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TRPV4 affects visual signals in 
photoreceptors and rod bipolar 
cells
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Introduction: Mechanical sensitive channels expressed in mammalian retinas 
are effectors of elevated pressure stresses, but it is unclear how their activation 
affects visual function in pressure-related retinal disorders.

Methods: This study investigated the role of the transient potential channel 
vanilloid TRPV4  in photoreceptors and rod bipolar cells (RBCs) with 
immunohistochemistry, confocal microscopy, electroretinography (ERG), and 
patch-clamp techniques.

Results: TRPV4 immunoreactivity (IR) was found in the outer segments of 
photoreceptors, dendrites and somas of PKCα-positive RBCs and other BCs, 
plexiform layers, and retinal ganglion cells (RGCs) in wild-type mice. TRPV4-
IR was largely diminished in the retinas of homozygous TRPV4 transgenic mice. 
Genetically suppressing TRPV4 expression moderately but significantly enhanced 
the amplitude of ERG a- and b-waves evoked by scotopic and mesopic lights (0.55 
to 200 Rh*rod−1 s−1) and photopic lights (105–106 Rh*rod−1 s−1) compared to wild-
type mice in fully dark-adapted conditions. The implicit time evoked by dim lights 
(0.55 to 200 Rh*rod−1 s−1) was significantly decreased for b-waves and elongated 
for a-waves in the transgenic mice. ERG b-wave evoked by dim lights is primarily 
mediated by RBCs, and under voltage-clamp conditions, the latency of the light-
evoked cation current in RBCs of the transgenic mice was significantly shorter 
compared to wild-type mice. About 10% of the transgenic mice had one eye 
undeveloped, and the percentage was significantly higher than in wild-type mice.

Conclusions: The data indicates that TRPV4 involves ocular development and 
is expressed and active in outer retinal neurons, and interventions of TRPV4 can 
variably affect visual signals in rods, cones, RBCs, and cone ON BCs.
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Introduction

A variety of retinal disorders are associated with the elevation of intraocular pressure 
(IOP) and changes in the external pressure, such as glaucoma, traumatic retinal injury (TRI), 
and visual impairments occur during air travel, diving, and mountain hiking (reviewed by 
Jonas et al. (2017), Allison et al. (2020), Evans et al. (2021), and Pang (2021)). The retina has 
been reported to express various transient receptor potential channels (TRPs) (reviewed by 
Yang et al., 2022; Krizaj et al., 2023), and some TRPs are also known as mechano-gated 
channels that may be  directly activated by membrane tension (Liu and Montell, 2015), 
however, the role of mechanical sensitive channels (MSCs) in visual functions and pressure-
related retinal diseases has been unclear.
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Transient receptor potential channel vanilloid TRPV is a subset of 
TRPs, including six members TRPV1-6. TRPVs have a permeability 
(P) to Ca2+ higher than PNa+, and the PCa: PNa for TRPV4 is 6–10. 
TRPV4 may be activated by mechanical and osmotic pressure, touch, 
warm temperature, and other factors, and it mediates cation currents 
that reverse at ~0 mV (Strotmann et al., 2000; Suzuki et al., 2003b; 
Nilius et al., 2004; O'Neil and Heller, 2005; Cao et al., 2009; Gao et al., 
2019; Kashio and Tominaga, 2022). These properties allow TRPVs to 
mediate membrane depolarization and Ca2+-related physiological and 
pathological activities. RGCs in the peripheral and paracentral retina 
are the most vulnerable to pressure stresses (Jonas et al., 2017; Allison 
et al., 2020; Evans et al., 2021; Pang, 2021), and TRPV4 has been found 
in the retinal ganglion cell layer (GCL) and plexiform layers of the 
mouse (Ryskamp et al., 2011; Sappington et al., 2015), porcine (Taylor 
et al., 2016), and monkey retina (Gao et al., 2019). The optic nerve 
head exhibited mRNAs of TRPV4 (Choi et al., 2015). The level of 
TRPV mRNAs in isolated RGCs of 7–15 μm in diameter from the 
mouse retina was TRPV4 > TRPV2 > TRPV3 and TRPV1 (Lakk et al., 
2018). RGCs in the mouse (Ryskamp et al., 2011) and primate retina 
(Gao et al., 2019) can be activated by micromolar TRPV4 agonists 
GSK1016790A and 4α-phorbol 12,13-didecanoate (4αPDD), 
exhibiting membrane depolarization and higher firing rate. In 
cultured RGCs, TRPV4 agonists evoked calcium influxes and were 
associated with apoptosis of the neurons (Ryskamp et  al., 2011). 
TRPV4 antagonist RN1734 has been tested in retinal slices in culture 
and revealed a neuroprotective role in the porcine retina (Taylor et al., 
2016). These observations have confirmed the expression and 
potential neurodegenerative role of TRPV4 in RGCs.

