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Dendrites contribute to the
gradient of intrinsic timescales
encompassing cortical and
subcortical brain networks

Kaichao Wu and Leonardo L. Gollo*

Brain Networks and Modelling Laboratory, School of Psychological Sciences, and Monash Biomedical

Imaging, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia

Introduction: Cytoarchitectonic studies have uncovered a correlation between

higher levels of cortical hierarchy and reduced dendritic size. This hierarchical

organization extends to the brain’s timescales, revealing longer intrinsic

timescales at higher hierarchical levels. However, estimating the contribution

of single-neuron dendritic morphology to the hierarchy of timescales, which is

typically characterized at a macroscopic level, remains challenging.

Method: Here we mapped the intrinsic timescales of six functional networks

using functional magnetic resonance imaging (fMRI) data, and characterized

the influence of neuronal dendritic size on intrinsic timescales of brain regions,

utilizing a multicompartmental neuronal modeling approach based on digitally

reconstructed neurons.

Results: The fMRI results revealed a hierarchy of intrinsic timescales

encompassing both cortical and subcortical brain regions. The neuronal

modeling indicated that neurons with larger dendritic structures exhibit shorter

intrinsic timescales. Together these findings highlight the contribution of

dendrites at the neuronal level to the hierarchy of intrinsic timescales at the

whole-brain level.

Discussion: This study sheds light on the intricate relationship between neuronal

structure, cytoarchitectonic maps, and the hierarchy of timescales in the brain.

KEYWORDS

intrinsic timescales, dendritic morphology, neuronal dynamics, functional networks,

anatomical hierarchy

1 Introduction

The human brain continually integrates and processes multiscale external inputs

resorting to its intrinsic neural timescales (INT) (Murray et al., 2014; Hasson et al.,

2015; Chaudhuri et al., 2015; Gollo et al., 2015, 2017; Farzan et al., 2017; Wasmuht

et al., 2018; Liégeois et al., 2019; Gollo, 2019; Deco et al., 2019; Wolff et al., 2022).

Depending on the specific brain functions and development stage, different brain

regions have distinct intrinsic timescales over which they integrate information (Truzzi

and Cusack, 2023). Typically, the range of INT goes from shorter in lower-order

unimodal sensory-motor regions to longer in high-order transmodal regions (Kiebel

et al., 2008). This gradient of INT can be observed across multiple neuroimaging

modalities, including electroencephalography (EEG) (Smith et al., 2022; Wolman et al.,

2023), magnetoencephalography (MEG) (Demirtaş et al., 2019; Golesorkhi et al., 2021),

and functional magnetic resonance imaging (fMRI) (Burt et al., 2018; Raut et al.,

2020a; Watanabe et al., 2019). Among the different modalities, fMRI stands out for its

exceptional spatial resolution. The hierarchy of INT is a common finding on either small
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(Raut et al., 2020a; Wasmuht et al., 2018) or large-scale fMRI

datasets (Burt et al., 2018; Ito et al., 2020). On the cortical

level, sensory and motor regions/networks, the unimodal regions,

typically display shorter INT, whereas higher-order networks,

also know as the transmodal regions (Wolff et al., 2022; Raut

et al., 2020a; Huntenburg et al., 2018), like the central-executive

networks (CEN), dorsal attention networks (DAN), and default-

mode network (DMN) tend to exhibit longer INT (Demirtaş

et al., 2019; Golesorkhi et al., 2021; Ito et al., 2020). This

temporal hierarchy extends to the subcortical level as well. Within

subcortical regions such as the thalamus, cerebellum, striatum,

and hippocampus, there exists a gradient INT. The thalamus, for

instance, exhibits relatively short INT, enabling rapid transmission

of incoming external sensory information to the cortex for further

processing. Conversely, the hippocampus exhibits some of the

longest intrinsic neural timescales in the brain, facilitating the

integration and storage of information over extended periods to

support the consolidation of episodic and spatial memories (Raut

et al., 2020a).

The gradient of INT encapsulated by the principle of a

hierarchy of timescales in the brain permeates the different

spatial scales from the single-neuron level (Murray et al., 2014)

to the whole brain (Kiebel et al., 2008; Raut et al., 2020a). A

close relationship exists between INT and functional connectivity

patterns of the brain regions (Northoff et al., 2010; Northoff and

Gomez-Pilar, 2021), as shown in Figure 1A. These connections

play a significant role in shaping the brain’s state, behaviors, and

cognition (Van Den Heuvel and Pol, 2010; Power et al., 2011;

Yeo et al., 2011). They form a gradient of intrinsic timescales,

with an increased contribution of slow fluctuations at higher levels

of the cortical hierarchy (Raut et al., 2020b). More generally,

the anatomical hierarchy in the brain is regarded as a basis

of the variation of INT across brain regions (Murray et al.,

2014; Fallon et al., 2020) . This idea that anatomical hierarchy

determines the region’s temporal dynamics can extend to the

brain’s core-peripheral network organization. Highly connected

hub regions that form a rich club (Van Den Heuvel and Sporns,

2011), typically exhibit slower INT compared to peripheral areas

located in sensorimotor systems (Gollo et al., 2015; Chaudhuri

et al., 2015). Beyond the level of cortical regions, the structure

and local neuronal connectivity (connection strength and coupling

pattern) also show relevance to the gradient of INT (Chaudhuri

et al., 2015; Runyan et al., 2017). Regions with longer intrinsic

timescales contained neurons with stronger local excitatory

connections (Cohen and Kohn, 2011; Wasmuht et al., 2018).

