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The histochemical Falck-Hillarp method for the localization of dopamine 
(DA), noradrenaline (NA) and serotonin in the central nervous system (CNS) of 
rodents was introduced in the 1960s. It supported the existence of chemical 
neurotransmission in the CNS. The monoamine neurons in the lower brain 
stem formed monosynaptic ascending systems to the telencephalon and 
diencephalon and monoamine descending systems to the entire spinal cord. 
The monoamines were early on suggested to operate via synaptic chemical 
transmission in the CNS. This chemical transmission reduced the impact of 
electrical transmission. In 1969 and the 1970s indications were obtained that 
important modes of chemical monoamine communication in the CNS also 
took place through the extra-synaptic fluid, the extracellular fluid, and long-
distance communication in the cerebrospinal fluid involving diffusion and flow 
of transmitters like DA, NA and serotonin. In 1986, this type of transmission was 
named volume transmission (VT) by Agnati and Fuxe and their colleagues, also 
characterized by transmitter varicosity and receptor mismatches. The short and 
long-distance VT pathways were characterized by volume fraction, tortuosity 
and clearance. Electrical transmission also exists in the mammalian CNS, but 
chemical transmission is in dominance. One electrical mode is represented 
by electrical synapses formed by gap junctions which represent low resistant 
passages between nerve cells. It allows for a more rapid passage of action 
potentials between nerve cells compared to chemical transmission. The second 
mode is based on the ability of synaptic currents to generate electrical fields 
to modulate chemical transmission. One aim is to understand how chemical 
transmission can be  integrated with electrical transmission and how putative 
(aquaporin water channel, dopamine D2R and adenosine A2AR) complexes 
in astrocytes can significancy participate in the clearance of waste products 
from the glymphatic system. VT may also help accomplish the operation of the 
acupuncture meridians essential for Chinese medicine in view of the indicated 
existence of extracellular VT pathways.
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1 Introduction

The first neuronal maps and circuits in the central nervous 
system (CNS) were achieved by Camillo Golgi and Santiago Ramon 
y Cajal (DeFelipe and Jones, 1992) for which they received the Nobel 
prize in 1906. The structure and thus the anatomy of the CNS had 
begun to be understood.

In the beginning of the 1960s the histochemical Falck-Hillarp 
method for the localization of the monoamines dopamine (DA), 
noradrenaline (NA) and serotonin in the CNS was introduced 
(Carlsson et al., 1962; Falck and Torp, 1962; Fuxe, 1963; Anden et al., 
1965; Dahlstroem and Fuxe, 1965; Fuxe, 1965b,c). It led to the discovery 
of the DA, NA and serotonin neurons in the lower brain stem and their 
monosynaptic and widespread projections and monoaminergic 
innervation of almost all regions of the CNS (Fuxe, 1965a). This 
contributed to give further evidence for the existence of chemical 
neurotransmission in the CNS. The results involved the formation of 
monosynaptic ascending systems to the tel-and diencephalon and 
descending monosynaptic systems to the entire spinal cord originating 
almost exclusively from the lower brain stem (Fuxe, 1965b,c).

CNS communication was early on regarded to take place between 
neurons, via contacts, named synapses as proposed by Cajal and 
further established by the electrophysiologist Sherrington outlining 
their operation via the fast electrical synaptic transmission 
(Sherrington, 1947).This is the classical fast synaptic transmission 
with a delay of action usually in the order of 0.3–5 ms.There exists also 
a presynaptic component, with a varicosity rich in synaptic vesicles, 
separated by the synaptic cleft from the postsynaptic side, containing 
different types of post-synaptic receptors and proteins. The 
neurotransmitters involved were mainly glutamate and GABA. The 
cleft range varies mainly from 35 to 50 nm.

In the 1960s, it was initially believed that the monoamines 
were neuroetransmitters and could operate via slow synaptic 
chemical transmission in the CNS based on histochemistry, 
biochemistry and pharmacology (Dahlstroem and Fuxe, 1964; 
Anden et al., 1965; Fuxe, 1965a,b,c; Ungerstedt, 1971; Olson and 
Fuxe, 1972). At the end of the 1960s and in the 1970s indications 
were obtained that important modes of chemical monoamine 
communication in the CNS took place through synaptic and 
extracellular transmission. This extracellular transmission 
involves diffusion and flow of transmitters like DA, NA and 
serotonin (Fuxe and Anden, 1966; Ungerstedt et al., 1969; Fuxe 
and Ungerstedt, 1970; Fuxe, 1979).

