assumptions.

As response of the KV1.4[K532Y] and KV1.1 homomeric

channels to the activating protocol are similar, this experiment

does little to distinguish the heteromeric channels. However, in

both the inactivation protocol and the recovery from inactivation

protocol a trend becomes clear. The first observation to be made

is that any number of KV1.4 subunits confer inactivating kinetics

upon the channel. Furthermore, as the number of Kv1.4[K532Y]

subunits increases, the level of inactivation increases and the rate of

recovery decreases. Additionally, these trends are nonlinear. That
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FIGURE 4

Responses of each heteromeric and homomeric channel with Kv1.4[K532Y] N-type inactivating subunits and KV1.1 non-inactivating subunits to the

three voltage clamp protocols of Figure 1. (A) The ratio of the maximum open probability of the channel seen during P2 compared to P1, plotted

against the voltage stepped to during P1 based on the inset inactivation protocol. (B) The ratio of the maximum open probability of the channel seen

during P2 compared to P1, plotted against the time duration, 1t, between P1 and P2, based on the inset recovery protocol. (C) The maximum open

probability of the channel after the voltage step, plotted against the voltage the channel was stepped to. Data point colors are: pink (4 Kv1.4[K532Y]

subunits), black (1 KV1.1 to 3 KV1.4[K532Y] subunits), orange (2 KV1.1 to 2 KV1.4[K532Y] subunits), green (3 KV1.1 to KV1.4[K532Y] subunits) and blue

(4 KV1.1 subunits).

is, at higher voltage values, there is a noticeably larger change

in probability curves moving from the 3:1 heteromer to the 2:2

heteromer, than transitioning between the probability curves of

the 1:3 and 0:4 channels. This phenomenon is replicated in the

recovery from inactivation curves as well. By increasing the number

ofKv1.4[K532Y] subunits, the channel takes longer to recover from

inactivation, with the first Kv1.4[K532Y] subunits having a larger

impact than the last.

N-type inactivating model: QSS
approximation

The largest of these heteromeric models is the 2:2 heteromeric

channel consisting of 10 ordinary differential equations. For

models of this scale it is useful to find ways to reduce

dimension, particularly if the models are to be incorporated

into larger neuron models or used to simulate more complex

protocols for extended time intervals. It has been shown that

for homomeric and heteromeric channels without inactivation

kinetics there exists a one (or two in the case of heteromeric

channels) dimensional, globally attracting stable invariantmanifold

(Keener, 2009, 2010). In other words, the channel kinetics of

the full system can be described by one (or two) differential

equations. However, the introduction of the N-type inactivating

state I, to both the heteromeric and homomeric channel models,

complicates the process of finding an invariant manifold to simplify

model complexity.

That being said, a second common technique for dimension

reduction, is a quasi-steady-state (QSS) approximation (Keener

and Sneyd, 2009). This technique of model simplification relies
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on assuming, or knowing, that some of the kinetic transitions

occur much faster than others. Utilizing the kinetic rates for the

homomeric KV1.1 and Kv1.4[K532Y] models that were used to

generate the results of Figure 4, we show below in Figure 5, that

for these Markov models with N-type inactivation, this may be a

reasonable assumption.

In Figure 5, it can be seen that for a significant portion

of the physiologically relevant membrane potentials, the rates

a1, a2, b1, b2 >> aI , bI , i.e., transitioning between closed states is

much quicker than transitioning to the inactive state. Using the

KV1.4 homomeric model as an example, we outline the process for

using this relationship between the kinetic rates to construct a one

dimensional ODE approximation of both the full heteromeric and

homomeric KV1.1 :Kv1.4[K532Y] Markov models.

Working with the model depicted in Figure 2, the first step in

the QSS approximation is to define a new variable X = C0 + C1 +

C2 + C3 + O. By summing together the ODEs for C0,C1,C2,C3,O

we arrive at the ODEs:

dX

dt
= −aIO+ BII.

dI

dt
= 4aIO− bII.