Furthermore, it has been proposed that the diversity of neuronal

function and timescales stems from variations in the densities of

dendritic spines (Elston, 2003; Cavanagh et al., 2020).

A growing body of literature has indicated a strong connection

between the structural (or anatomical) hierarchical level of the

brain and fundamental features of its dynamics (Kiebel et al., 2008;

Cocchi et al., 2016; D’Souza et al., 2016; Burt et al., 2018), observable

from the microscopic scale of single neurons to the indirect large-

scale dynamics captured by blood oxygenation level-dependent

(BOLD) signals. Yet, the precise mechanisms underlying this

relationship remain largely elusive. Cytoarchitectonic studies have

revealed a significant correlation between the size of neuronal

dendrites and the anatomical hierarchical level to which neurons

belong (Beul and Hilgetag, 2019; Hilgetag et al., 2019)(Figure 1C).

Typically, neurons situated at higher anatomical levels exhibit

smaller dendritic sizes in their pyramidal neurons. This correlation

motivates the question: What is the role of neuronal morphology in

shaping the gradient of intrinsic timescales across the brain?

Here we investigate the whole-brain dynamics, focusing on

the subcortical-cortical INT hierarchy and the contribution of the

neuronal dendritic size to such a gradient of INT. Specifically,

we examined resting-state functional MRI data from a cohort

of 34 healthy young adults (aged 19 to 22) to investigate the

gradient of INT across both subcortical and cortical brain regions.

Utilizing group-independent component analysis (ICA), we extract

the regional activity, and measure the network-level INT. To

investigate the neuronal contribution behind the gradient of

INT, we explore the dynamics of a multi-compartmental neuron

model (Kirch and Gollo, 2020), endowed with a progressive

pruning process (Kirch and Gollo, 2021) to estimate the impact of

dendritic size on INT. Consistent with cytoarchitectonic findings,

we hypothesize that the neuronal INT would increase as neurons

undergo progressive pruning.

2 Materials and methods

2.1 Subcortical and cortical functional
network dynamics

Figure 1B shows the three steps for the identification of brain

functional networks dynamics : (1) the fMRI scans acquisition and

processing; (2) Group ICA for Network Parcellation; and (3) Post-

processing for BOLD timeseries extraction. These three steps are

described in detail next.

2.1.1 fMRI acquisition and preprocessing
Resting-state fMRI scans were obtained from the available

public dataset of the University of North Carolina samples at

Greensboro (Wahlheim et al., 2022; Wu et al., 2023b). The

participants were 34 healthy young adults (18–32 years old, mean:

22.21, SD: 3.65). The functional MRI was acquired with an echo-

planar imaging sequence: 32 slices with 4.0 mm thickness and no

skip, time of echo = 30 ms; time of repetition (TR) = 2000 ms;

flip angle = 70◦, field of view = 220 mm, matrix size = 74 × 74

× 32 voxels. Each fMRI scan lasted for 10 min, comprising 300

volumes. Additional details about the raw fMRI data can be found

in Wahlheim et al. (2022).

To generate a steady blood oxygenation level-dependent

activity signal, the first five volumes of each scan were discarded

to allow for magnetic stability. Similar to the previous studies (Wu

et al., 2024b, 2023a), the functional data was then processed

with the following steps: (1) Realignment to correct head motion

for verification details; (2) Slice time correction. (3) Outlier

identification (The volumes at the time point would be regarded as

outliers and removed if the signal value is three standard deviations

beyond the mean global signal for the entire run or if the head

motion exceeded 0.5 mm in any direction). (4) Normalization

(normalize to 3 mm MNI space using a template from the SPM
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FIGURE 1

(A) Study design. Brain regions display heterogeneous intrinsic timescales that mirror a gradient reflecting the cortical hierarchy. Cytoarchitectonic

findings indicate a link between anatomical level and dendritic size (Hilgetag et al., 2019). We hypothesize the presence of an association between

dendritic size and INT. The brain map was adapted from Wol� et al. (2022). (B) Three steps for whole-brain (encompassing subcortical and cortical

regions) functional network identification: with the functional image obtained (step 1), the group ICA method was applied to obtain the brain

parcellation of functional networks (step 2), and then the corresponding timeseries of generated ICA components were extracted to represent the

network-level neural activity (step 3). (C) Cytoarchitectonic mappings suggest that neurons with larger dendrites are situated at lower hierarchical

levels, the macroscopic brain map was adapted from Hilgetag et al. (2019). Neuronal activity was simulated using multicompartmental models

featuring excitable dynamics (SIRS) for neurons exhibiting varying degrees of dendritic integrity, thereby represent neurons positioned at distinct

levels of the anatomical hierarchy. (D) The INT was computed for the BOLD fMRI time-series of brain networks and for the neuronal time-series from

the somatic compartment. The INT was computed based on the decay properties of the autocorrelation function (see Methods).

software package; Friston, 2003). (5) Spatial smoothing with a

Gaussian kernel of 8 mm full-width at half-maximum (FWHM).

2.1.2 Group ICA for Network Parcellation
A spatial group ICA was performed on the preprocessed and

denoised BOLD signal using the Group ICA of FMRI Toolbox

(GIFT) infomax algorithm. Specifically, high-model order ICAwith

a set of 100 components was obtained, comprising resting-state

brain networks spanning cerebral cortical and subcortical regions.

