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Necrostatin-1, a small molecular alkaloid, was identified as an inhibitor of 
necroptosis in 2005. Investigating the fundamental mechanism of Necrostatin-1 
and its role in various diseases is of great significance for scientific and clinical 
research. Accumulating evidence suggests that Necrostatin-1 plays a crucial 
role in numerous neurological disorders. This review aims to provide a 
comprehensive overview of the potential functions of Necrostatin-1 in various 
neurological disorders, offering valuable insights for future research.
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1 Introduction

In recent years, exploring the mechanisms of cell death has been a hot topic in medicine, 
cytology, and biology. Cell death can occur through various pathways, such as necrosis, 
apoptosis, necroptosis, pyroptosis, and ferroptosis (Yin et al., 2015). Necroptosis, a form of 
programmed cell death, has been shown to play a crucial role in immune regulation, tissue 
damage, and tumorigenesis (Gong et al., 2019; Gao W. et al., 2022) (Figure 1). Morphologically, 
necroptosis shares similarities with necrosis, characterized by cell swelling, organelle swelling, 
cell lysis, and the release of cellular debris (Davidovich et al., 2014). Necrostatins are a class of 
compounds that prevent necroptosis, including Necrostatin-1, necrostatin-2, necrostatin-5, 
and necrostatin-7 (Degterev et al., 2008). Since its discovery in 2005, Necrostatin-1 has become 
the most widely used necroptotic inhibitor (Degterev et  al., 2005). Further studies have 
revealed that Necrostatin-1 specifically inhibits receptor-interacting protein 1 (RIP1). Geng 
et al. (2017) investigated the pharmacokinetics and bioavailability of Necrostatin-1 using an 
LC–MS/MS method, reporting an absolute bioavailability of 54.8%. Elucidating the 
fundamental mechanism of Necrostatin-1 and its role in various diseases is of great importance 
for both scientific and clinical research. Emerging evidence suggests that Necrostatin-1 
possesses numerous pharmacological activities, including anti-cancer (Liu et al., 2015; Polito 
et al., 2016), anti-osteoporosis (Feng et al., 2018; Chen et al., 2018b; Feng et al., 2023), anti-
glaucoma (Dong et al., 2012; Liu M. et al., 2022), anti-periodontitis (Yan et al., 2018; Tan et al., 
2023), anti-osteoarthritis (Liang et  al., 2018), and protective effects on the kidneys 
(Linkermann et al., 2013; Dong et al., 2018; Shen et al., 2019), lungs (Guan et al., 2017; Mou 
and Mou, 2020), liver (Zhou et al., 2013; Kim and Lee, 2017; Xie and Huang, 2019), heart 
(Carbone et al., 2016; Qiao et al., 2021; Erdogmus Ozgen et al., 2022), and nervous system and 
so on. Currently, increasing studies are exploring the neuroprotective role of Necrostatin-1 in 
neurological disorders. Therefore, the published work in this topic should not be neglected. 
Compared with other review papers (Zhang et al., 2017; Liao et al., 2020; Yu et al., 2021), this 
paper reviews the latest research of Necrostatin-1 in neurological disorders. Meanwhlie, this 
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paper also introduces the “Toxicity of Necrostatin-1  in nervous 
system” and “Necrostatin-1 plays a neuroprotective role via other cell 
death pathways.” These findings will offer valuable insights for 
future research.

Necroptosis plays an important role in various organs, such as the 
bone, brain, heart, kidney, skin, lungs, colon and so on.

