
Frontiers in Cellular Neuroscience 01 frontiersin.org

Ammonium chloride reduces 
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Acute liver dysfunction commonly leads to rapid increases in ammonia 
concentrations in both the serum and the cerebrospinal fluid. These elevations 
primarily affect brain astrocytes, causing modifications in their structure and 
function. However, its impact on neurons is not yet fully understood. In this study, 
we investigated the impact of elevated ammonium chloride levels (NH4Cl, 5 mM) 
on synaptic transmission onto CA1 pyramidal neurons in mouse organotypic 
entorhino-hippocampal tissue cultures. We found that acute exposure to NH4Cl 
reversibly reduced excitatory synaptic transmission and affected CA3-CA1 
synapses. Notably, NH4Cl modified astrocytic, but not CA1 pyramidal neuron, 
passive intrinsic properties. To further explore the role of astrocytes in NH4Cl-
induced attenuation of synaptic transmission, we used methionine sulfoximine 
to target glutamine synthetase, a key astrocytic enzyme for ammonia clearance 
in the central nervous system. Inhibition of glutamine synthetase effectively 
prevented the downregulation of excitatory synaptic activity, underscoring 
the significant role of astrocytes in adjusting excitatory synapses during acute 
ammonia elevation.
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Introduction

Hepatic encephalopathy (HE) is a neurological disorder caused by acute liver failure, chronic 
liver disease (Haussinger et al., 2022; Wijdicks, 2016), and liver-independent portosystemic shunts 
(Hawkes et al., 2001; Vilstrup et al., 2014). The disorder manifests a spectrum of neuro-psychiatric 
symptoms ranging from subtle changes detectable only through specialized testing to severe 
cognitive and motor impairments, and in extreme cases, death (Rose et al., 2020; Vidal-Cevallos 
et al., 2022; Vilstrup et al., 2014). A prominent feature of HE is hyperammonemia, defined as 
abnormally high ammonia levels in the blood (Ong et al., 2003). Ammonia can cross the blood–
brain interface (Jayakumar and Norenberg, 2018; Lockwood et al., 1979; Vidal-Cevallos et al., 
2022) leading to cognitive and motor dysfunctions (Butz et al., 2010; Felipo, 2013; Garcia-Garcia 
et al., 2018), disorientation (Weissenborn, 1998), asterixis, which is characterized by an inability 
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to sustain posture and involuntary movements (Zackria and John, 2023), 
and coma (Bessman and Bessman, 1955; Wijdicks, 2016).

Animal models (DeMorrow et al., 2021) have played a crucial 
role in elucidating the neurological consequences of increased 
ammonia levels in HE (Lima et al., 2019). Neuroinflammation is 
now recognized as a significant factor in both acute and chronic HE, 
as evidenced by research using various animal models, including the 
ammonium-containing diet model (Rodrigo et al., 2010), the bile 
duct ligation model (Claeys et al., 2022; Rodrigo et al., 2010), and 
models of acute liver failure (Jiang et al., 2009a; Jiang et al., 2009b; 
Zemtsova et al., 2011). Furthermore, changes in astrocytic structure, 
such as swelling (Jayakumar et al., 2009; Jayakumar et al., 2014b; 
Rama Rao et al., 2010), altered function (Drews et al., 2020; Zielinska 
et  al., 2022), and senescence (Gorg et  al., 2015), have been 
consistently observed in response to hyperammonemia (Ali and 
Nagalli, 2023).

Astrocytes, integral to neuronal communication (Adermark 
et al., 2022; Akther and Hirase, 2022; Dallerac et al., 2013; Farhy-
Tselnicker et  al., 2021; Santello et  al., 2019), are believed to 
be  involved in the synaptic modifications induced by ammonia 
(Jayakumar et  al., 2014a; Rangroo Thrane et  al., 2013). Several 
studies have identified ammonia-induced neuronal changes (Kelly 
and Church, 2005; Sancho-Alonso et al., 2022b), which have been 
linked to impaired astrocytic function in clearing glutamate and 
potassium (Rangroo Thrane et  al., 2013). Astrocytes express 
glutamine synthetase, which converts ammonia and glutamate into 
glutamine, aiding in ammonia detoxification and glutamate 
clearance (Rose et  al., 2013; Suarez et  al., 2002). Additionally, 
astrocytic excitatory amino acid transporters (EAATs) are critical 
for glutamate re-uptake at synapses and neuronal functionality 
(Limon et al., 2021; Todd and Hardingham, 2020). Dysfunctions in 
these astrocytic EAATs have been associated with HE pathology in 
animal models (Knecht et al., 1997; Rose, 2006), with high ammonia 
levels leading to cognitive impairments, fear memory deficits, and 
seizures (Balzano et al., 2020; Cabrera-Pastor et al., 2016; Llansola 
et al., 2015; Qvartskhava et al., 2015; Rangroo Thrane et al., 2013; 
Rodrigo et  al., 2010). Despite these insights, the exact cellular 
mechanisms by which ammonia induces changes in synaptic 
activity and transmission are still not fully understood.

