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Voltage-gated ion channels are essential for membrane potential maintenance, 
homeostasis, electrical signal production and controlling the Ca2+ flow through 
the membrane. Among all ion channels, the key regulators of neuronal excitability 
are the voltage-gated potassium channels (KV), the largest family of K+ channels. 
Due to the ROS high levels in the aging brain, K+ channels might be affected 
by oxidative agents and be  key in aging and neurodegeneration processes. 
This review provides new insight about channelopathies in the most studied 
neurodegenerative disorders, such as Alzheimer Disease, Parkinson’s Disease, 
Huntington Disease or Spinocerebellar Ataxia. The main affected KV channels in 
these neurodegenerative diseases are the KV1, KV2.1, KV3, KV4 and KV7. Moreover, 
in order to prevent or repair the development of these neurodegenerative 
diseases, previous KV channel modulators have been proposed as therapeutic 
targets.
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1 Introduction

Ion channels are essential for life as they play a fundamental role in neuronal signaling, 
muscle contraction or even nutrient transport (Weaver and Wearne, 2008). Moreover, voltage-
gated ion channels are responsible for membrane potential maintenance, homeostasis, 
electrical signal production and controlling the Ca2+ flow through the membrane 
(Moiseenkova-Bell et al., 2021).

Ion channels are macromolecular pores that control ion flux through the cell membrane 
and consequently the intracellular ion balance (Eren-Koçak and Dalkara, 2021). The pore 
opens with mechanical, chemical or electrical stimulus and consequently ion channels allow 
ions to flow into or out the cell. Voltage-gated ion channels respond to a change in cell 
membrane potential and are highly selective for a specific ion (Na+, K+, Ca2+ or Cl−) (Trimmer 
and Rhodes, 2004). Meanwhile, ligand-gated ion channels respond to specific neurotransmitters 
among other molecules and mechanical-gated ion channels to changes in the mechanical force 
on the membrane.
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Within the group of ion channels, there is a superfamily of K+ ion 
channels. This family is divided into four main families; the calcium-
activated (KCa) family, inward rectifier (Kir) family, two-pore domain 
family (K2P) and voltage-gated (KV) family (Ocaña et al., 2004; Luo 
et al., 2021).

The KCa family is formed by 3 members, classified by single-
channel conductance. Thereby, KCa1.1 (known as BK channels) shows 
large conductance, KCa3.1 (IK) intermediate and KCa2.1–3 (SK) 
small conductance (Sforna et al., 2018). KCa channels are expressed 
in neurons and other cell types in the central nervous system (CNS). 
Furthermore, the Kir channels family is formed by 7 subtypes of 
channels (Kir1–Kir7), and each one has different members. They have 
an inward-rectification property that permits K+ enter the cell 
regulating membrane potential. These channels are expressed in 
different cells and regions of the CNS, and they regulate the 
hyperpolarization of the membrane potential and excitability (Akyuz 
et al., 2022). Meanwhile, two-pore domain K+ channels family consists 
of 15 members (K2P1–K2P7, K2P9–K2P10, K2P12–K2P18). K2P 
channels are dimers and in the CNS regulates cell excitability and 
maintains cellular resting potential. Some of the members are 
implicated in pathological conditions such as stroke, epilepsy, 
depression or inflammation (Talley et al., 2003).

1.1 KV channels

But among all ion channels, the key regulators of neuronal 
excitability are the voltage-gated potassium channels (KV), the largest 
family of K+ channels (Shah and Aizenman, 2014). These KV channels 
are divided into 12 subfamilies, named as KV1–KV12. They are 
composed of 4 α-subunits, each one containing 6 α-helical 
transmembrane domains (S1–S6), voltage sensor (S1–S4) and the ion 
pore (S5–S6). The N- and C-terminals are intracellular and they have 
different regulation sites. They differ in biophysical and 
pharmacological properties and in auxiliary β-subunits too, that 
modulate their activity, trafficking and location (Kuang et al., 2015). 
Although some channels regulate neuronal excitability, others 
participate also in the duration of cardiac action potentials and are 
involved in cell proliferation or even cancer (Bachmann et al., 2020).

Voltage-gated potassium channels are transmembrane channels 
responsible for returning the depolarized cell to a resting state after an 
action potential (Gazulla and Berciano, 2023). Therefore, KV channels 
are important modulating neuronal excitability in the CNS, but also 
participate regulating other organs function.