2 Signaling pathway of Necrostatin-1

Necroptosis is a form of programmed necrosis that is independent 
of caspase regulation. When caspase is inhibited or not activated, 
necroptosis is activated (Zanetti and Weinlich, 2021). Previous studies 
have indicated that necrostatins are a class of compounds that inhibit 
RIP1. In normal and pathological conditions, necrostatins play an 
important role by inhibiting necroptosis or other pathways. In cells, 
necroptosis can be initiated by multiple upstream regulators, including 
TNF-α, FASL, APO-1 L, TRAIL, and IFN-α/β. Among them, TNF-α 
is the most important upstream regulator of necroptosis (Kearney 
et al., 2015; Pinci et al., 2022) (Figure 2). The binding of TNF-α to 
TNFR1 on the cell membrane stimulates different signaling pathways, 
including necroptosis, RIP1-dependent apoptosis (RDA), RIP1-
independent apoptosis (RIA), and nuclear factor kappa B (NF-κB). 
Meanwhile, RIPK1, RIPK3, and MLKL are important downstream 
regulators of necroptosis. The mechanism of necroptosis is related to 
the activation of RIP1, RIP3 and MLKL (Cao and Mu, 2021) 
(Figure 3). By interacting with the T-loop, necrostatins can potently 
inhibit RIP1 autophosphorylation. RIP1 phosphorylation leads to the 
recruitment of RIP3 to RIP1 and subsequent formation of RIP1-RIP3 
complex. This complex induces the phosphorylation of MLKL, which 
forms small holes in the plasma membrane. Eventually, disruptions of 
the plasma membrane lead to cell death (Cao and Mu, 2021). 
Therefore, necrostatins efficiently blocks RIP1/RIP3/MLKL signal 

transduction by inhibiting RIP1 phosphorylation. Interestingly, 
Necrostatin-1 has no direct inhibitory effect on RIP3 and does not 
block its autophosphorylation. In addition, necrostatins may 

FIGURE 1

Main roles of necroptosis in various tissues.

FIGURE 2

Molecular pathways of TNF-α induced necroptosis.
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be  involved in hair cycle regulation under normal physiological 
conditions. Mechanistically, necrostatins upregulated Wnt3a and 
Wnt5b mRNA expression and increased the translocalization of 
β-catenin into the nucleus by stimulating β-catenin promoter binding 
activity (Zheng et al., 2020).

The combination of TNF-α and TNFR1 on the cell membrane 
stimulates different signaling pathways, including necroptosis, RIP1-
dependent apoptosis (RDA), RIP1-independent apoptosis (RIA), 
nuclear factor kappa B (NF-κB). The RIP1 autophosphorylation sites 
include Ser14/15, Ser20, Ser161, and Ser166.

3 Necrostatin-1 and other cell death 
pathways

Increasing studies show that Necrostatin-1 not only suppresses 
necroptosis but also inhibits other cell death pathways (ferroptosis, 
apoptosis, pyroptosis). Ferroptosis is caused by the iron-mediated 
accumulation of lipid peroxidation, which is distinct from 
apoptosis and necroptosis (Newton et al., 2024). Necrostatin-1 not 
only perform a critical role in necroptosis but also in ferroptosis 
and maintain significant cellular mechanism. Yuk et  al. (2021) 
demonstrated that Necrostatin-1 blocked ferroptosis through a 
mechanism independent from RIP1 and IDO inhibition in Huh7 
and SK-HEP-1 cells. Caspase-8 is an executor of apoptosis. The 
aggregation of caspase-8 can lead to self-activation and activation 
of exogenous apoptotic pathways. Meanwhile, they promote the 
degradation of RIP1/RIP3 and lead to the closure of necroptosis 
signaling pathways (Fritsch et  al., 2019). Some studies have 
explored the role of Necrostatin-1 on brain injury and its 
relationship with cell death pathways. They found that 
Necrostatin-1 not only blocked the occurrence of necroptosis but 
also significantly inhibited the expression of caspase-3 (an 
apoptosis-associated protein) and beclin-1 (an autophagy-
associated protein) (Wang et al., 2012). In addition, Necrostatin-1 

attenuates caspase-1-dependent pyroptosis induced by the RIP1/
ZBP1 pathway in ventilator-induced lung injury (Shao et al., 2022).