This study investigated the acute effects of ammonium chloride 
(NH4Cl) on excitatory synaptic activity in 3-week-old entorhino-
hippocampal tissue cultures of mice. These cultures maintain a 
cytoarchitecture and fiber organization that resemble in vivo 
conditions, allowing for the examination of neurons and glial cells 
without the need for interventions such as anesthesia, brain 
extraction, and slice preparation immediately before experimental 
assessment. We employed single-cell and paired whole-cell CA3-CA1 
recordings to assess the acute effects of NH4Cl on synaptic 
transmission and passive membrane properties of CA1 neurons and 
astrocytes. Notably, the effects of NH4Cl on synaptic plasticity 
induction have been studied before at Schaffer collateral-CA1 
synapses (c.f., Fan and Szerb, 1993). Our results revealed that short 
exposure to 5 mM NH4Cl significantly decreased spontaneous 
excitatory synaptic activity. This reduction in synaptic transmission 
coincided with astrocyte depolarization. Importantly, when 
we inhibited glutamine synthetase, the NH4Cl-induced suppression 
of excitatory transmission was counteracted.

Materials and methods

Ethics statement

Mice were maintained in a 12 h light/dark cycle with food and 
water available ad libitum. Every effort was made to minimize distress 
and pain of animals. All experimental procedures were performed 
according to German animal welfare legislation and approved by the 
appropriate animal welfare committee and the animal welfare officer 
of Freiburg University (AZ X-17/07 K).

Animals

Wild type C57BL/6J mice of either sex were used in this study.

Preparation of tissue cultures

Organotypic entorhino-hippocampal tissue cultures were 
prepared at postnatal day 4–5 from C57BL/6J mice of either sex as 
previously described (Del Turco and Deller, 2007). Briefly, mice were 
rapidly decapitated and their brains were quickly extracted and 
transferred to a Vibratome VT1200S (Leica) for 300 μm slicing. The 
tissue cultures were transferred for cultivation onto porous (0.4 μm 
pore size, hydrophilic PTFE) cell culture inserts with 30 mm diameter 
(Millipore, Cat# PICM0RG50). The culturing medium consisted of 
50% (v/v) minimum essential medium (MEM; Gibco, Cat# 21575–
022), 25% (v/v) basal medium eagle (BME; Gibco, Cat# 41010–026), 
25% (v/v) heat-inactivated normal horse serum (NHS; Gibco, Cat# 
26050–088), 2 mM GlutaMAX (Gibco, Cat# 35050–038), 0.65% (w/v) 
glucose (Sigma, Cat# G8769), 25 mM HEPES buffer solution (Gibco, 
Cat# 15630–056), 0.1 mg/mL streptomycin with 100 U/mL penicillin 
(Sigma, Cat# P0781) and 0.15% (w/v) bicarbonate (Gibco, Cat# 
25080–060). The pH of the culturing medium was adjusted to 7.30 and 
tissue cultures were incubated for at least 18 days at 35°C in a 
humidified atmosphere with 5% CO2. The culturing medium was 
replaced thrice a week.

Pharmacology

Organotypic entorhino-hippocampal tissue cultures (≥18 days in 
vitro) were acutely exposed to NH4Cl (5 mM; Sigma, Cat# A9434), 
NaCl (5 mM; Sigma, Cat# S7653), KCl (5 mM; Sigma, Cat# P5405) or 
sucrose (10 mM; Sigma, Cat# S7903). Methionine sulfoximine (MSO; 
5 mM; Sigma, Cat# M5379) was used to inhibit glutamine synthetase.