On the other hand, the elevation of IOP in rat and mouse 
glaucoma models also damages ribbon synapses of photoreceptors 
and BCs (Cuenca et al., 2010; Fuchs et al., 2012; Park et al., 2014) and 
dendrites of BCs and horizontal cells (Noailles et al., 2022), and the 
dysfunction of rod bipolar cells (RBCs) (Shen et al., 2019) and rod 
signals in AII amacrine cells (Pang et al., 2015) occur before the loss 
of RGCs. Recent data have identified some pressure-evoked cation 
currents in vertebrate photoreceptors and mammalian BCs (20;27) 
that reverse at ~0 mV. Some TRPV4 immunoreactivities were found 
in the processes and somatic membrane of the photoreceptors and 
RBCs. To better understand the role of TRPV4 in the outer retina, in 
this study, we explored the expression of TRPV4 in wild-type and 
TRPV4 knockout mice with immunocytochemistry and confocal 
microscopy and investigated the functions of TRPV4 in photoreceptors 
and ON BCs with patch-clamp recording and electroretinography 
(ERG) in fully dark-adapted conditions.

Methods

Animals and preparations

All procedures were carried out in strict accordance with the 
recommendations in the Guide for the Care and Use of Laboratory 
Animals of the National Institutes of Health, ARVO Statement for the 
Use of Animals in Ophthalmic and Vision Research, and related 
regulations of Institutional Animal Care and Use Committee. Animals 
were 3-7-month old mice, males and females, including C57BL/6 J 
(wide-type mice) purchased from Jackson Laboratory (Bar Harbor, 
ME) and TRPV4 transgenic mice (C57BL/6 N-Trpv4em1(cre/ERT2)Amc/J, 

stock# 029582, Jackson Laboratory) (Suzuki et  al., 2003a,b) 
maintained in our animal facility. The homozygotes (namely 
TRPV4−/−) exhibited a reduced level of TRPV4 expression (see 
results). Chemicals were purchased primarily from Sigma-Aldrich (St. 
Louis, MO) and Tocris Bioscience (Bristol, United Kingdom) except 
otherwise specified.

Patch-clamp recording of bipolar cells

All procedures were performed under infrared (~1  mm) 
illumination with dual-unit Nitemare (BE Meyers, Redmond, WA) 
infrared scopes. The whole-cell patch-clamp recording (Pang et al., 
2010a, 2012), preparation of living retinal slices (Werblin, 1978; Wu, 
1987), light simulation, immunofluorescence, and confocal 
microscopy (Pang et al., 2018; Gao et al., 2019) essentially followed 
procedures described in previous publications.

Animals were dark-adapted for 1–2  h before the related 
experiment. The Ames medium in the recording chamber was 
oxygenated and maintained at 34°C with a temperature control unit 
(TC 324B, Warner Instruments, CT). The controller was wired with 
DigiData1322A to record and monitor the temperature. Axopatch 
700A and 700B amplifiers were connected to DigiData 1322A 
interfaces and operated by the pClamp software v9.2 and v10.3 (Axon 
Instruments, Foster City, CA). Patch pipettes had 9–12  MΩ tip 
resistance when filled with an internal solution containing 112 mM 
Cs-methanesulfonate, 12 mM CsCl, 5 mM EGTA, 0.5 mM CaCl2, 
4  mM ATP, 0.3  mM GTP, 10  mM Tris, and 0.5% Lucifer yellow, 
adjusted to pH 7.3 with CsOH. For current-clamp and some voltage-
clamp recordings, the pipettes were filled with internal solutions 
containing: 112 mM K-gluconate, 10 mM KCl, 10 mM EGTA, 10 mM 
HEPES, 0.5 mM CaCl2, 1 mM MgCl2, 4 mM Na2-ATP, 0.3 mM Na3-
GTP, and 0.5% Lucifer yellow, adjusted to pH 7.3 by KOH. The 
internal solution and external normal Ringer’s solution yield a 
chloride reversal potential (ECl) of −59 mV at room temperature. 
Recorded cells were visualized by Lucifer yellow fluorescence with a 
confocal microscope (LSM 510 and LSM 800, Carl Zeiss, Germany).