The configuration for the group ICA algorithm was developed

according to the detailed description provided by (Wu et al.,

2023b; Salman et al., 2019). In particular, a two-stage Principal

Component Algorithm (PCA)method was first adapted to preserve

the components that account for the most variance. The top 120

principal components (PCs) of all participants obtained in the first

stage were concatenated across time and then further reduced to

100 in the second stage. Then, the infomax algorithm was used

with 20 repeats to find steady independent components (ICs).

After back reconstruction, the participant-specific spatial maps and

corresponding time courses were obtained.

Three methods were employed to detect activated potential

functional networks from the IC reservoir. (1) The spatial

activation maps from the ICs were visually inspected to identify

if they matched the large-scale functional network locations from

previous studies and to make sure they were located at gray matter

volumes. (2) The multiple regression method was used to produce

the weight of ICs whose spatial pattern matches with the existing

functional network template. The weights were used to rank the list,

and the functional network that matched the most was selected. (3)

The power spectrum of the ICs was checked to see if it follows a

low-frequency peak and a high-frequency steady pattern (the time
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courses of ICs are characterized by high dynamic range). Those ICs

that located cerebrospinal fluid and ICs whose highest regression

weights were significantly low and whose power-spectrum curves

were different (e.g., a clear peak of the wave at high frequency) were

discarded.

2.1.3 Post-processing for BOLD timeseries
extraction

After removing noise-related components, the time courses

of retained components were triple detrended and despiked (Wu

et al., 2024a). The motion parameters and global average were

regressed for postprocessing, and a band-pass filter was applied

(0.023-0.1 Hz). These actions ensure artifact noise can be largely

eliminated and has minimal impact on the further signal analysis.

2.2 Neuronal modeling

To simulate the dynamics of neurons with detailed dendritic

structure, we used digitally reconstructed neurons obtained from

the neuromorpho database (Ascoli et al., 2007). These neurons were

explored using a pruning algorithm that iteratively removes the

most distal dendritic compartments (Kirch and Gollo, 2021). For

the different neuronal structures, from the intact neuron to a highly

pruned dendritic tree, the neuronal dynamics was simulated using

an active dendritic model in which each compartment generates

dendritic spikes (Gollo et al., 2009, 2012; Kirch and Gollo, 2020,

2021). These steps can be seen in Figure 1C and are described in

more detail next.

2.2.1 Prototype neuron
The first step of calculating the neuron dynamics is to

stimulate and construct the neurons with varying levels of dendritic

integrity. It resorts to initial neurons with rich morphological

shapes, which we call prototype neurons, and this process

is implemented by iteratively pruning their terminal dendritic

compartments. Specifically, the prototype neurons were taken from

the NeuroMorpho database (Ascoli et al., 2007). This database

contains thousands of neurons with detailed dendritic structure,

which can be used to simulate multicompartmental neurons. To

avoid the bias provided by the prototype neurons’ details (i.e.,

the species, human or animal), location (i.e., the brain regions),

and topology (i.e., spatial information), 13 high-quality prototype

neurons were randomly selected across 6 species and 5 brain

regions. The morphology of these prototype neurons has been

presented in Figure 2, and their details, including the number of

their compartments and bifurcations, can be seen in Table 1.

2.2.2 Neuron pruning
Previous cytoarchitectonic findings suggested that along the

spatial cortical gradients, the higher the anatomical level, the

smaller the dendritic size of their pyramidal neuron tends to

be (Beul and Hilgetag, 2019; Hilgetag et al., 2019). Hence, we

utilized the proposed pruning algorithm with the prototype

neurons to simulate neurons with variable dendritic sizes.

Specifically, the pruning algorithm used an iterative approach

to progressively remove the most terminal compartments (Kirch

and Gollo, 2021). At each iteration, the terminus was detected

and then removed until the entire dendritic tree was eliminated

(see Figure 1C for an illustration of the pruning process). In

our experiments, the maximum iteration step explored was 80.

The neuronal morphologies obtained in intervals of 10 pruning

iterations were explored. Consequently, for each prototype neuron,

nine different dendrites were studied, resulting in a total of 117

different neuronal structures.

2.2.3 Neuronal dynamics
The neuronal dynamics was simulated and the activity at

the soma was recorded for subsequent analyses. Specifically, we

adapted a synchronous susceptible–infected (active)–refractory–

susceptive model (SIRS) to simulate the dynamics of each active

dendritic compartment, and particular attention was given to the

somatic spiking activity (Gollo et al., 2009, 2012, 2013; Kirch

and Gollo, 2020, 2021). Each excitable compartment can be in

the following 3 states: susceptible, active (spike), and refectory.

Dendritic compartments become active, generating dendritic

spikes, either by external synaptic input or by the propagation

of activity from neighboring dendritic compartments with a

probability equals pλ. As full spatial distributions of ion channels

governing the dynamics of dendritic compartments remains largely

unknown, here we considered the simplest case of pλ = 0.97,

which was homogeneous across the entire dendritic tree. In our

experiments, the external synaptic stimuli were modeled as a

stochastic process, and the active rate was a Poisson process with

rate r = 0.03. Active compartments become refractory at the

next time step (δt = 1ms). The refractory compartments become

susceptible after a period of δr = 8ms. Unless activated externally

via synapses or by propagation from an active neighbor, dendritic

compartments remain in a susceptible state. For each neuron, the

simulations were run for a duration of 100,000 time steps (1000s).

The soma was modeled as a single-compartment that has the same

properties of other dendritic compartments.

This model dynamics representing the activity of thousands

of dendritic compartments was firstly proposed by Gollo et al.