Whole-cell patch-clamp recordings and 
paired recordings

Whole-cell patch-clamp recordings from CA1 pyramidal neurons 
of tissue cultures were carried out at 35°C (1–3 cells per culture). For 
recordings of spontaneous excitatory postsynaptic currents (sEPSCs) 
the bath solution (artificial cerebrospinal fluid, ACSF) contained 
126 mM NaCl, 2.5 mM KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 
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2 mM CaCl2, 2 mM MgCl2, 10 mM glucose and was saturated with 
95% O2/5% CO2. For recording of intrinsic cellular properties in 
current-clamp mode, the basic bath solution contained also 10 μM 
D-APV, 10 μM NBQX (Tocris; Cat# 0373) and 10 μM BMI (Sigma, 
Cat# 14343) or 10 μM Gabazine (Sigma, Cat# S106). Patch pipettes for 
sEPSC recordings and for intrinsic cellular properties recordings 
contained 126 mM K-gluconate, 10 mM HEPES, 4 mM KCl, 4 mM 
ATP-Mg, 0.3 mM GTP-Na2, 10 mM PO-Creatine, and 0.1% (w/v) 
biocytin (pH 7.25 with KOH, 290 mOsm with sucrose, all from 
Sigma). Spontaneous excitatory postsynaptic currents (sEPSCs) were 
recorded at a holding potential of −60 mV for CA1 pyramidal 
neurons. A holding potential of −80 mV was used for astrocytes in the 
CA1 subfield of the hippocampus.

Series resistance was monitored before and after each recording, 
and recordings were discarded if the series resistance reached 
≥30 MΩ. In current-clamp mode, I–V curves were generated for 
CA1 neurons by injecting 1 s square pulse currents, starting at −100 
pA and increasing in 10 pA steps up to +40 pA (sweep duration: 2 s). 
For astrocyte membrane properties, I–V curves were generated by 
injecting 1 s square pulse currents, starting at −500 pA and 
increasing in 100 pA steps until +500 pA (sweep duration: 2 s). 
Resting membrane potential was assessed from the baseline value of 
the I–V-curve. Input resistance was calculated for the injection of 
−100 pA (CA1 pyramidal neurons) and − 500 pA (astrocytes) 
currents, respectively, within a 200 ms time frame at the end of the 
current step.

For paired whole-cell patch-clamp recordings, action potentials 
were generated in the presynaptic CA3 pyramidal neuron by square 
current pulses (1 nA) elicited at 0.1 Hz while recording evoked 
excitatory postsynaptic currents (eEPSCs) from CA1 pyramidal 
neurons for 20 min. Wash-in of ACSF containing 5 mM NH4Cl 
started after 10 min of baseline recordings. Neurons were considered 
connected if >5% of action potentials evoked time-locked inward 
eEPSCs within 10 ms after action potential induction.

Post hoc identification of recorded 
neurons and astrocytes

After recording the intrinsic cellular properties, tissue cultures 
were fixed in a solution of 4% (w/v) paraformaldehyde and 4% (w/v) 
sucrose in 0.1 M phosphate-buffered saline (PBS) for 1 h at room 
temperature. After fixation the tissue cultures were washed with 0.1 
PBS. Afterwards, the fixed tissue cultures were incubated for 1 h at 
room temperature in blocking solution consisting of 10% (v/v) normal 
goat serum (NGS; Fisher Scientific, Cat# NC9270494) and 0.5% (v/v) 
Triton X-100 in 0.1 M PBS. Biocytin (Sigma-Aldrich, Cat# B4261) 
filled neurons and astrocytes were stained with Alexa-488 or Alexa-
633 conjugated Streptavidin (1:1000 in 0.1 M PBS with 10% NGS and 
0.1% Triton X-100; Thermo Fisher Scientific, Cat# S32354 or S21375) 
overnight at 4°C while shaking. DAPI (Thermo Fisher Scientific, Cat# 
62248) or TO-PRO® (Invitrogen, Cat# T-3605) staining was used to 
visualize cytoarchitecture (1:2000; in 0.1 M PBS for 15 min). Slices 
were washed three times with 0.1 M PBS, transferred and mounted 
onto glass slides with anti-fading mounting medium (DAKO; Agilent, 
Cat# S3023) for visualization. Streptavidin-stained CA1 pyramidal 
neurons were visualized with a Leica TCS SP8 laser scanning 

microscope with 20× (NA 0.75; Leica), 40× (NA 1.30; Leica) and 63× 
(NA 1.40; Leica) oil-submersion objectives.