In line with these observations, Descarries found in 1975 
(Descarries et al., 1975) using ultrastructural techniques that there 
exist both junctional and non-junctional monoamine varicosities 
in the serotonin neurons of the brain. The Falck-Hillarp method 
and immunocytochemistry also supported the existence of a 
widespread chemical monoamine transmission including also the 
serotonin neurons in the CNS (Carlsson et al., 1969; Ungerstedt 
et al., 1969; Fuxe et al., 1970a,b). In 1986, further evidence was 
obtained for this extracellular communication involving 
transmitter and receptor mismatches, previously found by Kuhar 
et al. (1985) and it was given the name volume transmission (VT) 
by Agnati and Fuxe and their teams (Agnati et al., 1986; Fuxe and 
Agnati, 1991). Nicholson and Sykova (1998) have described the 
extracellular space as having a foam like structure in which 

migration of VT signals like neurotransmitters, modulators, ions 
and enzymes can occur. The diffusion and flow in the extracellular 
space, characterized by the volume fraction, tortuosity, and 
clearance has had a significant impact on understanding the 
operation of VT (Nicholson and Phillips, 1981; Nicholson and 
Sykova, 1998; Hoistad et al., 2002).

In the CNS there is as previously mentioned also another type 
of synaptic transmission called “electrical transmission.” This 
electrical transmission permits a direct flow of electrical current 
from one neuron to the other. One mode is via electrical synapses 
which are made up of gap junctions, which are low resistance 
pathways between neurons (Furshpan, 1964; Goodenough and Paul, 
2009). It makes it possible for action potentials to pass more rapidly 
from one nerve cell to another one than in the case for chemical 
transmission. However, besides being present in all mammalian 
species they are a minority. The second mode of electrical 
transmission lacks contacts between nerve cells and involves the 
ability of synaptic currents to produce electrical fields (Frohlich and 
McCormick, 2010). These electrical fields can then modulate the 
synaptic chemical transmission through nerve cells operating via 
ephaptic transmission (interactions of electrical fields with close 
by neurons).

The aims of this article involve inter alia the understanding how 
diffusion and flow of transmitters and modulators representing 
volume transmission (VT), a special type of chemical transmission 
(Fuxe et al., 2013) can become integrated with electrical transmission. 
Another aim will be to find out the potential role of the astrocytic 
aquaporin water channel(AQP) – G protein coupled receptor (GPCR) 
complexes in mediating the astrocytic transport of waste from the 
interstitial fluid towards the paralymphatic regions representing part 
of the glial and lymphatic system (glymphatic system) (Mestre et al., 
2020). We will also discuss that VT can mediate the diffusion and 
flow for transport and signaling in the acupuncture meridians in 
Chinese medicine (Fuxe et al., 2013; Zhang et al., 2015).

2 Chemical transmission in CNS has 
two modes of operation: synaptic and 
volume transmission

2.1 Synaptic transmission of chemical 
information

The synaptic transmission between neurons was introduced by 
Cajal, based on his neuron doctrine which was further developed by 
neurophysiologists, especially Sherrington (1947). The connectivity 
is mainly serial with a low divergence and high space filling due to 
dedicated transmission lines (axons) from one neuron to another 
neuron. It gives privacy and high safety. The biological effect is phasic. 
The demonstration of the DA, NA and serotonin (5-HT) neurons in 
the mammalian brain together with neurophysiology opened up the 
possibility that chemical transmission had a significant role in 
synaptic transmission (Fuxe, 1965a,b,c; Anden et al., 1966; Fuxe and 
Ungerstedt, 1970; Descarries et al., 1975). The concentration of the 
chemical neurotransmitter in the synapse is usually high (uM). The 
receptor affinity for the endogenous neurotransmitter is usually low 
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from high nM to uM. The transmission code involves a rate and 
temporal code. The transmission delay is low and in the 
millisecond range.

2.2 Volume transmission of chemical 
information

The velocity is slow (seconds-minutes) in VT while synaptic 
transmission operates rapidly in the millisecond range (Jansson et al., 
1999, 2000). The extracellular space is the substrate for VT, which is 
modulated by the extracellular matrix. In VT, special extracellular fluid 
pathways exist for diffusion and flow along myelinated fiber bundles and 
blood vessels (paravascular pathways) using concentration (diffusion), 
and temperature and pressure gradients (mass movement of a fluid 
carrying VT signals) (Jansson et al., 1998, 2001; Fuxe et al., 2010).