Changes in ion physical function or gaining or depletion of 
channel function results in channelopathies, several of them associated 
to neurodegenerative disorders (Orfali et al., 2024). In this review, 
we will describe the role of some voltage-gated potassium channel in 
age related neurodegenerative disorders and their modulation for 
these diseases therapy.

2 Age related neurodegenerative 
diseases and voltage-gated K+ channel 
modulation

Age related neurodegenerative diseases have common organ 
deterioration mechanisms due to ROS production and Ca2+ 

intracellular accumulation, inflammatory response and apoptosis that 
results in neuron loss and functional failure. There are some 
therapeutic options; however, these are limited. Several strategies have 
been explored during the last decades in order to palliate or reduce the 
symptoms (Trombetta-Lima et al., 2020). Potassium channels are able 
to modulate activity patterns, defining their vulnerability to degenerate 
and their physiological functions (Duda et al., 2016). KV channels 
regulate cell excitability and homeostasis so they can be considered as 
therapeutic targets in order to prevent or reduce age related 
neurodegenerative diseases, since it has been reported that aging itself 
can affect these channels function. Because ROS levels are highly 
elevated in the aging brain, K+ channels might be affected by oxidative 
agents and be key in aging and neurodegeneration processes (reviewed 
in Sesti et al., 2010). In this condition, molecules involved in the redox 
balance could modify the channel function (Sahoo et al., 2014).

2.1 KV channels in Alzheimer disease

During Alzheimer disease (AD), the amyloid β-peptide (Aβ) 
deposition causes synaptic dysfunction and consequently neuronal 
loss. There have been identified several KV channels that can regulate 
the firing rate (KV1, KV4 or KV7) or the duration of the action potential 
(KV2 or KV3) (Li, 2022) (Figure 1). Moreover, the impairment in these 
KV channels is associated with several pathogenic mechanisms. For 
instance, KV3.4 expression increase due to Aβ deposition initiates 
apoptotic processes and KV2.1 contributes to potassium mobilization 
during neuronal apoptosis, so overexpression of this channel promotes 
this process (Sun et al., 2022). The formation of KV2.1 oligomers by 
oxidative agents contribute to neurotoxicity and this phenomenon is 
aggravated in AD models (Cotella et al., 2012; Wei et al., 2018). This 
oligomerization triggers integrin signaling, activating Src tyrosine 
kinases via autophosphorylated FAK (Yu et al., 2019).

Meanwhile, enhanced KV1.3 expression in microglia, a key 
regulator of microglia function and related to inflammatory response, 
after amyloid plaque formation produces proinflammatory cytokine 
release and apoptotic cascade (reviewed in Revuelta et al., 2022). KV1.5 
is mostly studied in the heart, but it is also presented in the brain and 
its activity is associated with apoptosis. It has been seen that H2O2 
increases channel activity (Caouette et  al., 2003). In contrast, CO 
inhibits KV1.5 current by the increase of ROS, which directly regulates 
the channel. Besides, the increase of NO in response to CO inhibits 
the channel activity by channel phosphorylation (Al-Owais 
et al., 2017).

Concerning KV4 channelopathies they have been linked to AD, 
schizophrenia and epilepsy (Cercós et al., 2021). Particularly in AD, 
the expression of KChIP3 (KV channel-interacting protein 3 or 
calsenilin) is increased. This KChIP3 mechanically promote the 
translocation of KV4 channels to cell membrane, modulating the 
pacemaker activity (Buxbaum, 2004; Wu et  al., 2023). They are 
associated with presenilins (PS1 and PS2), transmembrane proteins 
that are related to early-onset familial AD (Bähring, 2018) KChIP3 
also modifies the gating of the channel, delaying the kinetic 
inactivation and accelerates the kinetic recovery from inactivation. 
Indeed, KV4.3 is involved in transient outward A type potassium 
current in neurons (Lopez-Hurtado et al., 2019).

The proapoptotic protein pentraxin (NP1) is another protein 
presented in dystrophic neurites in AD and related to the regulation 
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of synapse density (Ma et al., 2018). This NP1 regulates the surface 
expression of KV7.2, a channel that controls neuronal excitability. KV7 
channels generate M-current, slow voltage dependent outward current 
that contributes to the maintenance of the resting membrane potential, 
but can also exert a dampening effect on neuronal excitability. KV7.2 
overexpression prevents cells from increased neuronal excitability and 
synapse, a situation provoked by NP1 downregulation during AD 
(Figueiro-Silva et al., 2015) (Table 1).