(3)

To get these ODEs to be functions of only X and I we must

solve for O in terms of X. This is done by making use of the

fast equilibrium assumption that a1, a2, b1, b2 >> aI , bI to solve

the ODEs of Equation 2 at steady state. Starting with dO
dt

= 0,

using the fast equilibrium assumption, the bII and −aIO terms

go to 0, and we are left with O =
−a1C3
4b1

. The remainder of the

ODEs for C0,C1,C2,C3 can be solved in iteration at steady state to

get an expression in terms of O. This gives X = κO, where, for

the homomeric channel, κ =
(a1+b1)

4

a41
. Noting that X and I are

probabilities of being in a particular state, we have X + I = 1.

FIGURE 5

Experimentally fit kinetic transition rates plotted against a given

voltage in mV. The following rates are plotted: opening and closing

rates of Kv1.4[K532Y] subunits (a14,b14), opening and closing rates

of Kv1.1 (a11,b11), and the binding and unbinding rates of the

N-balls, (aI,bI). Curve color and style are given in the figure legend.

Therefore, we can fully describe the system with the single ODE:

dX

dt
= −aIN

X

κ
+ bII. (4)

Here N is the number of N type subunits, which for the

homomeric channel case gives N = 4. Using the relationships

X = κO and X = C0 +C1 +C2 +C3 +O, it is possible to simulate

the one-dimensional system, and then back out the value of any of

the desired states C0,C1,C2,C3,O.

For any of the KV1.1 :KV1.4[K532Y] heteromeric models, this

technique of model dimension reduction with a fast timescale

is applied in an identical manner. In all cases, a new variable

X is defined as the sum of every closed and open state, and

then enforcing the fast equilibrium assumption results in an ODE

of the form seen in Equation 4. The only differences between

the QSS reductions for each of the different channels is the

value of N and κ . We note here that this technique applies

generally to models resembling any of these Markov schemes

provided the assumptions about the kinetic rates (a1, a2, b1, b2 >>

aI , bI) hold. Taking the QSS and full model versions of the

KV1.1 :Kv1.4[K532Y] heteromeric and homomeric channels, we

can compare the approximate and exact model solutions. This

comparison is highlighted in Figure 6.

In Figure 6 we see that for the inactivation and recovery

protocols, the QSS model performs almost identically to the full

model. The only noticeable difference between the models is in

the response to the activation protocol. At voltage values greater

than −30 mV , the QSS homomeric KV1.1 :Kv1.4[K532Y] models

consistently predict a greater probability of opening than the full

KV1.1 :Kv1.4[K532Y] models. The difference in models is best

illustrated by looking at the full time simulated traces for the

homomeric Kv1.4[K532Y] channels in response to the activation

protocol shown in Figure 7.

From Figure 7 it can be seen that the QSS model is immediately

able to transition to its maximum probability of opening before

inactivation takes place, which is forced by the QSS assumption.

Whereas for the full model, the time it takes to reach its maximum

probability of opening is long enough to allow for an increase

in the probability of channel inactivation. The performance of

this approximate solution on a more detailed voltage clamp

protocol is provide in the Appendix. The detailed protocol is

based on work by Fink and Noble (2009) and is also depicted in

the Appendix.

Homomeric C-type inactivating channels

The second form of inactivation to be modeled here, inherent

to the α-protein subunits of KV channels, is C-type inactivation. C-

type inactivation, while less understood than N-type inactivation, is

believed to result from conformational changes happening near the

mouth of the pore or in the selectivity filter (Bett et al., 2011; Tan

et al., 2022; Cuello et al., 2010). In the same 2011 study modeling

N-type inactivation, Bett et al. (2011) also mutated K1.4 channels to

delete the N-terminus ball (termed a Kv1.41N channel) allowing

them study and model C-type inactivation. This work led to a

detailed Markov model that was able to replicate the responses
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FIGURE 6

A comparison between the full KV1.1 :Kv1.4[K532Y] heteromeric models and the QSS reduced KV1.1 :Kv1.4[K532Y] heteromeric models by looking

at the channel responses to the inactivation protocol (A) and recovery protocol (B). Data point colors correspond to the identical subunit ratio

described in Figure 4, with circles the full model data points and triangles the QSS model data points.

FIGURE 7

Full time simulations of the homomeric full (A) and QSS (B) KV1.4[K532Y] models in response to the activation protocol. Each curve denotes a

di�erent voltage that the channels has been held at.

of the Kv1.41N channel to the protocols of Figure 1. Although

this model was able to fit the experimental data and reflects the

four transitions of each α-protein subunit opening, the biophysical

mechanism of C-type channel inactivation is unclear based on the

model structure.