Experimental design and statistical analysis

Electrophysiological recordings were obtained using a 
MultiClamp  700B amplifier (Molecular Devices), digitized with 
Axon Digidata 1550B (Molecular Devices), and analyzed using 
Clampfit 11 of the pClamp11 software package (Molecular Devices). 
sEPSC properties were analyzed using the automated template 
search tool for event detection. Only inward current responses were 
analyzed in the respective experiments. Clampfit 11 (Molecular 
Devices®) was used to analyze paired recordings and the passive 
membrane properties of CA1 pyramidal neurons and astrocytes. 
Statistical comparisons were carried out using GraphPad Prism 7 
(GraphPad software). For comparison of two groups Mann–
Whitney test was used. In order to statistically compare three 
groups of paired measurements, Friedman test followed by Dunn’s 
post hoc test was selected. For statistical evaluation of XY-plots, a 
two-way ANOVA test followed by Sidak’s multiple comparisons test 
was performed. To compare the mean values of amplitude, failure 
rate, decay and risetime before and after perfusion of NH4Cl for 
paired recordings, the Wilcoxon matched-pairs signed-rank test 
was used. In Figure  1E, one cell that had a baseline amplitude, 
which was higher than three times the standard deviation value 
compared to the mean was excluded from further analysis (3× SD 
criterion). In Figure 2B, two cells that had an extremely aberrant 
increase in their frequency during wash-out (~11- and ~44-fold, 
respectively) after perfusion with NaCl were excluded from further 
analysis. In Figure 5, three cells that showed an aberrant increase or 
decrease in their amplitudes or frequencies under normal 
non-treated conditions (ACSF-only), with values during the last 
minute, three times different compared to the values of baseline, 
were also excluded from further analysis.

Digital illustrations

Figures were prepared using the Affinity Designer (Serif Europe, 
Nottingham, United Kingdom) and the Adobe Photoshop (Adobe, 
San Jose, CA, United States) graphics software. Image brightness and 
contrast were adjusted.

Results

Acute exposure to NH4Cl attenuates sEPSC 
frequency

Spontaneous excitatory postsynaptic currents (sEPSCs) were 
recorded from individual CA1 pyramidal neurons of entorhino-
hippocampal tissue cultures (≥18 days in vitro; Figures 1A,B), to assess 
acute effects of NH4Cl on excitatory synaptic activity. Baseline 
recordings were taken in ACSF for 10 min, followed by a 10-min 
exposure to 5 mM NH4Cl in ACSF, and a 10-min ACSF wash-out 
(Figures  1C,D). NH4Cl significantly reduced sEPSC frequencies 
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without affecting mean sEPSC amplitude (Figure 1E). This effect was 
not permanent post-wash-out, with the vast majority of cells showing 
increased sEPSC frequencies afterwards (Figure  1E; baseline vs. 

post-wash-out; not significantly different statistically). The exact 
mechanism and reason for the increased sEPSC frequencies after 
wash-out are currently unknown.

FIGURE 1

Effect of NH4Cl on spontaneous excitatory postsynaptic currents recorded from CA1 pyramidal neurons. (A) Overview of a mouse organotypic 
entorhino-hippocampal tissue culture stained with DAPI (EC, entorhinal cortex; DG, dentate gyrus; CA1, Cornu Ammonis 1; CA3, Cornu Ammonis 3). 
Scale bar, 400  μm. (B) Example of CA1 pyramidal neurons filled with biocytin during recording and post hoc-stained with Streptavidin 633. Scale bar, 
50  μm. (C) Schematic illustration of the experimental design. A 10-min baseline recording was followed by a 10-min wash-in of 5  mM NH4Cl, and 
subsequently, a 10-min wash-out with regular ACSF. (D,E) Sample traces and group data of spontaneous excitatory postsynaptic currents (sEPSCs) 
recorded from CA1 pyramidal neurons before (10  min), during (10  min) and after (10  min) exposure to 5  mM NH4Cl (n  =  18 cells from 11 cultures; 1 cell 
was excluded from the analysis based on the 3x SD criterion; Friedman test followed by Dunn’s post hoc test; for comparison of the mean frequency 
pbaseline-wash-in  =  0.014; pwash-in-wash-out  <  0.001). Connected gray dots indicate data points from individual cells, values represent mean  ±  SEM (***p  <  0.001, 
*p  <  0.05; NS, not significant).
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FIGURE 2

Increased extracellular chloride, potassium or osmolarity do not reduce the frequency of spontaneous excitatory postsynaptic currents (sEPSC). (A,B) 
Sample traces and group data of sEPSCs recorded from CA1 pyramidal neurons of tissue cultures before (10  min), during (10  min), and after (10  min) 
exposure to 5  mM NaCl (n  =  8 cells from 8 cultures; Friedman test followed by Dunn’s post hoc test). (C,D) Sample traces and group data of sEPSCs 
recorded from CA1 pyramidal neurons of tissue cultures before (10  min), during (10  min), and after (10  min) exposure to 5  mM KCl (n  =  10 cells from 6 
cultures; Friedman test followed by Dunn’s post hoc test; for comparison of the mean amplitude: pbaseline-wash-in  =  0.042; pwash-in-wash-out  =  0.001. For 
comparison of the mean frequency pbaseline-wash-in  =  0.011). (E,F) Sample traces and group data of sEPSCs recorded from CA1 pyramidal neurons of tissue 
cultures before (10  min), during (10  min), and after (10  min) exposure to 10  mM sucrose (n  =  11 cells from 4 cultures; Friedman test followed by Dunn’s 
post hoc test). Connected gray dots indicate data points from individual cells, values represent mean  ±  SEM (**p  <  0.01, *p  <  0.05; NS, not significant).
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Increased extracellular chloride, potassium 
or osmolarity do not reduce the frequency 
of spontaneous excitatory postsynaptic 
currents (sEPSCs)