A photostimulator delivered light spots of a diameter of 
600–1,200 μm and 500 nm wavelength (λmax = 500 nm, full width-half 
max 10 nm) at a series of intensities (−10 to −1 log I) to stimulate the 
retina via the epi-illuminator of the microscope (Maple and Wu, 1998; 
Pang et al., 2002, 2010b). Since we delivered uncollimated light beams 
through an objective lens of a large numerical aperture (Zeiss 40x/0.75 
water), the incident light could enter the retina in many directions 
and, thus, had a minor photoreceptor self-screening effect (Field and 
Rieke, 2002). The intensity of unattenuated (0  in log unit (log I)) 
500 nm light from a halogen light source was 4.4 × 105 photons.μm−2.
sec−1. The light intensity was transformed into the unit of 
photoisomerization per rod per second (Rh*rod−1 s −1) with a rod 
cross-section of 0.5 μm−2 (Howes et al., 2002) and a rod integration 
time of 0.4 s (Baylor, 1987).

Electroretinography (ERG)

ERG recording followed previously established protocols 
(Pennesi et al., 2003; Abd-El-Barr et al., 2009; Tse et al., 2015). The 
mouse was dark-adapted overnight, anesthetized, and kept on a 
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warm pad of 30–42°C. Under dim red-light illumination, we applied 
a single drop of 1% tropicamide and 2.5% phenylephrine to dilate 
the pupils and a drop of 0.5% proparacaine hydrochloride for 
corneal anesthesia. Then, we placed the mouse with the warm pad 
into a Ganzfeld dome coated with highly reflective white paint 
(Munsell Paint, New Windsor, NY, United  States) on the inner 
surface. A small amount of 2.5% methylcellulose gel was applied to 
the eye to ensure the contact of a platinum recording electrode with 
the center of the cornea. Two similar platinum electrodes were 
placed in the forehead and tail as the reference and ground 
electrodes, respectively. The mouse was kept in complete darkness 
for 5 min before testing. ERG signals were amplified with a Grass 
P122 amplifier (bandpass 0.1–1  kHz; Grass Instruments, West 
Warwick, RI, United States). Data were digitized with a computer 
data acquisition unit (USB-6216, National Instruments, TX) at a 
sampling rate of 10 kHz, and trials were averaged and analyzed with 
custom Matlab code (Mathworks, Natick, MA, United  States). 
Flashes for scotopic measurements were generated by cyan light 
emitting diodes of 503  nm peak wavelength, calibrated with a 
photometer (ILT1700 International Light, MA), and converted into 
Rh*rod−1 s −1 by 1 scot cd m2 = 581 Rh*rod−1 s −1 (Tse et al., 2015). A 
series of metal plates with holes of varying diameters and glass 
neutral density filters were used to attenuate the light intensity. As 
the light intensity increased, the number of trials was reduced, and 
the interval between flashes was increased. Each recording was 
averaged from 20 to 40 trials for light intensities of 0.055 to 0.025 
Rh*rod−1 s −1 with an interval of 2 s, 2–5 trials for lights of 0.6 to 200 
Rh*rod−1 s −1 with an interval of 5–30 s, and one trial for photopic 
lights of 104.81 and 106.17 Rh*rod−1 s −1 with an interval of 45 s and 
105 s, respectively. The light duration for dim lights was 0.5 - 5 ms. 
Photopic stimuli were white lights generated by 1,500-W Novatron 
(Dallas, TX) xenon flash lamps with a duration of 5 ms.

Immunocytochemistry and retrograde 
labeling of RGCs

Double- and triple-immuno-labeling followed our published 
experimental protocols (Zhang et al., 2005; Pang et al., 2010a,b, 
2012; Pang and Wu, 2011; Gao et al., 2019). We fixed the retinas 
(~30) with 4% paraformaldehyde in phosphate buffer (pH 7.4) for 
1–2 h at room temperature or 4°C overnight and then blocked 
them with 10% donkey serum (Jackson ImmunoResearch, West 
Grove, PA) in TBS (D-PBS) with 0.5% Triton X-100 (Sigma-
Aldrich) and 0.1% NaN3 (Sigma-Aldrich) for 2  h at room 
temperature or 4°C overnight to reduce nonspecific labeling. 
Then, we embedded the retina in low gel-point agarose (Sigma-
Aldrich), trimmed it into a 10 × 10 × 10 mm3 block, glued the 
block onto a specimen chamber mounted on a vibratome (Pelco 
102, 1,000 Plus; Ted Pella, Inc., Redding, CA), and subsequently 
cut it into 40-μm-thick vertical sections in PBS solution (Pang and 
Wu, 2011). For staining, retinal tissues were incubated in primary 
antibodies in the presence of 3% donkey serum-TBS for 3 to 
5 days at 4°C. After several rinses, we transferred them into Cy3-, 
Cy5-, or Alexa Fluor 488-conjugated streptavidin (1:200, Jackson 
ImmunoResearch), with Cy3- and/or Cy5-conjugated secondary 
antibodies (1:200, Jackson ImmunoResearch) and/or Alexa Fluor 