4 Toxicity of Necrostatin-1

Although numerous studies have shown that Necrostatin-1 plays 
a neuroprotective role, there is evidence to support that Necrostatin-1 
may damage the nervous system. In rotenone-induced PD model, 
Necrostatin-1 abolished necroptosis but did not prevent toxicity (Ye 
et al., 2023). Most likely, Necrostatin-1 activates a switch between cell 
death pathways. We think that Necrostatin-1 induces apoptosis and 
necroptosis by inhibiting mitophagy and promoting the accumulation 
of mitochondrial damage. Autophagy and necroptosis play an 
important role in most neurodegenerative diseases. Goodall et al. 
described a strong interaction between necrosome components and 
autophagy-related proteins. The knockdown of Necrostatin-1 
abrogates this interaction and promotes apoptosis (Goodall et al., 
2016). The inhibitory effect of Necrostatin-1 on autophagy has been 
reported in 6-hydroxydopamine treated neurons (Wu et al., 2015). 
Additionally, RIP1 knockdown upregulated autophagy, while 
Necrostatin-1 was shown to downregulate autophagy (Yonekawa et al., 
2015). By inhibiting mitophagy, Necrostatin-1 affects mitochondrial 
morphology and mitochondrial clearance, which could enhance the 
effect of any Parkinsonian toxin (Alegre-Cortés et al., 2020). These 
different research results indicate that the underlying mechanism 
among Necrostatin-1, necroptosis and apoptosis is a complicated 
network, which is why Necrostatin-1 exhibits different effects in the 
nervous system.

5 Necrostatin-1 and inflammation

Neurodegenerative diseases are a large group of neurological 
disorders characterized by neuronal loss, including Alzheimer’s 
disease (AD), Parkinson’s disease (PD), and others (Dugger and 
Dickson, 2017). Although these neurodegenerative diseases have 
different pathogenetic mechanisms, inflammation plays a crucial role 
in their progression. Inflammation is the body’s defensive response to 
stimuli, and there is a mutually reinforcing effect between necroptosis 
and inflammation (Pasparakis and Vandenabeele, 2015). Necroptosis 
eventually leads to the release of cellular contents, causing an 
inflammatory response. Simultaneously, inflammation induces 
necroptosis via pro-inflammatory mediators (Kearney et al., 2015). 
Therefore, inhibiting necroptosis has great potential for treating 
neurodegenerative diseases by reducing inflammation. RIP1, a key 
target of necroptosis, promotes inflammatory responses via 
necroptotic cell death. In addition to inducing necroptotic cell death, 
RIP1 can also directly induce inflammation by producing 
pro-inflammatory cytokines, independent of cell death (Ofengeim 
and Yuan, 2013). As an inhibitor of RIP1, Necrostatin-1 exhibits 
significant anti-inflammatory effects in various inflammatory diseases, 
including hepatitis, pneumonia, and arthritis (Zhou et al., 2013; Jhun 
et al., 2019). Apoptosis of neutrophils is necessary for the resolution 
of inflammation. Necrostatin-1 is not only an inhibitor of necroptosis 
but also a promoter of neutrophil apoptosis, inhibiting the 
development of inflammation (Jie et  al., 2016). Indoleamine 
2,3-dioxygenase (IDO), a rate-limiting enzyme of tryptophan 

FIGURE 3

Structural diagrams of RIP1 and RIP3. (A) Schematic of functional 
domains of RIP1 and RIP3. (B) Protein tertiary structures of RIP1 and 
RIP3. KD, kinase domain; ID, intermediate domain; RHIM, RIP 
homotypic interaction motif; DD, death domain.
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catabolism, plays a crucial role in inflammation. Necrostatin-1 is also 
an inhibitor of IDO (Vandenabeele et  al., 2013), suppressing 
inflammation through this mechanism in addition to necroptosis 
inhibition. Neuroinflammation is responsible for generating and 
sustaining the sensitization of nociceptive neurons that lead to chronic 
pain. Liang et al. found that Necrostatin-1 ameliorates neuropathic 
pain by inhibiting neuroinflammation (Liang et al., 2019).