We propose a new model structure where C-type inactivation

is directly modeled as a conformational change of any of the four

subunits from their open state. In particular, each of the four

subunits can transition from a closed state C to an open state O,

and only once it has reached an open state can it transition to an

inactive state I (Figure 8B). Combining 4 identical, independent

subunits that adhere to these kinetic transitions gives the full

channel Markov model seen in Figure 8A, where the indices

denote the number of subunits in the open and inactive states

respectively.

C-type inactivating model fitting

To justify working with this new model scheme, we must show

that it is comparable in its ability to fit data to the (Bett et al.,

2011) Kv1.41N model. To do this, we first generated simulated

data using the published Bett model and parameters in response

to the three experimental protocols. Then for the scheme presented

in Figure 8A, we create a system of ODEs according to the master

equation given in Equation 5.

dCi,j

dt
= −(4− i)a1Ci,j − (i− j)b1Ci,j + (4− i+ 1)a1Ci−1,j

+ (i+ 1)b1Ci+1,j − (i− j)aICi,j − jbiCi,j + (i− j+ 1)aICi,j−1

+ (j+ 1)bICi,j+1

(5)
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FIGURE 8

(A) A Markov model diagram for a homomeric channel with 4 C-type

inactivating subunits. The state Ci, j is the probability of having i

subunits having reached the open state and j of these subunits being

inactive. The state O is the conducting state where all 4 subunits are

open and none are inactive. Rates a1,b1, aI,bI are the corresponding

forward and backward rates of a single C-type inactivating subunit

transitioning between closed, open and inactive as is depicted in (B).

As C-type inactivation is relatively voltage insensitive (Bett

et al., 2011), the inactivation rates aI , bI were set to be constant

parameters, while a1, b1 were given the forms below in Equation 6

a1 = m1e
n1V

b1 = m2e
n2V

(6)

for parameters m1, n1,m2, n2. To fit this model to the simulated

(Bett et al., 2011) model data, we employed a bounded global

parameter search on the simulated data. By minimizing the sum

of squared errors between our model output and the Bett model

output, we arrived at a parameter set that generated the model fit

seen in Figure 9. For interested readers, more explicit parameter

fitting details regarding the optimisation method, error function

construction and parameter bounds are provided in the Appendix.

Figure 9 shows that with this parameter set our model can

replicate the (Bett et al., 2011) model outputs. As there were

a number of parameter sets found during the global parameter

search that had a similar sum of squared errors, it is reasonable to

hypothesize that a different parameter set for our model could fit

the full experimental data as well.

Heteromeric C-type inactivating channels

Assuming that C-type inactivating subunits are modeled with

the scheme presented in Figure 10A and non-inactivating subunits

with the scheme shown in Figure 10B, we can construct any

heteromeric combination of subunits. As with heteromeric non-

inactivating channels and N-type inactivating channels; subunits of

a specific type are assumed to be identical, all of a channel’s subunits

act independently, and all subunit kinetics are fit to the homomeric

channels’ voltage clamp experimental data. Again, provided these

model assumptions hold, the framework is broadly applicable

to other C-type inactivating subunits that are characterized

mathematically in this manner. Presented in Figure 10C is the

sample Markov diagram for a 3:1 heteromeric combination of 3

non-inactivating subunits and 1 C-type inactivating subunit. The

Markov diagrams for the 2:2 and 1:3 heteromeric channels are

provided in the Appendix in Figures 13, 14 for interested readers.

The corresponding master equations for any heteromeric

combination of N non-inactivating subunits and M C-type

inactivating subunits is given in Equation 7

dCi,j,k

dt
= −(M − i)a1Ci,j,k − (i− j)b1Ci,j,k

+ (M − i+ 1)a1Ci−1,j,k + (i+ 1)b1Ci+1,j,k

− (i− j)aICi,j,k − jbiCi,j,k + (i− j+ 1)aICi,j−1,k

+ (j+ 1)bICi,j+1,k + (N − k+ 1)a2Ci,j,k−1 + (k+ 1)b2Ci,j,k+1

− (N − k)a2Ci,j,k − kb2Ci,j,k.