(2009) to show that neurons with large active dendrites, typical of

somatosensory regions (Beul and Hilgetag, 2019), can significantly

increase the dynamic range of neurons, allowing them to respond to

a wide range of input levels. The model was further analyzed using

the excitable-wave mean-field approximation (Gollo et al., 2012),

and its generalized form (Gollo et al., 2013) to gain insights into

the role homogeneous and non-stereotyped dendritic spikes caused

by non-homogeneous distribution of ion channels. Additionally,

this model (Gollo et al., 2009, 2012) was able to reproduce not

only standard sigmoid response functions but also various types

of complex response functions, such as double sigmoid curves

obtained from the retinal ganglion cells of the mouse (Deans

et al., 2002). More recently, this neuronal model has been

further refined (Kirch and Gollo, 2020, 2021) to more accurately

reflect real biological processes by using the real morphology of

neurons obtained from digital reconstructions available in the

NeuroMorpho database (Ascoli et al., 2007).
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FIGURE 2

Neurons (A–M) (see details of neuronal morphology in Table 1).

TABLE 1 List of Prototype neurons taken from NeuroMorpho.Org.

Name Species Regions Num. of
branches

Num. of
compartments

Num. of
bifurcations

References

A Mice2013 Mouse Retina 5 10,175 175 Trakhtenberg et al.,
2017

B 057 Fish Retina 3 3,628 42 Pushchin, 2017

C Shi2013_Fig8_O Mouse Retina 4 2,749 238 Shi et al., 2013

D 197-1-6mt Human Neocortex 10 422 106 Jacobs et al., 2018

E LY14-RGC11 Rat Retina 6 1,216 320 Rodger et al., 2012

F 20190517_C10_WT Mouse Retina 3 1,812 87 Werginz et al., 2020

G 20170907_S2W1C1 Mouse Retina 6 2,777 88 Raghuram et al., 2019

H 160510_lmage7 Zebrafish Neocortex 2 1,579 136 Kunst et al., 2019

I 170221_11_1 Zebrafish Central nervous
system

2 422 30 Kunst et al., 2019

J Gau-D27R-3 Pouched
lamprey

Optic lobe 4 713 38 Fletcher et al., 2014

K Badea2011Fig2Cj Mouse Retina 2 1,443 184 Badea, 2011

L dHSE_05l Drosophila
melanogaster

Optic lobe 2 4658 1525 Cuntz et al., 2013

M 14,044_L5_PYr_PM Mouse Neocortex 7 1,579 29 D’Souza et al., 2016

2.3 Intrinsic neural timescales

The intrinsic neural timescales (INT) were computed

for brain networks and for single-neuron dynamics using

two complementary computational methods based on the

autocorrelation function. These methods accommodate data

with different temporal resolutions. In most electrophysiological

studies, which involve fast dynamics, the intrinsic neural

timescales were calculated as the timescale of an exponential

decay coefficient fitted to the autocorrelation curve (Runyan

et al., 2017; Murray et al., 2014; Bernacchia et al., 2011). The

INT obtained from this fitting method is called (INTf ). For

resting-state fMRI, which has lower temporal resolution, the

intrinsic neural timescales were computed as the area under

the autocorrelation curve to mitigate the adverse effects of low

sampling rates (Watanabe et al., 2019; Xie et al., 2023; Raut et al.,

2020a). The INT obtained from the area under the curve method

is called (INTa).

Specifically, INTf was defined as the decay coefficient of

the autocorrelation of the BOLD fMRI time-series and soma

timeseries(see Figure 1D). The autocorrelation function (ACF) of

the timeseries from the corresponding ICA components and soma
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dynamics were calculated with the following formula:

AFCk =

∑T
t=k+1(yt − ȳ)(yt−k − ȳ)

∑T
t=1(yt − ȳ)2

. (1)

For brain regions, y denotes the rs-fMRI BOLD timeseries, ȳ

is the mean value across time points, t is the length of time bins

which is the time of repetition (TR = 2000ms) ofMRI scan, and T is

the number of time points (295 in the experiment). For the single-

neuron model, y denotes the somatic timeseries from stimulated

neuron dynamics, ȳ is the mean value across stimulation steps,

and T is the number of steps (100,000 s). k is the time lag. Then,

we used autoregressive moving average (ARMA) models to fit the

ACF curve (Olszowy et al., 2019; Truzzi and Cusack, 2023) and

calculated the decay coefficient as the final measure of intrinsic

timescales with the following equation:

Y = A[exp(−△ t/τ )+ B], (2)

where A is the scaling coefficient, and B is the offset, which also

represents the asymptotic level of autocorrelation, and the INTf =

τ . For both the network and single neuron levels, a maximum of 25

lag intervals was used to fit the decay curve.

In addition, to avoid the bias brought by the definition of INT

in resting-state fMRI signals, the INT at the brain network level was

also calculated by the magnitude of ACF (Watanabe et al., 2019; Xie

et al., 2023; Raut et al., 2020a). In this case, INTa is defined by the

area under the curve (AUC) of the initial ACF curve until it reaches

a zero value:

INTa = TR ·

N∑

k=1

ACFk, (3)

where TR is the time of repetition, and N is the minimum time

lag in which the autocorrelation attains a value less than or equal to

zero.

Both INTa and INTf were computed for all ICA components

and an intrinsic timescales map of the whole brain was computed

for each participant. The dynamics of the single neurons, shown in

Table 1, were computed for the different levels of dendritic pruning

using INTf .