To determine if the NH4Cl-mediated reduction in sEPSC frequencies 
was due to increased extracellular chloride, potassium, or osmolarity, 
we performed the following control experiments. sEPSCs were recorded 
from another set of CA1 pyramidal neurons before and after washing-in 
5 mM sodium chloride- (NaCl), 5 mM potassium chloride- (KCl) or 
10 mM sucrose-containing ACSF (Figure 2). Prior to these experiments, 
we verified the pH and osmolarity of the solutions, noting an expected 
increase in osmolarity but not pH changes compared to ACSF alone 
(Supplementary Figure S1). Acute, i.e., 10 min exposure to 5 mM NaCl 
containing ACSF did not significantly affect sEPSC amplitudes and 
frequencies (Figures 2A,B). However, exposure to 5 mM KCl in ACSF led 
to a reversible enhancement in synaptic activity, marked by increased 
sEPSC amplitudes and frequencies (Figures  2C,D). The addition of 
10 mM sucrose had no significant effect on sEPSC parameters 
(Figures 2E,F). Notably, we observed an increase in sEPSC frequencies in 
some cells after washout of NaCl, KCl, and sucrose, suggesting that this 
effect may not be specific to NH4Cl (c.f., Figure 1E). We conclude that the 
attenuation of sEPSC frequencies by NH4Cl is mediated by NH4

+ cations, 
rather than by changes in extracellular chloride, potassium or osmolarity.

Synaptic effects of ammonium chloride in 
CA3/CA1-paired recordings

To further validate and extend our findings on the effects of 
NH4Cl on excitatory neurotransmission, we  conducted 
simultaneous whole-cell patch clamp recordings on connected 
pairs of CA3 and CA1 pyramidal neurons (Figure  3A). Action 
potentials were induced in CA3 neurons at 0.1 Hz, while evoked 
excitatory postsynaptic currents (eEPSCs) were recorded from 
CA1 neurons (Figure  3B). Neuronal pairs were considered 
connected when >5% of presynaptic action potentials triggered 
time-locked eEPSCs within 10 ms after action potential induction. 
Following 10-min baseline recordings, 5 mM NH4Cl in ACSF was 
introduced (c.f., Figure 1C). In these experiments we observed a 
slight but significant reduction in eEPSC amplitudes after wash-in 
of NH4Cl (Figure 3C). Additionally, there was a significant increase 
in synaptic failure rates, with the percentage of action potentials 
not evoking postsynaptic responses rising from 24.7 ± 6.51% to 
67.1 ± 11.42% (Figure 3D; mean ± SEM, n = 7 pairs from 7 cultures; 
Wilcoxon matched-pairs signed-rank test comparing mean values 
of first 5 min (baseline) and last 5 min (wash-in) in each pair; 
p = 0.016). However, eEPSC decay times and rise times were not 
significantly affected (Figure 3E). These findings confirmed that 
NH4Cl impacts excitatory synaptic transmission.

NH4Cl alters the passive membrane 
properties of astrocytes while leaving 
membrane properties of CA1 neurons 
unaffected

Previous research has shown that ammonia can cause astrocytic 
swelling (Jayakumar et al., 2009) and disrupt astrocytic glutamate 

uptake (Rose, 2006). Because we observed a reduction in excitatory 
neurotransmission, we wondered whether an effect on astrocytes 
was also present in our experimental setting. To investigate if 
NH4Cl affects astrocytic membrane properties, we  patched 
individual astrocytes in stratum radiatum of the hippocampal CA1 
region in control cultures exposed to ACSF-only and cultures 
exposed to ACSF containing 5 mM NH4Cl (for 10 min) immediately 
before recordings (Figures 4A–C). Interestingly, NH4Cl exposure 
resulted in an increased resting membrane potential (RMP) and 
decreased input resistance in astrocytes (Figures  4B,C). To 
determine the specificity of NH4Cl effect on astrocytes, we also 
recorded passive membrane properties of CA1 pyramidal neurons 
in ACSF-only or ACSF with 5 mM NH4Cl (different sets of cultures; 
10 min; Figures  4D–F). These recordings showed no significant 
changes in RMP and input resistance between the two groups 
(Figures 4E,F), suggesting that at 5 mM NH4Cl specifically alters the 
passive membrane properties of astrocytes without significantly 
affecting those of CA1 neurons.