(7)

As with the N-type models, we explore the impact of adding

in additional inactivating subunits by simulating each heteromeric

channel model through the three voltage clamp protocols depicted

in Figure 1. For the homomeric non-inactivating kinetics we again

work with a KV1.1 channel parameterized with transition rates

from Masoli et al. (2015). For C-type inactivation, we use the

parameter set generated by the fitting methodology outlined in

“Section: C-Type Inactivating Model Fitting” for the KV1.41N

channels. The simulation results for the inactivation and recovery

voltage clamp protocols across all heteromeric KV1.1:KV1.41N

channels are summarized in Figure 11.

In Figure 11, there are two immediate observations to make.

The first observation is that like the non-inactivating:N-type

heteromers, a single KV1.41N subunit is sufficient to supply

some, albeit small, amount of channel inactivation (Figures 11B,

C). The second noticeable feature is that as the number of

KV1.41N subunits is increased, the level of inactivation is increased

and the rate of recovery is decreased. However, unlike with the

non-inactivating:N-type heteromeric channels, this relationship

between KV1.41N subunits and inactivation appears to be almost

linear. Each additional KV1.41N subunit roughly confers an equal

amount of inactivation and has a similar impact on the time

to recovery.

C-type inactivating model: invariant
manifold

As was noted in the previous section, the dimension of the non-

inactivating:C-type heteromeric channel models becomes quite

large (smallest model is 12 ODEs). For heteromeric channel models

described by the master equation seen in Equation 7, we show

there is a 3 dimensional invariant manifold which stems from
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FIGURE 9

A comparison between the (Bett et al., 2011) simulated Kv1.41N homomeric model and our hypothesized Kv1.41N homomeric model. Four unique

pieces of information were compared: (A) the open probability curves in response to the activation protocol, (B) the value of the activation time

constant τ , (C) the response to the inactivation protocol, and (D) the response to the recovery protocol. The green data points are our model with

the best fitting parameter set, and the orange data points are the (Bett et al., 2011) model. The inset diagrams depict the performed voltage clamp

protocol.

the assumption of identical and independent subunits. Using

some results from Keener (2009, 2010) we detail the proof for

these invariant manifold reductions using the 2:2 heteromer as

an example.

Based on Keener (2009), the binomial distribution gives

a vector Pk describing the probability of having k open,

non-inactivating subunits. This vector

Pk =

(

2

k

)

qk(1− q)k (8)

is an invariant manifold for the set of equations which describe

the interactions between 2 non-inactivating subunits. This holds

provided the parameter q, the probability of a single subunit being

in the open state, satisfies the ODE:

dq

dt
= a2(1− q)− b2q. (9)

We can find an invariant manifold Pi,j, for 2 interacting C-

type subunits, which describes the probability of having i C-type

subunits having reached the open state and j C-type subunits in the

inactive state. This invariant manifold is given by the multinomial

distribution:

Pi,j =
2!

(2− (i− j))!(i− j)!j!
(1− n− h)2−(i−j)ni−jhj. (10)

so long as the parameters n (probability of a single subunit being

open), and h (probability of an open subunit being inactive) satisfy

dn

dt
= −(b1 + aI)n+ a1(1− n− h)+ bIh

dh

dt
= aIn− bIh.

(11)

Note that for either type of subunit, the invariant manifold

dimension is 1 less than the number of subunit states as a result of

working with probabilities. For example, with the non-inactivating

subunits, if q describes the probability of a single subunit being

open, then (1 − q) gives the probability of the subunit being

closed. Similarly, for C-type inactivating subunits, if we track the

probability of a single subunit being open (n) or inactive (h), then

the probability that subunit is closed is (1− n− h).
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FIGURE 10

Markov model diagrams used to describe heteromeric channels

with 1 C-type inactivating subunit and 3 non-inactivating subunits.