6 Necrostatin-1 and reactive oxygen 
species

Reactive oxygen species (ROS), highly reactive chemical 
substances, have long been studied in nervous system diseases (Singh 
et al., 2019). ROS, as regulators of mitochondrial dynamics, regulate 
neuronal development and function. However, a dramatic increase in 
ROS levels leads to cell structure damage under harmful conditions 
(Singh et al., 2019). Relevant studies indicate that the generation of 
ROS is probably RIP1-dependent (Jantas and Lasoń, 2021). ROS can 
increase the expression of RIP1/RIP3 and improve the stability of the 
RIP1-RIP3 complex (Chauhan et al., 2017). Glutamate, an important 
neurotransmitter, plays a crucial role in various neurological diseases. 
In HT-22 cells, Necrostatin-1 inhibits glutamate-induced oxytosis by 
increasing cellular glutathione (GSH) and reducing ROS (Xu et al., 
2007). Additionally, Necrostatin-1 suppresses the phosphorylation of 
ERK1 and ERK2 after glutamate treatment (Zhang et  al., 2013). 
CoCl2-induced neurotoxicity is associated with ERK1/2 
phosphorylation and ROS production, which inhibit cell 
differentiation and lead to cell death. Chen R. et al. (2018) found that 
Necrostatin-1 inhibits CoCl2-induced neurotoxicity by decreasing 
ROS production and ERK1/2 phosphorylation. In H2O2-induced 
SH-SY5Y cell lines, Necrostatin-1 reduces oxidative stress-induced 
cell damage by inhibiting cathepsin D (Jantas et  al., 2020). In 
peripheral nerve injury (PNI) and spinal cord injury (SCI) rat models, 
Necrostatin-1 can reduce ROS and inflammation (Yu et al., 2023). 
Further studies indicate that Necrostatin-1 not only inhibits necrosis 
by inhibiting RIP1/RIP3/MLKL but also inhibits apoptosis by 
activating Bcl-2 (Wang et al., 2014).

7 Necrostatin-1 and neurological 
disorders

7.1 Ischemic stroke and ischemia/
reperfusion

Ischemic stroke (IS) often results in injury to oligodendroglia. 
Oligodendrocyte precursor cells (OPCs) are more vulnerable to cerebral 
ischemia than other mature oligodendroglia. Necrostatin-1 significantly 
promotes oligodendrocyte precursor cell survival and reduces white 
matter damage after cerebral ischemia (Chen et al., 2018a) through the 
RIPK1/RIPK3/MLKL signaling pathway (Deng et  al., 2019). 
Necrostatin-1 also provides neuroprotection in neonatal hypoxia-
ischemia (HI) by preserving mitochondrial function (Chavez-Valdez 
et  al., 2012). Cerebral ischemia/reperfusion (I/R) induces selective 
neuronal injury in the CA1 region of the hippocampus. In cerebral I/R 
rats, Necrostatin-1 improves locomotive ability and relieves anxious 
behavior while decreasing the death rate of neurons through the RIP3/

DAXX signaling pathway (Yang et al., 2017). Traumatic brain injury 
(TBI) is a leading cause of cerebral I/R injury. In a TBI mouse model, 
You et al. found that Necrostatin-1 has anti-inflammatory effects (You 
et  al., 2008), while Wang et  al. found that Necrostatin-1 inhibits 
autophagy and apoptosis (Wang et al., 2012). These results suggest that 
Necrostatin-1 may have therapeutic potential for IS and cerebral I/R.

7.2 Parkinson’s disease

PD is a neurodegenerative disorder characterized by the loss of 
dopaminergic neurons in the substantia nigra pars compacta. Several 
types of cell death, including apoptosis, autophagy-induced cell death, 
and necrosis, have been implicated in PD progression. In PD models, 
Necrostatin-1 prevents rotenone-induced necroptosis by affecting 
mitochondrial morphology (Alegre-Cortés et al., 2020) and exerts a 
protective effect on dopaminergic neurons by decreasing the 
expression of cathepsin B and increasing the expression of Bcl-2 (Wu 
et al., 2015; Jantas and Lasoń, 2022).