Inhibition of glutamine synthetase prevents 
the NH4Cl-mediated weakening of sEPSC 
frequency

Glutamine synthetase, primarily expressed by astrocytes in the 
central nervous system (Derouiche and Frotscher, 1991), is essential for 
ammonia and synaptic glutamate clearance (Suarez et  al., 2002). 
We theorized that NH4Cl exposure might reduce sEPSC frequencies 
via astrocytic glutamine synthetase, which converts glutamate to 
glutamine when NH4Cl is present. This process potentially diminishes 
the availability of glutamate, impacting excitatory synapses. To test this, 
we initially recorded a 5-min sEPSC baseline, followed by a 1-min 
wash-in of ACSF containing 5 mM methionine sulfoximine (MSO) 
(Figure 5A), an irreversible inhibitor of glutamine synthetase (Jeitner 
and Cooper, 2014). Subsequently, we  introduced either NH4Cl-
containing or regular ACSF for 10 min (Figure 5A). As before, 5 mM 
NH4Cl reduced the mean sEPSC frequency without altering sEPSC 
amplitudes (Figure 5B). However, pre-treatment with 5 mM MSO did 
not affect sEPSC amplitudes and frequencies but did prevent the 
NH4Cl-induced decrease in sEPSC frequencies, even reversing it after 
10 min (Figure 5C). The exact mechanism and reason for the increased 
sEPSC frequencies are currently unknown. Overall, these results 
suggest that the reduction of sEPSC frequencies is mediated through 
glutamine synthetase. This underscores the role of astrocytes in 
synaptic changes induced by NH4Cl.

Discussion

This study demonstrated that acute NH4Cl exposure reduces 
excitatory synaptic transmission in CA1 pyramidal neurons of 
organotypic slice cultures. While NH4Cl did not significantly alter 
the passive membrane properties of CA1 pyramidal neurons, it 
notably affected astrocytes by increasing their RMP and changing 
their membrane input resistance. The prevention of NH4Cl-
induced reduction in excitatory synaptic activity by inhibition of 
glutamine synthetase suggests that this enzyme in astrocytes 
primarily mediates the detrimental effect of NH4Cl on excitatory 
synaptic transmission.
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Prior research has examined the effects of NH4Cl on synaptic 
plasticity [reviewed in Wen et  al. (2013)], with a focus on how 
sustained hyperammonemia affects activity-dependent synaptic 
plasticity such as long-term potentiation (LTP) and long-term 
depression (LTD) of excitatory neurotransmission (e.g., Citri and 
Malenka, 2008). For example, hyperammonemic states have 

demonstrated detrimental effects on tetanus-induced LTP in 
hippocampal slices obtained from hyperammonemic rats 
(Chepkova et al., 2017; Monfort et al., 2007; Munoz et al., 2000) and 
in cortico-striatal slices in a model of mild HE, specifically, 
portocaval anastomosis (Sergeeva et  al., 2005). Acute NH4Cl 
exposure has disrupted LTP in acute hippocampal slices (Chepkova 

FIGURE 3

NH4Cl reduces the amplitude and increases the failure rate of eEPSCs on CA3-to-CA1 synapses. (A) Post hoc staining (green) of patched and 
simultaneously recorded pairs of CA3 and CA1 pyramidal neurons. TO-PRO (blue) was used to visualize cytoarchitecture (DG, dentate gyrus; CA1, 
Cornu Ammonis 1; CA3, Cornu Ammonis 3) Scale bar, 100  μm. (B) Averaged responses of successfully evoked time-locked postsynaptic currents from 
CA1 neurons. Action potentials were induced at 0.1  Hz in presynaptic CA3 pyramidal neurons while recording evoked excitatory postsynaptic currents 
(eEPSCs) from CA1 neurons. (C–E) Data of amplitude (C), failure rate (D), decay and risetime (E) of eEPSCs before (gray) and during (blue) exposure to 
5  mM NH4Cl [n  =  7 pairs from 7 cultures; Wilcoxon matched-pairs signed rank test comparing mean values of first 5  min (baseline) and last 5  min (wash-
in) in each pair; pamplitude  =  0.016; pfailure rate  =  0.016]. Values represent mean  ±  SEM (*p  <  0.05; NS, not significant).
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FIGURE 4