488-conjugated secondary antibodies (1:200, Molecular Probes, 
Eugene, OR), in 3% normal donkey serum-TBS solution at 4°C 
overnight. A nuclear dye, TO-PRO-3 (0.5  μL/mL, Molecular 
Probes, Eugene, Oregon), was used with the secondary antibody 
to visualize the nuclei of cells. After extensive rinsing, retinal 
preparations were cover-slipped. Two small pieces of filter paper 
(180-μm thick, MF-membrane filters, Millipore, Billerica, MA) 
were mounted beside flat-mount retinas to prevent them from 
being over-flattened. Control tests were also executed without 
using the primary antibody or with the wrong primary antibodies 
to confirm the results, and secondary antibodies did not generate 
specific signals in retinal layers.

RGCs were identified with a retrograde labeling technique 
previously established by Pang and colleagues (Pang et al., 2010b; Pang 
and Wu, 2011). Briefly, eyeballs of dark-adapted animals were 
enucleated under the illumination of dim red light. The nerve stump 
of the freshly dissected eyeball was dipped into a small drop (3 μL) of 
3% Lucifer yellow (Sigma) and/or 8% neurobiotin (NB, Vector 
Laboratories, CA) in the internal solution (Pang et al., 2010b) for 
20 min. Then, the eyeball was thoroughly rinsed with the oxygenated 
Ames medium (Sigma) to remove the extra dye and dissected under 
infrared illumination. The dark-adapted eyecup with intact retina and 
sclera tissue was transferred into fresh oxygenated Ames medium and 
kept at room temperature for 40 min under a 10 min-dark/10 min-light 
cycle. Subsequently, the whole retina was isolated from the sclera, 
fixed in darkness for 30–45 min at room temperature, and visualized 
with Cy3-, Cy5-, or Alexa Fluor 488-conjugated streptavidin (1:200, 
Jackson ImmunoResearch). The technique brightly labeled the entire 
population of RGCs in the mouse retina (Pang et al., 2010b; Pang and 
Wu, 2011).

Antibodies

Rabbit anti-TRPV4 antibodies (LS-C135, 1: 200; LS-A8583 1:200 
and LS-C94498 1: 100) (Ryskamp et al., 2011; Gao et al., 2019) were 
purchased from LifeSpan Biosciences, Inc. (Seatle, WA). LS-C94498 
was raised against a synthetic peptide from the cytoplasmic domain 
(aa100-150) of mouse TRPV4 conjugated to an immunogenic carrier 
protein. LS-A8583 targets a synthetic 20-amino acid peptide from 
the internal region of human TRPV4, and LS-C135 was raised 
against rat TRPV4 (Q9ERZ8, aa853-871, peptide immunogen 
sequence: CDGHQQGYAPKWRAEDAPL). The specificity of 
LS-A8583 and LS-C94498 for labeling retinal TRPV4 was confirmed 
in TRPV4 knockout mice in a previous report (Ryskamp et  al., 
2011), and the specificity of LS-C135 was demonstrated in this work 
(see results). LS-C135 antibody provided the best signal-to-noise 
ratio in the primate retina (Gao et al., 2019) and was primarily used 
in this study.

Protein Kinase-C alpha (PKCα) is a classic marker of RBCs 
(Pang et  al., 2013), and we  used two PKCα antibodies. The 
polyclonal anti-PKCα antibody was purchased from Sigma (P4334, 
1: 1000, rabbit), which was tested in immunoblotting in rat brain 
extract, and it recognized a heavy band at ~76 kDa and a very weak 
band at 40 kDa. The staining was specifically inhibited by PKCα 
immunizing peptide (659–672). The monoclonal anti-PKCα 
antibody from BD transduction (610,107, Clone 3/PKCα (RUO), 1: 
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200, mouse) identified a single band at 82 kDa from a rat cerebrum 
lysate close to the predicted molecular weight of PKCα 76–93 kDa. 
The specificity of these primary antibodies has been demonstrated 
in previous studies, and their staining patterns in our results were 
like those reports. Controls were also processed with blocking 
peptides or without primary antibodies. All controls did not show 
positive results.