3 Results

To map the INT at the whole-brain level, the resting-state

networks (RSN) were identified from function imaging using the

group ICA method. The INT of neural activity corresponding to

the RSN was then calculated across brain networks. To address

the contribution of dendritic size, the digitally reconstructed

compartment-based neurons were simulated, and their INT was

computed. By investigating the association between the INT and

neuron size, we analyze the contribution of neuronal dendrites to

the gradient of intrinsic timescales that encompasses cortical and

subcortical brain networks.

3.1 INT of brain functional networks

3.1.1 The recognized resting state network
Out of the 100 ICs identified by the group ICA, 40 ICs were

identified as noise components and discarded. The remaining

60 components were assigned as RSN (an example of a clean

signal component taken, and another example of a noise signal

component discarded are presented in Figure 3). The 60 RSN

components were assigned to six functional domains that have

been widely studied for brain networks: subcortical network (SC),

auditory network (AUD), visual network (VIS), sensorimotor

network (SM), cognitive control network (CC), and default mode

network (DMN). The spatial map of 60 RSNs and corresponding

peak coordinates have been provided in the Supplementary Table 1

and Supplementary Figure 1.

3.1.2 INT across functional networks
We utilized a one-way ANOVA followed by post-hoc two-

sample t-tests to compare the intrinsic timescales across functional

networks. The results (shown in Figure 4A) indicate significant

group effects on the functional networks (F = 14.612, p< 0.001) for

INTf . Post-hoc t-test shows that the subcortical network exhibited

the lowest intrinsic timescales compared to other high-level cortical

networks (tSC−DMN = 3.32, p < 0.001; tSC−VIS = 2.86 p< 0.001;

tSC−SMN = 3.76, p< 0.001; tSC−CC = 2.78 p< 0.05, tSC−AUD = 2.32, p

< 0.05, FDR corrected). The INTa method indicates similar results

(tSC−DMN = 4.12, p < 0.001; tSC−VIS = 4.86 p< 0.001; tSC−SMN

= 3.76, p < 0.001; tSC−CC = 3.68 p < 0.05, tSC−AUD = 2.12, p

< 0.05, FDR corrected; Figure 4B), sustaining the findings that

functional networks involved in high-level processes tend to have

longer intrinsic timescales.

In addition, the correlation between the offset of exponential

fitting and INTf was calculated via regression analysis. It was found

that INTf negatively correlates with the autocorrelation offset for

each functional network (Figure 4C, see the detailed results in

Table 2). The offset measures the distance between the obtained

timescales and the observation window, which can reflect the

contribution of timescales to neural fluctuations (Murray et al.,

2014).

3.1.3 The hierarchy of INT from subcortical to
cortical networks

With the natural hierarchical and spatial gap between

subcortical and cortical functional networks, we computed the

cumulative distribution of INTf of multiple brain networks. The

cumulative distribution of intrinsic timescales shows significant

differences across the function networks (F = 13.37, p < 0.0001).

While with some specific probabilities, for example, 0.5, the VIS

has the highest intrinsic timescales, DMN is the second, and then

followed by the SMN and AUD. According to spatial location

(the subcortical network is located more inside the brain). DMN,

SMN, VIS, CC, and AUD are combined together into cortical

networks. Results (Figure 5) show longer INT for cortical networks

and shorter INT for the subcortical network (two-sample t-test:

tcortical−subcortical = 6.09, 95% CI [0.50, 096] p < 0.0001). This

finding indicates a distinct temporal organization between the
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FIGURE 3

(A) An example of recognized RSN (top) and noise components (bottom), where the spatial map of components that represent the real brain activity

should have clear boundaries and the corresponding power-frequency curve should peak at low frequency and decrease rapidly. (B) the spatial map

of the 60 RSN components, which were assigned to six functional domains: SC, subcortical network; AUD, auditory network; VIS, visual network; SM,

sensorimotor network; CC, cognitive control network; and DMN, default mode network.

subcortical and cortical networks, implying that neural dynamics

and information processing vary depending on their specialized

functions.

3.2 INT of single neuron

3.2.1 Neuron pruning and dynamics
To obtain neurons with different levels of dendritic-tree

integrity, a pruning algorithm was used to prototype neurons

obtained from the NeuroMorpho database (Ascoli et al., 2007).

Figure 6A presents an example of the morphology of a prototype

neuron. As the pruning algorithm proceeds, the terminal dendritic

compartments are progressively removed; as a consequence, the

neuron integrity is reduced. The resulting morphology of a

simulated neuron at iterations 20, 40, and 80 can be seen in

Figure 6A respectively.

At each iteration, considering the dynamics of each

compartment as an excitable unit (Kirch and Gollo, 2021),

the neuronal dynamics were simulated. The tree-shaped

neuron forms an excitable network, and the spiking activity

of compartments determines the temporal evolution of activity and

the corresponding somatic spikes. Figure 6B illustrates snapshots

of neuronal activity at different time steps for neurons with

different levels of dendritic integrity.

3.2.2 The association between the INT and
neuron size

As the pruning algorithm proceeds, the neuronal integrity

is progressively affected, and the number of compartments and

connections to the soma is reduced (Figure 6C). This pruning

process impacts the neuronal dynamics, and causes a substantial

reduction in the firing rate in most neurons (Figure 6C). To gain a

deeper insight into how firing rate influences intrinsic timescales,

we simulated the dynamics of neurons in the absence of dendrites,

that is, at the last pruning iteration when all the neurons are

identical and only the neuronal soma remains. For these punctual

neuron models, we vary the rate of input (modeled as a Poisson

process) that controls the firing rate of neurons and measure the

intrinsic timescales. The results show that the intrinsic timescales

decay linearly with the firing rate of the neuron (Figure 6D).