2.2 KV channels in Parkinson disease

The neuropathological characteristics of Parkinson’s disease (PD) 
(Figure 1) are the degeneration of dopaminergic neurons in the CNS 
and the presence of Lewy bodies, α-synuclein-(SNCA)-positive 
intracytoplasmic inclusions (Poewe et al., 2017). Moreover, in PD 
pathophysiology there is inflammation due to microgliosis and 
astrogliosis and it seems that this inflammation is crucial for PD 
progression (Table 1) (Tansey and Goldberg, 2010).

It has been described that KV1.3 expression is upregulated in some 
animal models of PD, in vitro experiments, and postmortem human 

PD brains. Fyn, the Src family kinase that is involved in the microglia 
activation (Panicker et al., 2015), could regulate the KV1.3 channel 
expression both transcriptionally and post-translationally modifying 
its activity and therefore increasing neuroinflammation (Sarkar 
et al., 2020).

A-type K+ current, generated by KV4.3 and KChip3 interaction, is 
present in CNS DAergic neurons that contribute to regulating the 
neuron’s tonic activity (Chen et al., 2018). A53T-SNCA mice mutant 
which overexpress human α-synuclein with a PD-associated mutation 
(A53T), showed a oxidative dysfunction of this current induced by the 
overexpression of the α-synuclein, increasing the firing rate frequency 
of the dopaminergic substantia nigra neurons (Subramaniam et al., 
2014); in both PD animal models and PD patients KV4.3 expression 
changes have been observed.

KV7 channels are expressed in GABAergic and Dopaminergic 
neurons in the striatum. Activation of KV7 channels induces 
hyperpolarization of Dopaminergic neurons and inhibits the 
excitatory activity (Hansen et al., 2006). Four out of five (KV7.2–KV7.5) 
M-channels members’ activity is regulated by oxidative and 
nitrosylation processes in sensory neurons. While oxidation by H2O2 
augmented channel activity (Linley et al., 2012), nitrosylation by NO 

FIGURE 1

Modulation of KV channels in Alzheimer and Parkinson’s disease. The alteration of some KV channels expression or function modifies neuron excitability 
arising neuron apoptosis and neuroinflammation in Alzheimer and Parkinson’s disease.
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donors inhibited it (Ooi et  al., 2013). In oxidative-stress-induced 
neurodegeneration model, oxidation of the S2–S3 linker of the KV7 
enhance the M-current, protecting cells due to neuronal silencing 
(Gamper et al., 2006; Nuñez et al., 2023).

During PD there is a progressive loss of dopamine (DA) in 
substantia nigra and consequently in the striatum. Recent studies have 
proposed the therapeutic role of KCNQ channel blockers as they 
increase the neuronal bursting pattern in the substantia nigra and 
enhance DA synthesis in the striatum (Liu et al., 2018).

ERG or Kv11 K+ channels are present in the locus coeruleus (LC) 
of the brain. This area is related to cognition, learning and memory, 
among other roles (Uematsu et al., 2017; James et al., 2021; Dahl et al., 
2022). This channel prevents increased firing rate and discharge 
irregularities in those LC neurons (Hasan et al., 2022). In PD, the LC 
neurons degeneration is present before DAergic neurons degeneration. 
It has been seen that in Parkinsonian rats the use of ERG K+ channels 
blockers improves the locomotor deficits, whereas the activators do 

the opposite, increase burst mode and impaired motor function 
(Huang et  al., 2017). So, this channel dysfunction could 
be implicated in PD.

2.3 KV channels in Huntington disease

Huntington disease (HD) is a progressive neurodegenerative 
disease caused by the CAG triples expansion in the Huntington gene 
(MacDonald et al., 1993). Neurons from striatum and the cerebral 
cortex are the two main regions affected during HD. Particularly in 
the medium size spiny neurons (MSNs) from the striatum, K+ 
channels are necessary to maintain the membrane potential 
hyperpolarized and the slow firing rate. During HD there is a 
reduction of KV2.1 channel in MSNs disrupting synaptic integration 
and consequently information processing (Zhang et al., 2018). At the 
same time, it is also reported a reduction of M-current, reducing the 

TABLE 1 Effect of different channelopathies in the neurodegenerative disease and channel modulator.