7.3 Epilepsy

Epilepsy is a common, highly debilitating neurological disease 
characterized by the abnormal discharge of brain neurons. Necrosis 
and apoptosis are the major forms of neuronal death post-epilepsy. In 
an epileptic mouse model, Necrostatin-1 significantly decreases 
damage to hippocampal tissue and downregulates apoptosis/
necroptosis-related proteins such as cleaved-caspase-3, Bax, RIP1, 
RIP3, and MLKL (Lin et  al., 2020). A 40 μM concentration of 
Necrostatin-1 has an optimal effect (Lin et al., 2020), and inhibition 
of necroptosis may prolong seizure latency (Guan et al., 2021).

7.4 Alzheimer’s disease

Aluminum (Al) is a risk factor for AD. In the Al-induced AD 
model, Necrostatin-1 enhances acetylcholine (ACh) levels and 
downregulates the expression of AD-related genes and proteins (Gao 
X. et  al., 2022). Furthermore, Necrostatin-1 inhibits neural cell 
degeneration and alleviates learning and memory deficits (Qinli et al., 
2013; Jantas and Lasoń, 2022). Postoperative cognitive dysfunction 
(POCD) has become a prevalent complication in the elderly 
population. It is particularly concerning that persistent POCD is likely 
to progress into AD. In POCD patients, sevoflurane stimulates calcium 
overload and neurotoxicity (Yin et al., 2022). Necrostatin-1 attenuated 
sevoflurane-induced cognitive impairment via brain-derived 
neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) 
signaling (Yin et  al., 2022). Additionally, Necrostatin-1 mitigated 
cognitive dysfunction in prediabetic rats (Jinawong et al., 2020).

7.5 Subarachnoid hemorrhage

Cerebral vasospasm, cerebral edema, and blood–brain barrier 
disruption are pathogenic factors in subarachnoid hemorrhage (SAH). 
Relevant studies indicate that inflammation plays a crucial role in 
cerebral vasospasm. Sahin et al. found that Necrostatin-1 ameliorates 
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SAH-induced vasospasm in a rat model (Sahin et  al., 2021). Liu 
C. et al. (2022) discovered that Necrostatin-1 decreases inflammatory 
markers after SAH. In SAH rats, Necrostatin-1 also exerts a 
neuroprotective effect by attenuating blood–brain barrier disruption 
and brain edema (Su et al., 2015; Chen et al., 2019). Mechanistically, 
necroptosis is a significant cause of cell death after SAH. Necrostatin-1 
attenuates early brain injury after SAH by inhibiting necroptosis 
(Chen et al., 2017; Jantas and Lasoń, 2022). Another study suggested 
that Necrostatin-1 plays a neuroprotective role by inhibiting apoptosis 
and autophagy pathways in the SAH model (Chang et al., 2014).

7.6 Spinal cord injury

SCI is a severe nerve injury. Endoplasmic reticulum stress (ERS) 
is a critical pathological consequence of SCI. Necrostatin-1 has a 
protective effect on the endoplasmic reticulum by inhibiting the 
expression of ERS-related genes and proteins, such as C/EBP 
homologous protein (CHOP), immunoglobulin-binding protein (BiP/

GRP78), and X-box-binding protein-1 (XBP-1) (Wang et al., 2017). 
Moreover, Necrostatin-1 improves mitochondrial functions in SCI 
(Jantas and Lasoń, 2022). It decreases Ca2+ concentration, increases 
adenosine triphosphate (ATP) generation, inhibits cytochrome c 
release, and preserves the mitochondrial membrane potential (MMP) 
level (Wang et  al., 2015). In SCI mice, Necrostatin-1 significantly 
promotes locomotor function recovery by inhibiting the M1 
polarization of microglia/macrophages (Tang et  al., 2021). 
Necrostatin-1 also attenuates experimental autoimmune 
encephalomyelitis (EAE) and delayed paraplegia after SCI (Wang 
et al., 2019; Nishijima et al., 2023).