Rates a1,b1, aI,bI are the corresponding forward and backward rates

of a single C-type inactivating subunit transitioning between closed,

open and inactive as is depicted in (A). Rates a2 and b2 are the

corresponding forward and backward rates of a single

non-inactivating subunit transiting between closed and open as is

depicted in (B). A Markov model diagram for a heteromeric channel

with 1 C-type inactivating subunit and 3 non-inactivating subunits

(C). The state Ci, j, k is the probability of having i C-type subunits

having reached the open state, j C type subunits in the inactive state,

and k non-inactivating subunits in the open state. The state O is the

conducting state where all 4 subunits are in the openconformation

and none are inactive.

If Equations 8, 10 give invariant manifolds for 2 non-

inactivating subunits and 2 C-type inactivating subunits

respectively, we should have that Pi,j,k = PT
k
Pi,j is an invariant

manifold for Equation 7 with N = M = 2. To prove this, we begin

by rewriting Equation 7 as

dP

dt
= RP (12)

where P is an 18 dimensional state vector, and R is the

corresponding 18 × 18 rate transition matrix. We show that Pi,j,k,

with the parameter dynamics of Equations 9, 11, is an invariant

manifold for Equation 7 by demonstrating that

RPi,j,k =
∂Pi,j,k

∂q

dq

dt
+

∂Pi,j,k

∂n

dn

dt
+

∂Pi,j,k

∂h

dh

dt
(13)

The left hand side of this equality should be thought of as

trajectories in the entire space being evaluated on the manifold,

while the right hand side gives trajectories of the reduced space.

Showing equality implies that once the full 18 dimensional system

reaches Pi,j,k, it is restricted to movement along Pi,j,k, giving us

an invariant manifold. Proof of this equality is a matter of matrix

multiplication which is left to the reader. However as a guide, here

we show a single row’s worth of calculations using the 18th row of R.

R(18)Pi,j,k

= −(2bI + 2b2)q
2h2 + aI(2q

2nh)+ a2(2q(1− q)h2)

= 2qh2(a2(1− q)− b2q)+ 2q2h(aIn− bIh)

=
δPi,j,k

δq

dq

dt
+

δPi,j,k

δh

dh

dt
.

(14)

Explicit expressions for Pi,j,k and the rate transitionmatrix R are

provided in the Appendix.

It is reemphasized here that reducing the full Markov scheme

in this manner provides an exact, and not approximate, simplified

model. For this reason, no comparison simulations between the

full and reduced models, as was done in Figure 6 for the N-type

QSS model, are required. All future simulations and work can be

conducted with the new reduced model and will provide identical

results in tracking the open probability. However, the full Markov

scheme still provides useful understanding by framing the model in

terms of its physiological context as it relates to the opening, closing

and inactivating of the α-subunits.

Discussion

In our previous work (McGahan and Keener, 2022), we showed

how to translate from the standardMarkov model for a homomeric

channel with 4 identical, non-inactivating subunits to a heteromeric

channel with 2 different types of non-inactivating subunits. Here

we built off of this work by first modeling channel inactivation in

a homomeric channel, and then by showing how subunits from

an inactivating channel could be incorporated into a heteromeric

channel model. In this study we constructed homomeric and

heteromeric models for channels possessing either of the two

primary inactivation mechanisms: N-type and C-type inactivation.

In both cases, the homomeric models were based on experimental

data, and the heteromeric models were then a result of the
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FIGURE 11

Responses of each heteromic and homomeric channel with KV1.41N subunits and KV1.1 subunits to the inactivation and recovery voltage clamp

protocols (Figure 1). (A) Identical plot meaning and data point coloring to that of Figure 4A, but with our KV1.1:KV1.41N models. (B) Identical plot

meaning and data point coloring to that of Figure 4B, but with our KV1.1:KV1.41N models.

model assumptions with no further fitting. In spite of the limited

heteromeric experimental work within the literature to date, we

show (and discuss) which known properties our models reproduce

and then highlight each of the testable predictions we were able to

produce from our models.

N-Type inactivation

The model we used for a homomeric N-type inactivating

channel, shown in Figure 2, was identical to the model presented

by Bett et al. (2011). This model structure nicely reflects the known

experimental observations that there are 4 identical subunits

which must change to the open conformation to enter the

conducting state, that only a single N-terminal "ball" can bind

to the open channel state, and that this binding is a voltage

insensitive transition.