Associated 
pathology

KV channel
Localization 
SNC

Channel 
expression 
during the 
disease

Function
Channel 
modulators

References

AD

KV1 (KV1.3) Brain 

(oligodendrocytes, 

microglia)

Upregulated Neuroinflammation PAP-1, BmKTX Wang et al. (2020)

KV2 (KV2.1) Brain (cortex and 

hippocampus)

Upregulated Neuronal apoptosis Tacrine Wei et al. (2018)

KV3 (KV3.4) Brain (brainstem, 

hippocampal granule 

cells)

Upregulated Neuronal apoptosis BDS-I Sun et al. (2022)

KV4 Brain, cochlear nucleus Upregulated Neuroexcitation Repaglidine, CL-888 Bähring (2018)

KV7 (KV7.2) Brain, neuroblastoma Downregulated Neuroexcitation Retigabine Figueiro-Silva et al. 

(2015)

PD

KV1 (KV1.3) Brain 

(oligodendrocytes, 

microglia)

Upregulated Neuroinflammation PAP-1, BmKTX Sarkar et al. (2020)

KV4 (KV4.3) Brain (hippocampal 

and cortical pyramidal 

neurons)

Upregulated Neuroexcitation Repaglidine, CL-888 Chen et al. (2018)

KV7 Brain, brainstem 

auditory nuclei, 

neuroblastoma

Upregulated GABAergic and DA 

neurons firing properties 

modulation

Retigabine, XE991 Hansen et al. (2006)

HD

KV2 (KV2.1) Brain (cortex and 

hippocampus)

Downregulated Synaptic dysruption Tacrine Zhang et al. (2018)

KV4.3 Brain (hippocampal 

and cortical pyramidal 

neurons)

Downregulated Neuroprotection Repaglidine, CL-888 Lopez-Hurtado et al. 

(2019)

SCA

KV3.3 (KCNC3) Brain, purkinje cells, 

motoneurons; auditory 

brainstem; cerebellar 

neurons

Gene mutation SCA13 Genetic inactivation 

with antisense 

oligonucleotides 

(ASOs)

Zhang and 

Kaczmarek (2016)

KV4.3 (KCND3) Brain (hippocampal 

and cortical pyramidal 

neurons)

Gene mutation SCA19 Repaglidine, CL-888 Zanni et al. (2021)

https://doi.org/10.3389/fncel.2024.1406709
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Urrutia et al. 10.3389/fncel.2024.1406709

Frontiers in Cellular Neuroscience 05 frontiersin.org

control of the excitability in striatal output neurons of R6/2 mice 
(Figure 2). Retigabine, a potential antiepileptic drug, not only restores 
the hyperactivity network, but also improves motor skills of these 
mice (Cao et al., 2015).

Moreover, the previously mentioned KChIP3 is downregulated in 
HD patients and is associated with neuroprotection (An et al., 2000). 
Several KV4.3/KChIP3 channel complex modulators have been 
proposed in the last years as therapeutic targets to modulate channel 
gating and promote neuroprotection during HD (Lopez-Hurtado 
et al., 2019).

2.4 KV channels in spinocerebellar ataxia

Spinocerebellar ataxia (SCA) is an autosomal dominant 
neurodegenerative disorder characterized by progressive ataxia with 
variable symptoms. There are more than 40 distinct genetic SCA 
(Bhandari et al., 2024). In humans, KV channelopathies are linked to 
disorders in cell excitability, but only few are the principal responsible 

for neurodegeneration, mostly the ones that produce spinocerebellar 
ataxias (SCA) (Zhang and Kaczmarek, 2016). In 2002 there was 
identified a mutation in the KCND3 gene, that codifies KV4.3 channel 
that causes SCA19 (Verbeek et  al., 2002). Mutations in this gene 
provoke impairments in the channel traffic from the endoplasmic 
reticulum to Golgi membrane, reducing the functionality of the 
channel and consequently provoking the disorder (Duarri et al., 2012; 
Zanni et al., 2021).

In the mouse model of SCA3, altered KV channel function is 
associated with Purkinje neuron dysfunction; specifically, the 
inactivation of KV3 current seems to be  the cause (Shakkottai 
et al., 2011).

The SCA13 is another disorder produced by a mutation in the 
gene that encodes KV3.3 channel resulting in cerebellar 
neurodegeneration. The major function of this channel is to drive the 
repolarization phase of action potential, so mutations in this gene 
produce disorders of excitability and consequently cerebellar 
neurodegeneration (Rudy and McBain, 2001; Zhang and 
Kaczmarek, 2016).