Statistical analysis

Data were analyzed by Sigmaplot (v12 and v15, Systat, Point 
Richmond, CA), Clampfit (v10.3 and v9.2, Axon Instruments, Foster 
City, CA), Matlab, and Microsoft Excel and presented as mean ± s.d. 
Two-tail Student t-test was used for analyzing statistical significance 
between paired data groups. The α level to reject the null hypothesis 
was 0.05.

Results

TRPV4 expression in the outer retina

We labeled retinas from more than 20 mice with antibodies 
against TRPV4 and PKCα (Figure  1) and retrograde tracer 
neurobiotin (NB) for the identification of retinal ganglion cells 
(RGCs). In wild-type mice (Figures 1A,B), TRPV4 was expressed 
weakly in the outer segment layer (OSL) of photoreceptors and 
brightly in the outer and inner plexiform layers (OPL and IPL, 
respectively), inner nuclear layer (INL), and retrogradely identified 
RGCs (Figure 1A) in the ganglion cell layer (GCL). In retinal slices 
double labeled for TRPV4 and PKCα, a marker for rod bipolar cells 
(RBCs), TRPV4 signals were present in the dendrites and somatic 
membrane of RBCs and somas of some other BCs (Figure 1B). In 
TRPV4−/− mice (Figure 1C), TRPV4 immunoreactivity was absent in 
the OSL and largely diminished in OPL, IPL, INL, and GCL, 

FIGURE 1

TRPV4 expression in wild-type (w.t.) and TRPV4−/− mice. The retinal slices were labeled for TRPV4 (green) and PKCα, and retinal ganglion cells (RGCs) 
were retrogradely labeled with neurobiotin (NB, red, A). (A,B) In wild-type (w.t.) mice, TRPV4 immunoreactivity is consistently present in the outer 
segment layer (OSL, B1), outer plexiform layer (OPL), bipolar cell layer (BCL), inner nuclear layer (INL), amacrine cell layer (ACL), inner plexiform layer 
(IPL), and retrograde-labeled RGCs (yellow, A) in the ganglion cell layer (GCL). Some TRPV4 immunoreactivity colocalizes with PKCα in dendrites and 
somatic membrane of rod bipolar cells in the OPL (B1–B3, open arrow), somas of BCs negative to PKCα in the BCL (asterisks, B2,B3), and somas in the 
INL and GCL (arrow, B1). (B2,B3): Insets of B1. (C) In TRPV4−/− mice, TRPV4 signals are absent in the OSL and ONL and largely diminished in other 
layers. The scale bars are 20 μm.
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demonstrating the specificity of the antibody and different expression 
levels of TRPV4 in retinal layers. The data indicates the expression of 
TRPV4 in photoreceptors, BCs, and RGCs.

Besides, ~10% of TRPV4−/− mice (3/34 mice) had one eye 
undeveloped. The eyelids were recognizable, but the eyeball was 
absent. The animals did not show other defects at the macroscopic 
level. In more than 100 wild-type mice, we  did not find similar 
pathology (0%) (p = 0.003).

TRPV4 affected the amplitude and implicit 
time of ERG a- and b-wave

The light threshold of mouse rods to the 500  nm light is 
around 0.22 Rh*rod−1  s−1 (−6.5 log-unit attenuation of light 
intensity, log I) (Pang et al., 2010a), the rod photocurrent saturates 
around 70 Rh*rod−1 s−1 (−4 log I) (Pang et al., 2010a), and cones 
are nearly three log unit less sensitive than rods to the light (Yang 
and Wu, 1996; Pang et al., 2010a). We first applied scotopic to 
mesopic light flashes (0.05 to 200 Rh*rod−1 s−1) to record ERG 
(Figure 2). We compared the data at 10 light intensities (8 pairs of 
animals at each light intensity) between the wild-type and 
TRPV4−/− mice, which revealed an increased amplitude of ERG 