Working with this homomeric N-type inactivating channel

model, we described the manner by which subunits of this type

would form heteromeric complexes with subunits of a non-

inactivating channel. The heteromeric channels were similarly

required to have 4 activation steps, with number and type identical

to subunit number and type, and with a number of N-balls equal

to the number of N-type subunits (Figure 3). To examine the

predictions made by our proposed heteromeric model structure,

we found fully parameterized homomeric models, for both N-

type inactivating and non-inactivating channels that are known

to form heteromers (Harding et al., 2022; Masoli et al., 2015;

Bett et al., 2011). By simulating each homomeric and heteromeric

channel through the three different voltage clamp protocols shown

in Figure 1, we observed two key properties of this model.

The first result of this model, which is in agreement with known

experimental evidence, is that a single N-type subunit is sufficient

to confer some channel inactivation (Figures 4B, C) (Coetzee et al.,

1999; MacKinnon et al., 1993). The second predictive result of this

model, is that while increasing the number of N-type subunits does

increase the level of inactivation, each additional N-type subunit

has a diminished impact (Figure 4). This non-linear effect is similar

to what has been observed and modeled with the changes in open

probability curves of non-inactivating KV1.1 :KV1.2 heteromers in

response to increasing the number of KV1.2 subunits (McGahan

and Keener, 2022; Al-Sabi et al., 2013). In the case of the non-

inactivating KV1.1 :KV1.2 channels, the non-linearity is a result of

needing all four subunits to be in the open state. This means the

channel opening is rate limited by the last subunit, in this case

KV1.2, to open. With the N-type:non-inactivating heteromers, the

non-linearity observed in the inactivation and recovery protocols

can also be explained as a rate-limited effect. With this model, as

the number of N-type inactivating subunits is increased, so is the

number of N-balls. However, given that only one ball can bind to

the pore opening at a given time, there is a competitive binding

site saturation for the N-type balls, where adding additional N-balls

eventually stops increasing the overall rate at which the first one of

them can bind to the pore.

Despite the current experimental complications with studying

inactivating heteromeric channels, and thus limited literature on

the topic, there is one particularly relevant study to our N-type

model done by Hashimoto et al. (2000) looking at modified KV1.4

channels. In their work they were able to construct versions of a

KV1.4 channel possessing either 1, 2, or 4 tethered N-balls. The

key result, as it relates to our model, was an identical appearance

of a non-linear effect of increasing the numbers of N-balls. More

precisely, they show that the inactivation rate of a channel with

2 balls is more than half that of a 4 balled channel, and the

inactivation rate of a 1 balled channel is more than one fourth

that of the full homomeric KV1.4 channel. Additionally, their

experiments reveal that as the number of inactivation balls is

decreased the level of channel inactivation became less complete. In

tandem, these results create a nice qualitative match with ourmodel

output given in Figure 4. Finally, Hashimoto et al. (2000) also

provides a biological mechanism behind the non-linear impact of

each N-ball and the incomplete inactivation by hypothesizing that
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an electrostatic repulsive force felt between the balls is contributing

to the decreased effectiveness of N-ball binding.

C-Type inactivation

In their 2011 work, Bett et al. (2011) published a homomeric

C-type inactivating model that was fit to experimental voltage

clamp data. While their model was able to fit the data well, the

chosen model structure does not help capture or explain the

biophysical mechanisms of C-type inactivation that are at play. We

proposed a new homomeric C-type model that encodes the C-type

conformational change into the model structure, by assuming each

of the 4 subunits has a closed, open, and inactive state (Figure 8). To

justify using this new model, we first generated data by simulating

the published (Bett et al., 2011) model for KV1.41N channels

through the three voltage clamp protocols from Figure 1. Then by

performing a bounded, global parameter search we showed that

there is at least one parameter set which qualitatively has the same

properties as the (Bett et al., 2011) model (Figure 9). We note that

while this may not be the optimal fitting parameter regime, with

the limited available data we were still able to qualitatively match

the channel behavior.