FIGURE 2

Modulation of KV channels in Huntington disease. Decrease in the expression of KV2.1 provokes synaptic integration disruption in medium size spiny 
striatum neurons. In Huntington patients, the decrease in the M-current increase the excitability of the striatum neurons.
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Another KV channel that has been linked to episodic ataxia type 1 
(EA1) is the KCNA1 (KV1.1) (Tan et al., 2013). A mutation in KCNA1 
gene is the only responsible for the EA1 resulting in episodic ataxia 
and myokymia. Mutations in this gene can modify the channel current 
density and consequently channel gating, provoking dysfunctions in 
the circuits located in several tissues, such as cerebellum, hippocampus 
or cortex in EA (D’Adamo et al., 2020).

3 Therapeutic approach

Since KV channels are the main regulators of neuronal excitability, 
their up- and downregulation is linked to enhance several 
neurodegenerative disorders, such as AD, PD or even provoke ataxias. 
In order to prevent or repair the development of these 
neurodegenerative diseases, KV channel modulators have been 
proposed as therapeutic targets (Table 1).

3.1 KV1 channel modulators

Although certain NaV-blocking anticonvulsant drugs 
(carbamazepine, phenytoin, and lamotrigine) are used to reduce 
seizures, they do not work as therapy. In this sense, KV1 (KV1.1 and 
KV1.3) channelopathies are involved in cell excitability and firing rates 
in diverse pathological processes, small molecule research and in silico 
approaches are currently being studied to find modulators of these 
channels as a target (D’Adamo et al., 2020). KV1.1 dysfunction, for 
instance, is responsible for episodic ataxia type 1 (EA1). In that regard, 
some negative modulators of KV1.1 have been found (Wacker et al., 
2012), but no molecule able to specifically modulate KV1.1 channels 
has yet been described. Experimental studies have demonstrated that 
some resin acids generated by some plants (piramic acid and 
dehydroabietic acid) are able to open KV channels in vitro by changing 
voltage-dependent activation towards negative potentials (Ottosson 
et al., 2015).

Further, hyperactivation of the mTOR pathway is involved in the 
increased expression and altered distribution of KV1.1 channels in the 
hippocampus of mice with cortical dysplasia with epilepsy. In those 
mice, the classical mTOR inhibitor rapamycin normalized the levels 
of KV1.1, thus proposing that the mTOR pathway may be another 
possible research target to modulate KV1.1 expression (Nguyen and 
Anderson, 2018).

On the other hand, the KV1.3 channel is considered a novel 
therapeutic target to treat neuroinflammatory disorders, such as PD 
and AD, as it plays a crucial role in microglial cells subsets (Wang 
et  al., 2020). During these neurological disorders, there is an 
overexpression of KV1.3 channels concluding that KV1.3 specific 
blockers could mitigate neuroinflammation, and become specific 
therapeutic candidates during AD or PD (reviewed in Revuelta 
et al., 2022).

Some studies showed that PAP-1, a KV1.3 blocker, could reduce 
cerebral Aβ load, diminish neuroinflammation, enhance plasticity of 
hippocampal neurons and improve behavioral deficits in APP/PS1 
transgenic mice (Maezawa et  al., 2018). Furthermore, PAP-1 
administration reduced neurodegeneration and neuroinflammation 
in animal models of PD (Sarkar et al., 2020). Moreover, it has been 
shown that some toxins produced by certain animals can act as a 

modulator of KV1.3 channels. Specifically, the effects of BmKTX, a 
scorpion toxin, targeting KV1.3 have been studied as a possible 
treatment of AD and PD, as it could block microglial activation and 
thus reduce the neuroinflammation (Wang et al., 2020).

3.2 KV2.1 channel modulators

KV2.1 channel overexpression promotes neurotoxicity and 
neuronal apoptosis in AD models (Sun et al., 2022), whereas in HD 
there is a reduction in these channels in medium-sized spiny neurons 
(MSNs) contributing a synaptic disruption (Zhang et al., 2018).

It has been described that tacrine, a cholinesterase inhibitor, can 
act on KV channels. It reduces the expression of KV2.1 channels and 
increases cell proliferation providing neuroprotection during AD (Hu 
et  al., 2020). AD-related mutations can promote increased ROS 
production leading to KV2.1 channel function loss. Therefore, 
inhibition of this channel could offer a novel therapeutic approach for 
AD (Frazzini et al., 2016).