a- and b-wave (both p < 0.05), a longer implicit time for the a-wave 
(p < 0.01), and a shorter implicit time for the b-wave (p < 0.01) in 
TRPV4−/− mice (Figure 2). At individual light intensities (all n = 8 
pairs of animals), TRPV4−/− mice showed a higher amplitude of 
a-wave at 101.4, 101.82, and 102.30 Rh*rod−1 s −1 (p = 0.05, 0.015, and 
0.049, respectively), a bigger amplitude of b-wave at 10–0.94 
Rh*rod−1 s −1 (p = 0.015), a longer implicit time of a-wave at 10–0.22 
Rh*rod−1 s −1 (p = 0.004), and a shorter implicit time of b-wave at 
100.13 Rh*rod−1 s −1 (p = 0.047). Given that b-wave is primarily 
mediated by depolarizing BCs (DBCs) (McCall and Gregg, 2008; 
Morgans et al., 2009) and OFF responses were not evoked by the 
brief light stimulation, the data indicates that TRPV4 modulates 
the scotopic visual signals in rods and RBCs.

We also applied bright white light flashes (104.81 and 106.17 
Rh*rod−1 s −1) for ERG recording (Figure 3). The amplitude of the 
a- and b-wave evoked by these photopic lights was significantly 
larger in TRPV4−/− mice (both p < 0.01, n = 8 pairs of animals), but 
the implicit time of b-wave did not change. The implicit time of 
a-wave was not altered at the intensity of 104.81 Rh*rod−1 s −1 and 
shorter at the light intensity of 106.17 Rh*rod−1 s −1 in TRPV4−/− 
mice compared to wild-type mice (p < 0.01, n = 8 pairs of animals). 
The data indicates that TRPV4  in wild-type mice reduces the 
light-evoked hyperpolarization of cones. The effect of TRPV4 on 

FIGURE 2

Electroretinography (ERG) evoked by scotopic and mesopic lights in wild-type (w.t.) and TRPV−/−mice dark-adapted overnight. The light intensities are 
presented as Rh*rod−1 s−1 in the log unit. (A,C) The amplitude of ERG a-wave (A, p  <  0.05) and b-wave (C, p  <  0.05) evoked by scotopic and mesopic 
light stimuli (0.05 to 200 Rh*rod−1 s−1) was moderately yet significantly larger in TRPV4−/− mice (black dots). (B,D) The implicit time was longer for the 
a-wave (B, p  <  0.01) and shorter for the b-wave (D, p  <  0.01) in the TRPV4 mutants compared to the wild-type mice. The data point at each light 
intensity was averaged from 8 animals and presented by mean  ±  s.d., and the data at 10 light intensities were compared between the two species with 
a two-tail student t-test for statistical significance.
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FIGURE 3

ERG evoked by photopic lights in wild-type (w.t.) and TRPV−/− mice. The light intensities are presented as Rh*rod−1  s−1 in the log unit. (A,C) The 
amplitude of ERG a-wave (A, **p  <  0.01) and b-wave (C, **p  <  0.01) evoked by photopic light stimuli were significantly larger in TRPV4−/− mice (gray 
bars). (B,D) The implicit time was shorter for the a-wave evoked by the brightest light (B, **p  <  0.01) and not changed for the b-wave (D, p  >  0.05) in the 
TRPV4 mutants compared to the wild-type mice. The bar at each light intensity was averaged from 8 animals and presented by mean  ±  s.d., and the 
data at each light intensity was compared between the two species with a two-tail student t-test for statistical significance.

the kinetics of cone signals was different from that on rod signals 
(Figure 2), which may be associated with the variable synaptic 
connection of rods and cones.

TRPV4 regulated the kinetics of rod bipolar 
cells (RBCs)

RBCs were recorded with the whole-cell patch-clamp techniques 
from the first soma row in the inner nuclear layer and identified by the 
long-lasting inward cation currents upon the light of 500 nm, ~0.5 s, 
and − 4 log I (70 Ph*rod−1 s−1) and the lack of response to the light 
offset. The light intensity of −4 log I is near the saturated level for rods 
and the threshold of M-cones (Pang et al., 2010a).

Under voltage-clamp conditions, individual RBCs recorded showed 
a shorter latency of the light-evoked inward cation current at −60 mV 
(ΔIC-IN-L) in mutant mice (57.13 ± 7.6 ms, n = 7), which was significantly 
shorter than that in wild-type mice (129.1 ± 13.69 ms, n = 9) (p = 0.001) 
(Figure 4). This data was consistent with the shorter implicit time of 
ERG b-wave in the mutant mice. The results indicate that some TRPV4 
are active in normal conditions to slow down the kinetics of RBCs.