Utilizing our C-type inactivating homomeric model, we were

able to construct heteromeric channels with C-type inactivating

KV1.41N channels and non-inactivating KV1.1 channels. The

only assumption we needed to make was that each heteromeric

channel has 4 total independent subunits, which individually are

modeled with the ODEs corresponding to Figure 10A (C-type

subunits), or Figure 9B (non-inactivating subunits). Taking each

possible combination of these subunit types, we simulated the

channels through the voltage clamp protocols and highlighted

the response of these channels to the inactivation and recovery

protocols (Figure 11). Like the N-type:non-inactivating model,

these simulations revealed that a single KV1.41N subunit was

enough to make the heteromeric channel inactivate. Furthermore,

as the number of C-type subunits is increased, the level of

inactivation and time to recovery are increased.

However, in contrast to the N-type:non-inactivatingmodel, this

change in inactivation and rate of recovery scales linearly with the

number of C-type inactivating subunits. Unlike the inactivation

of heteromers with N-type inactivating subunits, there is no

binding saturation issue since the inactivation is a conformational

change inherent to the individual subunits, which are operating

independently of one another. This independence of inactivation

is what gives the linear relationship between number of C-type

inactivating subunits and level of inactivation.

Implications of inactivation di�erences

A unique capability of this modeling study is that it allows

us to compare between heteromeric channels with N versus C

type inactivating subunits. One way to illuminate the similarities

and differences is by framing them in the context of ion channel

viability. In particular, which combinations of subunits would one

expect to see naturally expressed, and which of these combinations

could actually be functional channels? One possible hypothesis

we propose based on these results is that heteromeric channel

viability could be a result of how distinct their kinetic properties,

and thus influence on spike timing and dynamics, are from their

homomeric counterparts.

The first point reemphasized here is that all heteromeric

channels with an inactivating subunit will inactivate thereby

distinguishing them from a non-inactivating channel. That being

said, there is one glaring difference between subunit types. Due

to the linear effects of adding additional C-type inactivating

subunits discussed in the previous section, there would be a wider

degree of variability among the heteromeric properties than for

N-type inactivating heteromers. If all heteromers with inactivating

subunits are viable, then those with C-type subunits would cover a

wider kinetic range thus markedly changing the window of cellular

excitability from a cell containing only homomeric channels.

Meanwhile, the N-type inactivating heteromers look remarkably

similar to each other in response to the voltage clamp protocols

regardless of the number of N-type subunits. Therefore, assuming

the N-type inactivating homomer is functional, one might expect

these heteromeric channels to be equally viable since interchanging

N-type subunits with non-inactivating subunits likely produces

indistinguishable neuronal dynamics. Future concatameric and co-

expression experiments like the studies by Al-Sabi et al. (2011,

2013) and Cordeiro et al. (2019) will be critical for answering these

questions surrounding the functionality of heteromeric channels of

different subunit ratios.

Model dimension reduction

The final outcome of this work stemmed from examining the

model dimension of our various heteromeric channels. Although

the smallest model, the N-type homomeric channel, consists of

only 6 ordinary differential equations, the largest C-type:non-

inactivating heteromeric channel model has 20 differential

equations. Individually, any one of these channel models is

small enough to include in a full neuron model for simulation.

That being said, a common experimental procedure where

mathematical modeling has been found useful, is one where

two different subunit DNAs are injected into a cell and the

resulting distribution of the heteromeric and homomeric channels

that form is unknown (McGahan and Keener, 2022; D’Adamo

et al., 1999; Miceli et al., 2013, 2015; Hasan et al., 2017). To

compare to experiments of this type, and gain an understanding

of the types of heteromeric channels that are forming as a

result of this procedure, requires modeling every possible subunit

combination. Doing so would necessitate having 39 ODEs for every

N-type:non-inactivating channel and 70 ODEs to include every

C-type:non-inactivating channel.

Recall that the form and size of these models is enforced

by the physiologically grounded model assumptions and not due

to phenomenological construction. Therefore, our best option

for making these models more computationally tractable, while

continuing to adhere to the biological assumptions that require

these model structures, is to consider possible model dimension

reduction techniques.
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For the N-type:non-inactivating heteromeric channels, since

the presence of the single inactive state eliminates the possibility

of finding a nice globally stable invariant manifold, we found

Quasi-Steady State approximations of the full models. By assuming

the transitions between closed states are faster than the transition

between the open and inactive state, which we validated by looking

at experimentally fit rate constants (Figure 5), we showed that each

heteromeric N-type:non-inactivating model could be reduced to 2

ODEs (Equation 4). Comparing the results of the full and reduced

models showed that the Quasi-Steady State approximation almost

exactly replicates the full models performance for the inactivation

and recovery protocols (Figure 6). The only noticeable distinction

between our full and reduced models is their predictions of open

probability curves in response to the activation protocol. The QSS

model consistently overestimated the probability of being open in

comparison to the full model (Figure 7). This is a consequence of

assuming the activation is happening on a fast enough timescale

that channels are fully able to open before any inactivation

takes place.