We then examine the association between the INT and

dendritic size. The statistical test (see Figure 7A) demonstrates that

the prototype and pruned neuron have significantly different INTf

(F = 5.1639, p = 0.0001). Compared to the prototype neuron, the

pruned neurons exhibit significant increased INTf for iterations

greater than 30 (post-hoc t-test, t30 = 2.639 p = 0.014; t40 = 3.443

p = 0.002; t50 = 3, 243 p = 0.003; t60 = 3.927 p = 0.0006;

t70 = 4.472 p = 0.004; t80 = 4.776 p < 0.0001, FDR-corrected).

The population-level results of INTf calculation (the best fitting

curve for all neurons at the same iteration) also reveal that as

the pruning iteration progresses, INTf increases. The prototype

neuron exhibits the shortest INTf of 0.9063, while the maximally

pruned neuron displays the longest INTf of 0.9277 (Figure 7B). The

pruning algorithm reduces the size and complexity of the dendrites,

which causes an alteration in the INT. Our results suggest an

inverse relationship: neurons possessing larger dendrites exhibit

shorter INT, while those with smaller dendrites display longer INT.

3.2.3 Dendrites contribute to the hierarchy of INT
Cytoarchitectonic studies demonstrate that the dendritic size

decreases for increasing hierarchical levels (Hilgetag et al., 2019).
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FIGURE 4

Between-network comparison of the intrinsic neural timescales. The exponential-fitting method (INTf ) (A) and the area under the curve method

(INTa) (B) for the di�erent functional networks. (C) Regression analysis of the correlation between the o�set of the exponential fitting and INTf .
****p < 0.0001 (FDR-corrected); ***p < 0.001 (FDR-corrected); *p < 0.05 (FDR-corrected).

TABLE 2 The correlation between the o�set of exponential fitting and

INTf via a regression analysis.

Brain functional network Slope R2 P

DMN -0.048 0.89 <0.0001

SMN -0.054 0.67 <0.0001

VIS -0.051 0.94 <0.0001

CC -0.048 0.79 <0.0001

VIS -0.047 0.94 <0.0001

AUD -0.032 0.84 <0.0001

SC -0.039 0.96 <0.0001

Therefore, the pruning iteration reveals a gradient embodying the

various hierarchical levels. Considering the spatial position of the

subcortical and cortical network, the neurons generated at larger

pruning iterations may represent neurons situated in brain regions

higher up in the hierarchy. In the absence of a precise mapping

relationship, we explore different possible neuron partitions for

subcortical to cortical functional networks based on the number

of iterations (as seen in Figure 8A). Under this assumption,

the cumulative distribution of neuron INT demonstrates a clear

hierarchical order of subcortical to cortical functional networks

(Figure 8B). The cumulative distribution of neuron INT with

different numbers of pruning iterations (n = 10 and n = 50) shows

very similar results (Supplementary Figure 2). Statistical tests also
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FIGURE 5

(A) Cumulative distribution of intrinsic timescales (INTf ) for multiple networks. (B) Schematic distinction between the subcortical network at the

lowest hierarchical level with shorter temporal integration, and cortical networks at higher hierarchical levels with longer temporal integration. The

y-axis represents the length of the intrinsic timescales, and the x-axis represents the level of the hierarchy. The subcortical networks occupy a central

position within the brain at lower hierarchical levels, whereas the cortical networks are situated more peripherally, at higher hierarchical levels. (C)

Cumulative distribution of INTf for the subcortical network and the combined cortical networks.

FIGURE 6

(A) The morphology of the prototype neuron “L” and the resulting pruned dendrites (at the number of pruning iterations n = 20, 40, 60, and 80). (B)

Exemplary snapshots of the simulated neurons: red denotes spiking compartments, green denotes susceptible compartments, and yellow denotes

refractory compartments. (C) Number of neuronal compartments, connections to the soma, and somatic firing rate as a function of the number of

pruning iterations for the di�erent neurons (as identified in Table 1). (D) The firing rate vs. intrinsic timescales accounts for longer intrinsic timescales

of neurons with smaller dendrites. The blue error bars indicate the Standard Error of Mean (SEM) for 10 trials.

substantiate the lower INT of subcortical networks compared to

cortical networks (n = 10: tsubcortical = 3.239 p = 0.012; n = 30:

tsubcortical = 3.451 p = 0.002; n = 50: tsubcortical = 4.639 p = 0.001

FDR-corrected). The results indicate that regardless of the partition

used, a significant distinction between INT of neurons located at

subcortical and cortical regions is observed.
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FIGURE 7

(A) Comparison of INTf for neurons with di�erent pruning iterations. (B) INTf computed at the population level as a function of the number of

pruning iterations. **p < 0.01 (FDR-corrected); ***p < 0.001 (FDR-corrected); *p < 0.05 (FDR-corrected).

FIGURE 8

(A) Pruning iterations are used to divide the generated neurons into two groups: subcortical or cortical functional networks. (B) Distinction between

subcortical and cortical functional networks for the number of pruning iterations n = 30.