Discussion

Outer retinal neurons express TRPV4

Previous studies have identified TRPV4  in the OPL in 
mammals (Gilliam and Wensel, 2011; Taylor et al., 2016; Gao et al., 

FIGURE 4

The light-evoked inward cation current (ΔIC-IN-L) in rod bipolar cells 
(RBCs). BCs were recorded with whole-cell patch-clamp techniques. 
(A) Wild-type (w.t.) mice; (B) TRPV4−/− mice. The ΔIC-IN-L was evoked 
by 500  nm light at the intensity of −4 log I (70 Ph*rod−1  s−1) and 
recorded under the voltage clamp mode at the holding potentials of 
−60  mV. The delay time from the beginning of the light (dashed line) 
and that of ΔIC-IN-L is longer in the w.t. mouse than in the TRPV4−/− 
mouse.
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2019; Pang et al., 2021), and TRPV4 protein shows a horizontal 
distribution pattern in the OPL in the mice, porcine, primate, and 
salamander retinas (Gilliam and Wensel, 2011; Taylor et al., 2016; 
Gao et  al., 2019; Pang et  al., 2021). In the case of acute retinal 
detachment, the number of apoptotic photoreceptors was reduced 
by approximately 50% in TRPV4 knockout mice relative to wild-
type mice (Matsumoto et al., 2018), which may be attributable to 
TRPV4 in photoreceptors more than that expressed (Zhao et al., 
2015) in retinal pigment epithelium (RPEs). We have observed 
TRPV4 in photoreceptors and BCs in the salamander retina and 
BCs in the monkey retina (Gao et al., 2019; Pang et al., 2021). This 
study, in line with previous findings, revealed TRPV4 in mouse 
photoreceptors and BCs.

TRPV4 affects the amplitude and latency of 
light responses in photoreceptors and BCs

The light threshold of rods to 500 nm light in the mouse retina is 
around 0.22 Rh*rod−1 s−1 (−6.5 log I) (Pang et al., 2010a). The rod 
photocurrent saturates around 70 Rh*rod−1 s−1 (−4 log I) (Pang et al., 
2010a), and cones are nearly three log units less sensitive than rods 
(Yang and Wu, 1996; Pang et al., 2010a). Given that b-wave is primarily 
mediated by DBCs (McCall and Gregg, 2008; Morgans et al., 2009) 
and OFF responses are not evoked by the light flash of ≤5 ms, a- and 
b-wave evoked by the dim light between 0.05 to 200 Rh*rod−1 s−1 were 
primarily mediated by rods and RBCs.

The TRPV4-associated smaller amplitude of a-wave in wild-type 
mice may be accounted for by the increase in TRPV4-mediated inward 
current (IC-IN-TRPV4) in rods and cones, which could reduce the light-
evoked outward current ( I I IC C OUT L C IN TRPV= +− − − − 4 ), when 
light hyperpolarizes the membrane potential (MP) to increase the 
driving force of TRPV4 (E MPTRPV 4 0= − ). The smaller b-wave in 
wild-type mice is likely due to the reduced synaptic inputs from 
photoreceptors to RBCs and other DBCs. TRPV4 showed different 
effects on the implicit time of a-wave and b-wave in scotopic conditions, 
and we  postulate that such a cell-type specific effect is due to the 
modulation of TRPV4 on the membrane potential. An inward leakage 
current via TRPV4 at the background theoretically depolarizes rods to 
mimic darkness and depolarizes RBCs to mimic light, and this should 
increase the driving force for ΔIC-OUT-L in rods and reduce the driving 
force for ΔIC-IN-L in RBCs, shortening the delay in rods and elongating 
the latency in RBCs. Therefore, TRPV4 expressed in photoreceptors 
and BCs could explain the effect of TRPV4 on visual signals in outer 
retinal neurons in scotopic and mesopic conditions.

In a strain of TRPV4 transgenic mice, a previous study 
(Yarishkin et  al., 2018) did not report changes in ERG a- and 
b-wave evoked by full-field lights of 0.00025–79  cd.s/m2, 
presumably white light in the range of 0.03 to 9,559 Rh*rod−1 s−1 or 
17.6 to 5.5 × 106 Rh*rod−1 s−1, and it was uncertain whether the 
spectrum and intensity of the light stimuli and adaption conditions 
contributed to the negative results. Rods and RBCs are highly 
light-sensitive, and light stimuli and background illumination may 
differentially depolarize cones and rods to variably regulate the 
driving force of IC-IN-TRPV4 in rods and cones. In this study, all our 
ERG recordings were performed in animals dark-adapted 
overnight, and our dim light stimuli were 503 nm and focused on 
testing the rod-driving visual signals.