8 Other RIP inhibitors in neurological 
disorders

Increasing evidence suggest that RIP inhibitors play an 
important role in neurological pathologies. Necroptosis-associated 
RIP inhibitors include RIP1 inhibitors and RIP3 inhibitors (Figure 4 

FIGURE 4

Chemical structure of necroptosis inhibitors. Necroptosis inhibitors include RIP1 inhibitors, RIP3 inhibitors, and MLKL inhibitors.
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and Table 1). Besides the Necrostatin-1, Necrostatin-1 s is another 
important RIP1 inhibitor. Preeti et al. (2023) want to evaluate the 
neuroprotective effect of Necrostatin-1 s in the type-2 diabetes 
mellitus model. They found that Necrostatin-1 s mitigates cognitive 
decrement. Further, Necrostatin-1 s reduced tau and amyloid 
oligomer load. In the periventricular leukomalacia model, the 
expression level of RIP1 was drastically increased. Necrostatin-1 s 
greatly ameliorated cerebral ischemic injury and long-term 
neurobehavioral abnormalities, exhibiting a reduction of cerebral 
infarct size and neuronal loss (Sun et al., 2024). In addition, Kartik 
et al. (2023) found that Necrostatin-1 s significantly improve the 
survival of dopaminergic neurons in the PD mouse model. Other 
RIP1 inhibitors such as GSK772, PK68, GSK095, and GSK547 were 
not reported to improve nerve damage. GSK872 is a widely used 
RIPK3 inhibitor. Similar to Necrostatin-1 s, GSK872 improves 
various nerve damage such as retinal neuroinflammation, 
neurodegeneration, SCI, hydrocephalus and so on (He et al., 2021; 
Liu et al., 2021; Huang et al., 2023). Necrosulfonamide is a specific 
MLKL inhibitor. In a transient middle cerebral artery occlusion 
(tMCAO) rat model, necrosulfonamide reduces infarction volume 
and improves neurological deficits (Zhou et al., 2023). Besides the 
neuroprotective effects of tMCAO, necrosulfonamide also 
ameliorates SCI and intracerebral hemorrhage injury (Wang et al., 
2018; Zhang et al., 2022). Interestingly, necrosulfonamide increased 
cleaved PARP-1 levels, indicating the protective effects of 
necrosulfonamide is not related to apoptosis (Zhou et al., 2017).

9 Application of Necrostatin-1

Beyond treating various diseases, Necrostatin-1 plays a crucial 
role in plastic surgery, preservation, transplantation, and inhibition of 
drug toxicity. Plastic surgery failure is a challenge for the medical 
cosmetology industry. Increasing research shows that Necrostatin-1 
can treat various I/R injuries, such as those affecting the heart, lung, 
kidney, and skeletal muscle. In flap surgery, I/R injury is considered 

the primary problem. Liu et al. (2019) found that Necrostatin-1 has a 
protective effect against I/R injury in a skin flap model. These results 
suggest that Necrostatin-1 could be a promising novel strategy in 
plastic surgery. Cryopreservation of spermatogonial stem cells (SSCs) 
is important for preserving the lineages of valuable livestock and 
producing transgenic animals. As a potential cryoprotectant, 
Necrostatin-1 improves the cryopreservation efficiency of SSCs (Jung 
et al., 2020). Jo et al. (2015) also found that Necrostatin-1 improves 
the survival of mouse oocytes. Numerous studies show that 
Necrostatin-1 promotes the maturation, development, and graft 
function of neonatal porcine islets (Lau et  al., 2020a,b, 2021), 
providing an effective strategy for the future application of islet grafts 
(Qin et al., 2022). Emerging evidence suggests that Necrostatin-1 has 
potential radical scavenging activities (Ushijima and Monzaki, 2023). 
Ning et al. found that Necrostatin-1 can decrease cisplatin-induced 
nephrotoxicity by inhibiting oxidative stress (Ning et  al., 2018). 
Takemoto et  al. discovered that Necrostatin-1 ameliorates 
acetaminophen-induced hepatotoxicity by inhibiting ROS (Takemoto 
et al., 2014). These results suggest that Necrostatin-1 has some benefit 
in alleviating drug toxicity. Interestingly, Necrostatin-1 can mitigate 
and treat radiation-induced damage in mice (Huang et al., 2016).