NH4Cl alters the passive membrane properties of astrocytes. (A) Post hoc staining of recorded biocytin-filled astrocytes (arrowhead) in the stratum 
radiatum of CA1. TO-PRO (gray) was used to visualize cytoarchitecture (pcl, stratum pyramidale; rad, stratum radiatum; lcm, stratum lacunosum-
moleculare). Scale bar, 50  μm. (B) Group data of input–output curves of astrocytes in non-treated and 5  mM NH4Cl-treated cultures (ncontrol  =  12 cells 
from 3 cultures; nNH4Cl  =  13 cells from 4 cultures; 2way ANOVA followed by Sidak’s multiple comparisons test; p−500  =  0.003; p−400  =  0.037; p400  =  0.004; 
p500  <  0,001). (C) Group data of resting membrane potentials and input resistances of astrocytes in non-treated and 5  mM NH4Cl-treated cultures 
(ncontrol  =  12 cells from 3 cultures; nNH4Cl  =  13 cells from 4 cultures; Mann–Whitney test; pRMP  <  0,001; pInput Resistance  =  0.03). (D) Post hoc staining of 
recorded biocytin-filled CA1 pyramidal neurons (arrowheads). Scale bar, 100  μm. (E) Group data of input–output curves of CA1 pyramidal neurons in 
non-treated and 5  mM NH4Cl-treated cultures (ncontrol  =  13 cells from 4 cultures; nNH4Cl  =  13 cells from 4 cultures; 2way ANOVA followed by Sidak’s 
multiple comparisons test). (F) Group data of resting membrane potentials and input resistances of CA1 pyramidal neurons in non-treated and 5  mM 
NH4Cl-treated cultures (ncontrol  =  13 cells from 4 cultures; nNH4Cl  =  13 cells from 4 cultures; Mann–Whitney test). Gray dots indicate individual data points, 
values represent mean  ±  SEM (***p  <  0.001, **p  <  0.01, *p  <  0.05; NS, not significant).
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et  al., 2006) and impaired LTD in the cortico-striatal pathway 
(Chepkova et al., 2012). Our experiments align with these findings, 
showing acute NH4Cl exposure leads to a reduction in sEPSC 
frequencies, increased synaptic failure rate and reduced amplitudes 
in connected CA3-CA1 neuron pairs (Lazarenko et al., 2017). The 
implications of our findings extend to the understanding of NH4Cl 
effects on synaptic plasticity: NH4Cl may alter neuronal activity 
responses to stimulation, which in turn could affect LTP and LTD 

induction. This does not necessarily reflect intrinsic changes in the 
neurons’ ability to express synaptic plasticity or alterations in LTP/
LTD per se.

Another important aspect to consider is whether the chronic 
effects of NH4Cl are directly attributed to ammonia or if they partly 
reflect compensatory homeostatic mechanisms counteracting synaptic 
effects of NH4Cl. Indeed, chronic hyperammonemia has been linked 
to modifications of AMPA receptor composition, possibly indicating a 

FIGURE 5

Inhibition of glutamine synthetase prevents the NH4Cl-induced reduction of sEPCS frequency. (A) Schematic illustration of the experimental design. 
Baseline was recorded for 5  min, followed by 1-min wash-in of 5  mM MSO or normal ACSF and a subsequent 10-min wash-in of 5  mM NH4Cl or 
normal ACSF. (B) Group data of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from CA1 pyramidal neurons after wash-in of 5  mM 
NH4Cl or normal ACSF (control) for 10  min (ncontrol  =  9 cells from 6 cultures; nNH4Cl  =  16 cells from 10 cultures; 2way ANOVA followed by Sidak’s multiple 
comparisons test; p10-11 min  =  0.049; p11-12 min  =  0.034; p12-13 min  =  0.013; p13-14 min  =  0.021; p15-16 min  =  0.017). (C) Group data of spontaneous excitatory 
postsynaptic currents (sEPSCs) recorded from CA1 pyramidal neurons of tissue cultures exposed to 5  mM MSO for 1  min, followed by 10-min wash-in 
of 5  mM NH4Cl or normal ACSF (control) (ncontrol  +  MSO  =  10 cells from 6 cultures; nNH4Cl  +  MSO  =  12 cells from 7 cultures; 2way ANOVA followed by Sidak’s 
multiple comparisons test; p15-16 min  <  0.001). Values represent mean  ±  SEM (***p  <  0.001, *p  <  0.05, NS, not significant).
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postsynaptic compensatory response. Specifically, long-term ammonia 
exposure leads to the increased insertion of GluA2-containing, Ca2+-
impermeable AMPA receptors into the membrane (Taoro-Gonzalez 
et al., 2018; Taoro-Gonzalez et al., 2019), influencing the ability of 
neurons to express plasticity crucial for learning and memory 
(Hollmann et  al., 1991; Wiltgen et  al., 2010). Our previous work 
suggested that activated microglia may mediate synaptic homeostasis, 
(Kleidonas et al., 2023), potentially affecting plasticity-induction under 
specific pathological conditions [for review: (Cornell et al., 2022; You 
et  al., 2024)]. Moreover, microglia activation is associated with 
increased inhibition and synaptic plasticity alterations (Abareshi et al., 
2016; Izumi et al., 2021; Jiang et al., 2022; Lenz et al., 2020; Strehl et al., 
2014), as observed in chronic HE (Sancho-Alonso et al., 2022a). It is 
evident that further investigation is required to clarify the interplay 
between NH4Cl exposure, changes in excitatory neurotransmission, 
microglia activation, and maladaptive homeostatic synaptic plasticity.