For the C-type:non-inactivating heteromeric channels we

showed that each model has a globally stable invariant manifold

of reduced dimension. Based on a result of Keener (2009,

2010), the homomeric C-type channel model (Equation 5) has

a two dimensional invariant manifold given by a multinomial

distribution. Additionally, work by Keener (2009, 2010), has

shown that the non-inactivating channel (Equation 1) has an

invariant manifold given by a binomial distribution, where

the open probability is exactly described by the equations of

the Hodgkin-Huxley potassium channel (Hodgkin and Huxley,

1952). By using the multiplicative structure inherent to invariant

manifolds, we demonstrate that each heteromeric C-type:non-

inactivating channel has a 3 dimensional invariant manifold

which is the product of the corresponding multinomial and a

binomial distributions.

Future model uses

While one limitation of this work was a lack of data and

existing experimental literature to compare with, this limitation

also highlights our model’s strengths and at possible future

applications. Our model provides a biologically relevant story

behind the entire class of less characterized, but highly prevalent,

heteromeric ion channels. As lab techniques for future study of

heteromeric channels become available; this study can be used to

guide predictions, probe experimental outputs, and frame these

outputs in terms of the intuition gained from our biophysical

model. One immediate application this model is suited for is

the examination of coexpression experiments (D’Adamo et al.,

1999; Miceli et al., 2013, 2015; Hasan et al., 2017) to see if

there are preferred functional stoichiometries of inactivating and

non-inactivating subunits. As detailed in McGahan and Keener

(2022), this model formulation, especially the reduced versions,

provides an easy pathway to examine the distribution of subunits

in inactivating KV channels to see if there is either heteromeric or

homomeric preference, or a tendency toward assembly according

to a binomial distribution.

A second direction for future exploration and modeling

of heteromeric channels involves the existence of heteromeric

channels formed with auxiliary beta subunits and pore-forming

alpha subunits. While we emphasize here that it is crucial

to understand the types of heteromers formed from only

alpha subunits, it is also well known that in some KV

families there are auxiliary beta subunits that can alter channel

properties. The strength of these alterations are dependent

on the number of beta subunits, and can take the form

of introducing inactivation to an otherwise non-inactivating

channel or shifting the activation curves of the pore-forming

subunits (England et al., 1995; Pongs and Schwarz, 2010;

Heinemann et al., 1996; Xu et al., 1998). In the case of

introducing an auxiliary subunit which confers inactivation

upon the pore-forming subunits (Xu et al., 1998), there is a

direct parallel to our Heteromeric N-type inactivating model.

For example, a Markov model with 4 non-inactivating alpha

subunits and 4 inactivating beta subunits would mimic (Figure 2)

where the transition to the I state would now represent

the auxiliary beta subunits instead of the N-balls. On the

other hand, auxiliary subunits known for shifting activation

curves of the pore-forming channel are likely a more complex

phenomenon to model as this type of interaction necessarily

implies some form of dependence between subunit state transitions

(Pongs and Schwarz, 2010; England et al., 1995). Once the

assumption of independence is violated, these Markov style models

would no longer apply, and would therefore require a new

model framework.

Conclusion

Here we have proposed a new model for heteromeric

channels which are constructed from C/N-type inactivating

subunits and non-inactivating subunits. This hypothesized model

structure allowed us to make novel testable predictions about

the relationship between the number of subunits that confer

inactivating kinetics and the level of channel inactivation.

These models demonstrated a noticeable difference between

the types of inactivation (N versus C type) and the strength

of heteromeric channel inactivation. Moving forward, these

models can help frame the approach future researchers take to

investigate heteromeric channel kinetics, particularly as it relates to

channel inactivation.
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