Horizontal cells (HCs) critically mediate the light adaptation 
process, and their effect on the implicit time of a- and b-wave evoked 
by photopic lights is to be ruled out. We have identified TRPV2 protein 
in HCs and a pressure-evoked inward current in photoreceptors likely 
mediated by HCs, but HCs have not been reported to express TRPV4. 
Müller cells express TRPV4 but make no synapses with retinal 
neurons. Müller cells play a supportive role for retinal neurons, and 
they can affect neuronal function by regulating glutamate level in 
extracellular spaces. Our results did not reveal retinal pathologies in 
mutant retinas at the microscopic level. TRPV4 mediates Na+ influxes 
(Montell, 2005; Jo et al., 2015) to depolarize cells (Fernandez et al., 
2013; Ryskamp et al., 2014; Jo et al., 2015; Netti et al., 2017), which in 
Müller cells could reduce the removal of glutamate by the glutamate 
transporter GLAST (Bringmann et al., 2006) as the transportation 
relies on the energy stored in the Na+ electrochemical gradient (Akyuz 
et al., 2015). On the other hand, BCs make invaginating synapses with 
rods and both invaginating and flat synapses with cones (Dowling, 
2012; Behrens et al., 2016; Xiao et al., 2023), and the glutamate released 
from rods in scotopic conditions is relatively low and better restricted 
to the ribbon synapses due to the synaptic structure. Thus, we propose 
that TRPV4 in Müller cells may contribute to the effect of TRPV4 on 
the photopic b-wave but is less accountable for the changes in photopic 
a-waves and the a- and b-waves elicited by dim lights.

Suppressing TRPV4 did not reduce the light response of outer 
retinal neurons at the populational level up to 7 months. Whether it 
enhances the mechanical vulnerability of outer retinal neurons or 
causes compensating expression of other MSCs is to be further explored.

The effect of TRPV4 is dynamic and 
cell-type specific

TRPV4 may desensitize, but TRPV4 opens at temperatures above 
∼27°C. When constantly exposed to 37°C, TRPV4 could still respond 
to increased temperatures, showing incomplete desensitization. Thus, 
TRPV4 was thought to be constitutively active at body temperature 
(Guler et al., 2002; Nilius et al., 2004). Our results revealed the effect 
of TRPV4 on the normal light response of photoreceptors and BCs, 
which, consistent with the previous findings, indicates that some 
TRPV4 channels are constitutively active in physiological conditions.

Based on our results and a reversal potential ~0 mV and certain 
open probability of TRPV4 (Strotmann et  al., 2000; Suzuki et  al., 
2003b; Nilius et al., 2004; O'Neil and Heller, 2005; Cao et al., 2009; Gao 
et  al., 2019; Kashio and Tominaga, 2022), we  propose a novel 
functional mechanism for TRPV4: TRPV4 depolarizes the membrane 
to regulate the dark membrane potential of photoreceptors and DBCs 
and the implicit time of light responses, and the light-induced 
hyperpolarization in photoreceptors enhances the driving force of 
TRPV4, which could decrease the amplitude of the light response of 
photoreceptors, RBCs, and DBCs.

In addition, in around 10% of TRPV4 mutant mice, we observed 
one undeveloped eye. The pathological mechanism is unclear. The 
animal facilities in our institute are fully credited and have expertise 
and experience in housing mice and other animals. Factors like 
nutrition, environment, and injury can affect the development of the 
eye. On the other hand, these factors are less likely to cause unilateral 
and complete missing of an eyeball. Lowe syndrome (OCRL, MedGen 
UID: 18145; Concept ID: C0028860) is a rare X-linked congenital 
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disease that presents congenital cataracts and glaucoma. One or both 
eyeballs are abnormally small (microphthalmia), and in some affected 
individuals, the eyeball may appear to be completely missing. OCRL 
is an inositol polyphosphate 5-phosphatase, which is mutated in Lowe 
syndrome. Studies on Lowe syndrome have suggested that OCRL may 
act through regulation of TRPV4 (Luo et al., 2014; Jing et al., 2024), 
and a novel disease-causing OCRL allele prevents TRPV4-mediated 
calcium signaling. Our data are generally in line with these data from 
patients and animal models.
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