4 Discussion

In this study, we examined intrinsic neural timescales (INT)

across various functional networks spanning from subcortical to

cortical regions, aiming to uncover their underlying neuronal

mechanisms. Utilizing resting-state fMRI signals, functional

networks were delineated, and the INT was derived from the

autocorrelation functions. Notably, we observed a significant

difference in intrinsic timescales, with subcortical networks

exhibiting shorter INT values, indicating a gradient of INT along

the cortical-subcortical axis. To better understand the contribution

of dendritic size to this gradient of INT, we simulated neuronal

structures across different anatomical levels using a pruning

algorithm, motivated by cytoarchitectonic studies that show larger

pyramidal neurons in regions located higher in the hierarchy (Beul

and Hilgetag, 2019). Our findings revealed a correlation between

shorter dendritic size, typical from higher anatomical levels, and

longer INT. This result indicates that the gradient of intrinsic

timescales across cortical and subcortical networks aligns with the

gradient of INT observed at the neuronal level, highlighting the

putative contribution of neuronal dendrites to the hierarchy of INT

observed in functional brain networks.

4.1 Gradient of INT reflects a hierarchy of
functions in the brain

Evidence supports a hierarchical organization of INT within

regions of the brain (Hasson et al., 2015; Murray et al., 2014).

Consistent with prior research, we reveal a hierarchy of INT

in brain networks with shorter INT in the subcortical network

(SC) and longer INT in the default mode (DMN), visual (VIS),

sensorimotor (SMN), central executive (CC), and auditory (AUD)

networks. Extending this hierarchical timescale beyond large-scale

networks, we observe an INT gradient along cortical to subcortical

networks, despite the spatial disparities between them.
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INT refers to the duration over which neural information is

stored within a local brain area (Chaudhuri et al., 2015; Deco

et al., 2019; Farzan et al., 2017; Gollo et al., 2017, 2015). Hence,

the length of INT reflects the hierarchy of functions in the

brain (Cocchi et al., 2016; Hasson et al., 2015; Murray et al.,

2014; Watanabe et al., 2019). The subcortical network, which

includes regions such as the thalamus, caudate and putamen,

shows the shortest intrinsic timescales. Given the function of

exerting cognitive, primary affective that the subcortical network

involves (Koshiyama et al., 2018; Johnson, 2005), this may reflect

the rapid processing of sensory information and the coordination

of basic physiological functions. In contrast, cortical networks,

including networks such as the sensorimotor network and the

central executive network, exhibit longer intrinsic timescales.

Connecting the functions that cortical networks are associated

with, the distinct cortical-subcortical INT substantiates that those

cortical regions are involved in higher-order cognitive processes,

which unfold over longer timescales (Funahashi, 2017; Jung et al.,

2017).

The brain encompasses faster unimodal areas (e.g., the

primary/secondary visual cortex and auditory cortex) and slower

transmodal areas (e.g., lateral and medial prefrontal cortex)

with varying processing lengths (Wolff et al., 2022). Consistent

with this, we found that cortical networks have longer INT.

Intriguing, the opposite pattern of the hierarchy of INT was

observed in infancy (Truzzi and Cusack, 2023). This could be

linked to brain function development. As the brain evolves and

matures, cortical regions emerge later and undergo significant

expansion (Bayne et al., 2023). Gradually engaging in higher-order

cognitive functions such as reasoning, language, planning, and

decision-making, these regions enhance their ability to integrate

information, leading to an increase in INT. For example, the

prefrontal cortex, which is one of the last regions to fully mature,

occupies the top of the hierarchy and exhibits the longest INT. It

remains unclear at which developmental stage the brain reaches

a maturation of its hierarchy of timescales. Our study sample,

composed of younger adults aged 19 to 22, indicates that at this

stage, the brain has already established a hierarchy of INT.

A hierarchy of intrinsic timescales in the brain, driven by

neuronal heterogeneity where neurons with shorter dendrites have

longer timescales and brain regions at the bottom of the hierarchy

have neurons with larger dendrites than those at the top, improves

our understanding of the relationship between neuronal structure

and brain function. Regions with higher neuron density (Beul

and Hilgetag, 2019) support complex and rapid processing,

while regions with fewer neurons but more complex dendritic

morphology are involved in more integrative and prolonged tasks.

This hierarchical organization allows for rapid, short-timescale

processing in lower-order sensory regions with larger neurons,

and slower, long-timescale processing in higher-order regions with

smaller neurons, such as the default-mode network (DMN).

Our study also indicates a substantial gap between the
timescales of neuronal spikes and fMRI signals from brain

regions, highlighting that various elements at different levels
of brain organization contribute to the hierarchy of time
scales in the brain. This includes the density and morphology

of dendritic spines (Cavanagh et al., 2020), which influence

synaptic strength and temporal integration; cortical columns and

layers (Mejias et al., 2016), which integrate local and large-scale

processing; the connectivity patterns within neuronal circuits,

which determine information flow and coordination; and the

topology of brain networks (Gollo et al., 2015), which dictates

hierarchical information processing. While we have begun to piece

together some of these multiscale elements, considerable additional

work is still needed to fully reveal how the brain efficiently

processes information across multiple timescales and the intricate

relationship between neuronal structure and brain function across

the different levels of structure within the nervous system.

4.2 Possible explanations for the
relationship between the dendritic size and
INT

Neuronal dendrites play a crucial role in neuron function and

information processing (London and Häusser, 2005). Progressive

dendritic pruning, associated with neurodegeneration, has been

linked to a decrease in the dynamic range, and a decrease in

the energy consumption (Kirch and Gollo, 2021). Here we show

that pruning reduces the neuronal firing rate, and these changes

drive the observed increase of intrinsic timescales. We have

also demonstrated a robust linear relationship between neuronal

firing rate and intrinsic timescales for neurons regardless of their

dendritic structure.