Indeed, several studies relate the activation of KV2.1 channel 
activators with a better prognosis during HD, since these channels are 
downregulated in the disease and are associated with the 
mitochondrial oxidative stress generated in HD (Zhang et al., 2018).

3.3 KV3 channel modulators

KV3.3 channel dysfunction result in the SCA13. A recent study 
shows that the genetic suppression of KV3.3 channels using antisense 
oligonucleotides (ASOs) can reverse the SCA13 outcomes (Zhang 
et al., 2021), meaning that targeting KV3.3 expression may provide a 
potential therapeutic approach for SCA13.

Concerning the KV3.4 channel, its expression is upregulated 
during AD due to Aβ deposition, initiating neuronal apoptosis. Recent 
results suggest that rapid activation/inactivation of these channels 
could be involved in Aβ-induced neurotoxicity. Therefore, reducing 
the expression and/or function of KV3.4  in brains with AD could 
protect Aβ-mediated synaptic alterations (Yeap et al., 2022). Among 
KV3.4 targets, the BDS-I (blood depressing substance-I), a marine 
toxin extracted from Anemonia Sulcate, inhibits the channel activity, 
provoking a reduction of neuronal apoptosis, reducing the expression 
of certain stress markers, such as active caspase 12; preventing Aβ1-42 
induced reactive oxygen species (ROS) production and decreasing the 
release of pro-inflammatory cytokines (Piccialli et al., 2021).

3.4 KV4 channel modulators

In the hippocampus, KV4 channelopathies are related to epilepsy, 
schizophrenia, and AD. Therefore, pharmacological modulation of 
somato-dendritic subthreshold-activating K+ current could function 
as a therapeutic target for these pathologies (Cercós et al., 2021).

Besides, as previously mentioned, KChIP3 is downregulated in 
HD patients, promoting neuroprotection. Hence, KV4.3/KChIP3 
channel complex inhibitors have been proposed as potential 
therapeutic targets to promote neuroprotection during HD (Lopez-
Hurtado et al., 2019). To date, some molecules, such as repaglidine 
and CL-888, have been shown to bind and inhibit KV4.3 currents.
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3.5 KV7 channel modulators

In addition to their well-known relation with infantile epileptic 
encephalopathies, KV7 channelopathies are also linked to several age 
related neurodegenerative diseases (including AD and PD), such as 
neurotoxicity and alteration of GABAergic and Dopaminergic neuron 
activation properties. Downregulation of KV7.2 provokes neurotoxicity 
in AD and therefore, finding activators of these channels could be a 
therapeutic approach to increase neuronal excitation and synapse. 
Among other drugs, retigabine, has been described as capable of 
increasing potassium KV7.2–7.3 channel currents (Czuczwar et al., 
2010). Retigabine acts as a positive allosteric modulator, stabilizing the 
open form of these channels after binding to a hydrophobic pocket 
near the channel gate (Gunthorpe et al., 2012). Nevertheless, this drug 
is not in use due to side effects. Even so, this suggests that 
pharmacological modulation of the M-current could exert beneficial 
effects on the cognitive deficits involved in the pathophysiology of 
neurological disorders (Alles and Smith, 2021).

On the other hand, upregulation of KV7 channels causes a 
modulation of GABAergic and Dopaminergic neuron activation 
properties. In this sense, XE991 blocks KCNQ channels promoting 
action potential in DAergic neurons and increasing their excitability. 
Furthermore, XE991 enhances suprathreshold synaptic responses and 
promotes depolarization of striatal GABAergic projection neurons 
(Chen et al., 2018).

3.6 ERG channel modulators

KV11 or ERG channel could be another therapeutic target for PD 
since the modulation of subthalamic discharge by ERG channel 
inhibitors attenuates motor dysfunction in PD rats (Huang et  al., 
2017). The partial block of ERG K+ channels by antipsychotic drugs 
has also been linked to better dopaminergic neuronal excitability 
(Shepard et al., 2006).

4 Conclusion

KV channels are essentials for a variety of cell functions. Some of 
these functions are related with the neuron excitability and it has been 
probed that the impairment of these channels are implicated in some 
neurodegeneration diseases. Taking these channels as therapeutic 
targets and modulating the function of this channel family could 

be  promising to prevent some of the symptoms of these 
neurodegenerative diseases.
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