Alterations in the structure and function of astrocytes play a 
significant role in HE pathology (Claeys et al., 2021; Elsherbini et al., 
2022; Jaeger et al., 2019; Lu et al., 2019). Traditionally, astrocytic swelling 
was attributed to ammonia exposure, but Rangroo Thrane et al. (2013) 
presented evidence challenging this view, suggesting that impaired 
potassium buffering by astrocytes underlies acute in vivo effects of 
ammonia. Compelling evidence underscores that ammonia prompts 
oxidative and nitrosative stress, specifically altering astrocytic but not 
neuronal functions (Gorg et al., 2019; Gorg et al., 2013; Haussinger 
et  al., 2022; Lachmann et  al., 2013). Our findings corroborate the 
vulnerability of astrocytes to NH4Cl; we observed that acute NH4Cl 
exposure results in hippocampal astrocytic depolarization and a 
decrease in their input resistance (c.f., Stephan et al., 2012). Notably, 
these alterations do not extend to the passive membrane properties of 
CA1 pyramidal neurons, contrasting observations in acute hippocampal 
slices (Kelly and Church, 2005). This may suggest that the neuronal 
effects of NH4Cl may vary between acutely prepared brain slices and 
organotypic tissue cultures, which are allowed an 18-day post-
preparation recovery period. Thus, investigating the impact of NH4Cl 
on acutely lesioned networks in vitro, and in vivo could further elucidate 
the complex pathology of hyperammonemia, offering new insights into 
its effects on brain tissue. Regardless of these considerations, it remains 
to be shown whether the effects of NH4Cl on astrocytes and excitatory 
synaptic transmission reported in this study can be replicated in the 
hippocampus and other brain regions of the intact brain.

Despite these considerations, our research demonstrated that 
pharmacological inhibition of glutamine synthetase mitigates the 
NH4Cl-induced reduction in sEPSC frequencies. This finding implies 
a significant recruitment of astrocytic glutamine synthetase early in 
NH4Cl exposure. Given that astrocytic glutamine synthetase plays a 
crucial role in converting ammonium and glutamate into glutamine 
(Rose et al., 2013), its activation supports the swift removal of glutamate 
from the synaptic cleft by astrocytes (Magi et al., 2019), which may 
affect synaptic activity. Excitatory amino acid transporters 1 and 2 
(EAAT1 and EAAT2) on astrocytic plasma membranes might 
be involved in this process (Todd and Hardingham, 2020). However, 
further research is required to unravel the complex mechanisms and 
consequences of these findings, including the observed shifts in 
astrocyte RMP and input resistance. Determining whether the early 
heightened activity of glutamine synthetase, the suppression of 
excitatory transmission, and alterations in astrocyte RMP and input 
resistance culminate in compensatory maladaptive adjustments, and 

NH4Cl-induced dysfunctions during prolonged hyperammonemia 
remains a critical inquiry. We are confident that taking into account 
these temporal dynamics, along with the possible involvement of 
(microglia-mediated maladaptive) homeostatic plasticity, will aid in 
understanding the pathomechanisms of HE.
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SUPPLEMENTARY FIGURE S1

Osmolarity, but not the pH, of ACSF is affected by 5 mM NH4Cl. (A) Group 
data of pH values of: ACSF, ACSF with 5 mM NH4Cl, ACSF with 5 mM KCl, 
ACSF with 5 mM NaCl and ACSF with 10 mM sucrose (n  =  5 samples per 
group; Ordinary one-way ANOVA followed by Tukey’s multiple comparisons 
test). (B) Group data of osmolarity values of: ACSF, ACSF with 5 mM NH4Cl, 
ACSF with 5 mM KCl, ACSF with 5 mM NaCl and ACSF with 10 mM sucrose 
(n = 5 samples per group; Ordinary one-way ANOVA followed by Holm–
Sidak’s multiple comparisons test; pNH4Cl = 0,009; pKCl <0,001; pNaCl <0,001; 
psucrose <0,001). Values represent mean ± S.E.M. (**p<0.001, *p<0.05; NS, 
not significant).
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