10 Discussion

In this review, we  explored the mechanisms and roles of 
Necrostatin-1 in various neurological disorders (Table 2). Meanwhile, 
we  propose that Necrostatin-1 has great clinical potential in the 
treatment of these disorders. In addition to treating various diseases, 
Necrostatin-1 plays an important role in plastic surgery, preservation, 
transplantation, and inhibition of drug toxicity. Nevertheless, there are 
still many questions regarding Necrostatin-1 that need to be addressed. 
First, Necrostatin-1 has a short half-life, which may affect its 
application. Second, it remains unclear whether Necrostatin-1 can 
affect one or multiple RIP1-dependent pathways in various 
neurological disorders. These findings suggest that the mechanism of 

TABLE 1 Inhibitors of necroptosis.

Name Target CAS number Molecular formula

Necrostatin-1 RIP1 4,311-88-0 C13H13N3OS

Necrostatin-1 s RIP1 852,391–15-2 C13H12ClN3O2

Necrostatin-2 RIP1 852,391–19-6 C13H12ClN3O2

Necrostatin-5 RIP1 337,349–54-9 C19H17N3O2S2

Necrostatin-7 RIP1 351,062–08-3 C16H10FN5OS2

PK68 RIP1 2,173,556–69-7 C22H24N4O3S

GSK3145095 RIP1 1,622,849–43-7 C20H17F2N5O2

GSK547 RIP1 2,226,735–55-1 C20H18F2N6O

GSK2982772 RIP1 1,622,848–92-3 C20H19N5O3

GNE684 RIP1 2,438,637–64-8 C23H24N6O3

GSK963 RIP1 2049868-46-2 C14H18N2O

GSK872 RIP3 1346546-69-7 C19H17N3O2S2

HS-1371 RIP3 2158197-70-5 C24H24N4O

Necrosulfonamide MLKL 1,360,614-48-7 C18H15N5O6S2
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Necrostatin-1 in disease is quite complex. In the future, it is necessary 
for scientists to further explore Necrostatin-1.
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Glossary

RIP1 Receptor-interacting protein 1

RIP3 Receptor-interacting protein 3

TNF-α Tumor necrosis factor-α

TNFR1 Tumor necrosis factor receptor 1

RDA RIP1-dependent apoptosis

RIA RIP1-indipendent apoptosis

NF-κB Nuclear factor kappa B

MLKL Mixed lineage kinase domain-like

AD Alzheimer’s disease

PD Parkinson’s disease

IDO Indoleamine 2,3-dioxygenase

ROS Reactive oxygen species

GSH Glutathione

PNI Peripheral nerve injury

SCI Spinal cord injury

IS Ischemic stroke

OPCs Oligodendrocyte precursor cells

HI Hypoxia-ischemi

LC–MS/MS Liquid chromatography–mass spectrometry

I/R Ischemia/reperfusion

TBI Traumatic brain injury

Al Aluminum

POCD Postoperative cognitive dysfunction

SAH Subarachnoid hemorrhage

ERS Endoplasmic reticulum stress

CHOP C/EBP homologous protein

XBP-1 X box-binding protein-1

ATP Adenosine triphosphate

MMP Mitochondrial membrane potential

EAE Experimental autoimmune encephalomyelitis

SSCs Spermatogonial stem cells
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