A larger dendritic size could be considered to have a longer

intrinsic neural timescales, as larger dendrites could provide more

opportunities for synaptic input, and the increased surface area of

larger dendrites can enable more synaptic connections, affecting

overall the neuronal function (Major et al., 2013; Zheng et al.,

2024; Palmer, 2014). As a result, neurons with more dendritic

spines could be more likely to integrate information over longer

periods. However, this relationship is not straightforward and

depends on various factors, including the specific neuronal circuit

(e.g., longer timescales have stronger levels of local recurrent

connections; Chaudhuri et al., 2015), neuronal and synaptic types

(excitatory or inhibitory Torres-Gomez et al., 2020), and functional

demands (Cavanagh et al., 2020). Furthermore, neurotransmitter

receptor expressions were also considered important determinants

of the neuron’s timescales, considering their effects on the brain’s

persistent activity (Wang, 2001; Burt et al., 2018; Wang et al., 2013).

Using the pruning algorithm to adjust the dendritic size

progression and obtaining the corresponding INT with simulated

neuronal dynamics, we found that the dendritic size has a

negative association with INT. This finding aligns with the

cytoarchitectonic findings that higher anatomical levels have

smaller dendritic arbors (Kiebel et al., 2008; Cocchi et al.,

2016; D’Souza et al., 2016; Burt et al., 2018), and in higher

levels of the hierarchy, information was processed across longer

timescales (Himberger et al., 2018; Gollo et al., 2017). There

are several possible explanations for this result. First, neurons

with smaller dendritic trees may have fewer synaptic inputs and

a more limited capacity for integrating incoming signals. As

a result, it may take longer for these neurons to accumulate

Frontiers inCellularNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncel.2024.1404605
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Wu and Gollo 10.3389/fncel.2024.1404605

enough input to reach the threshold and generate an action

potential (Zhang, 2019; Sengupta et al., 2010), leading to longer

intrinsic timescales. Second, neurons with smaller dendritic trees

may have higher input resistance, which can slow down the

rate of membrane potential changes in response to synaptic

inputs (Gulledge et al., 2005). This increased input resistance

could contribute to longer timescales of neural activity and

information processing. Third, the specific mechanisms underlying

dendritic integration and computation may differ between neurons

with smaller and larger dendritic trees. For example, smaller

dendritic trees may exhibit more linear or passive integration

properties, whereas larger dendritic trees may support more

complex nonlinear computations (Koch et al., 1983; London

and Häusser, 2005). These differences in dendritic processing,

in conjunction with the differences in firing rate observed as a

function of neuronal size could influence the overall timescale of

neural activity.

4.3 Limitations and future consideration

The current research has some limitations for further

consideration. First, we connect the simulated neurons

with subcortical and cortical networks in the brain through

cytoarchitectonic findings. Although the partitions of neurons

do not affect the result of the cortex-to-subcortex hierarchy of

INT, it would be informative to study INT of specific neurons

found within the respective cortical and subcortical brain

regions. Second, the association between the INT and offset

reflects the trade-off between the short and long INT of the

brain network. However, as an important parameter of the

exponential fitting method, whether the offset varies significantly

between networks or subcortical and cortical regions has yet to

be explored. Finally, this study reveals an association between

dendritic size and INT, while a more precise way of quantifying

the relationship between them should be evaluated. It has

been shown that INT is closely related to the strength and

the pattern of neuron information encoding (Cavanagh et al.,

2020; Wasmuht et al., 2018; Huang et al., 2023; Constantinidis

et al., 2018; Lundqvist et al., 2018). Future studies could use the

variation of the information encoding ability across neurons and

tasks (decision-making; Constantinidis et al., 2018 or working

memory; Lundqvist et al., 2018) to examine how dendritic

size, density of spines (Cavanagh et al., 2020), and number of

neurons in cortical regions (Beul and Hilgetag, 2019) affect their

INT.

In addition, the fMRI data is only from 34 young adults

and the set of prototype neurons comprises 13 neurons from

6 species. Future studies could incorporate a larger functional

imaging dataset and could extend to a larger set of neurons

within different regions of the same species. Furthermore, the

neuronal dynamics considered here were simplified and modeled

without considering the heterogeneity of ion channels due to

the lack of data to inform the model. Though it simulates

the dynamics of excitable systems, future studies could attempt

more detailed biophysical models, for example, considering the

membrane potential of each compartment as a continuous

variable (Cuntz et al., 2021).

5 Conclusions

This study examined intrinsic neural timescales within cortical

and subcortical functional networks and its interplay with neuronal

dendrites. Employing resting-state fMRI signals, we computed the

INT of these networks, uncovering a shorter INT in subcortical

networks compared to cortical ones. Through the implementation

of a pruning algorithm to simulate neurons across varying levels

of integrity, we identified that regions with smaller dendritic

sizes, typically found at higher hierarchical levels, exhibit longer

INT. Furthermore, our investigation revealed that differences in

INT at the neuronal level contribute to the variations of INT

observed across distinct brain regions. These findings suggest

that INT mirrors the functional hierarchy within the brain and

that dendritic morphology exerts influence on the INT of brain

functional networks. This study contributes to neuroscience by

elucidating the neuronal mechanisms underlying INT and its

association with brain structure and function. Additionally, it

introduces an innovative approach for quantifying and simulating

INT across different spatial scales. This study marks an initial

advancement in our understanding of the intricate relationship

between microscopic dendritic structure and the dynamic behavior

of macroscopic functional networks.
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