2.3 Astroglia contribution to volume 
transmission of chemical information

Other key players in synaptic chemical transmission are the glial 
cells (astrocytes, oligodendrocites and microglial) (Figure 1). Glial 
cells serve as a support system for neurons, maintaining their 
metabolic needs, contributing to ions, neurotransmitters and synaptic 
homeostasis (Goenaga et al., 2023). In particular, astrocytes play an 
important role in neuronal activity, synaptogenesis and circuit 
plasticity (Perez-Catalan et  al., 2021; Goenaga et  al., 2023). The 
communication of astrocytes with presynaptic and postsynaptic 
neurons in the chemical synapses has been very well characterized in 
recent years and this has brought the concept of “tripartite synapse” 
(Liu et al., 2021; Perez-Catalan et al., 2021; Goenaga et al., 2023). 
Moreover, there is evidence that astrocytes also interact with electrical 
synapses in the optic nerve (Smedowski et  al., 2020). Although 
astrocytes do not respond to electrical stimulation, they respond to 
fluctuations in calcium levels in a dynamic manner (Perez-Catalan 
et al., 2021; Goenaga et al., 2023). This astrocytic calcium fluctuation 
triggers the release of transmitters like glutamate, GABA, D-serine 
and adenosine triphosphate (ATP), which participate in synaptic 
communication and plasticity (Liu et al., 2021). Recently, we have 
shown that astrocytes mediate synaptic plasticity during hippocampal 
development (Perez-Rodriguez et al., 2019; Falcon-Moya et al., 2020).

2.4 Acupuncture meridians

They can represent a form of VT and have the capability to generate 
VT signals (such as ions, nitric acid, peptides), which could have a major 
modulation on the surrounding nerve terminals and other types of cells 
like peripheral blood mononuclear cells modulating the immune system, 
and mast cells (Fuxe et al., 2013; Zhang et al., 2015). Likely, there is an 
integration of multiple signals coming from nerves cells, inmmune cells 
and other type of cells. Short and long-distance acupuncture VT may 
occur in meridian channels through diffusion and flow in their interstitial 
fluid. Thus, bidirectional meridian to meriadian communication and 
integration of signal can be possible through this long-distance VT.

3 Volume transmission of chemical 
information

3.1 Observations on monoamine neurons 
give the first indications of VT

With the demonstration of the central monoamine neurons in the 
1960s providing widespread innervation all over the brain and the 
spinal cord (Carlsson et al., 1964; Dahlstroem and Fuxe, 1964; Fuxe, 
1964, 1965b,c; Fuxe and Anden, 1966) and the extracellular release of 
monoamines induced by amphetamine and putative serotonin 
reuptake inhibitors (Fuxe and Ungerstedt, 1968, 1970), also a diffuse 
extracellular mode of monoamine chemical transmission seemed 
possible. It should be noted that communication via the extracellular 
fluid pathways appears to be a common mode of transmission in the 
nervous system of invertebrates (Branton et al., 1978). It can be that 
synaptic chemical transmission is a later more sophisticated 
development of special importance for learning and memory (Fuxe 
et al., 2014a; Borroto-Escuela et al., 2015a, 2016b). It has also been 
found in ultrastructural work that in monoamine varicosities there are 
high densities of small vesicles which lack association with synaptic 
membranes. They can be  found in several brain areas (Descarries 
et al., 1975; Beaudet and Descarries, 1978). Thus, there exist both 
non-synaptic and synaptic chemical monoamine transmission.

Using the Falck-Hillarp technique, it was possible to early on 
obtain indication that monoamines can diffuse in the extracellular 
fluid pathways of the brain (Fuxe and Ungerstedt, 1968; Butcher et al., 
1970; Fuxe et al., 1970b). Fuxe obtained indications using the Falck-
Hillarp technique (Fuxe and Jonsson, 1973) that DA nerve terminal 
networks in the median eminence could release DA from varicosities 
in the median eminence to modulate the release of luteinizing 
hormone from its varicosities in the median eminence into the portal 
vessels (Fuxe, 1963; Fuxe et al., 1983). The DA transmitter can also by 
itself be released into the portal vessels to act as a hormone to inhibit 
prolactin secretion from the anterior pituitary (Fuxe et al., 2010).

Several proposals were introduced in the 1980s to describe new 
ways of inter-neuronal communication (Nicholson and Phillips, 
1981; Fuxe et al., 2007). The findings of Kuhar (Kuhar et al., 1985) of 
the existence of transmitter and receptor mismatches are of high 
relevance. In 1986 we performed a correlation analysis of the regional 
distribution pattern of central enkephalin and beta-endorphin 
terminals and of opioid receptors in adult and old male rats (Agnati 
et al., 1986; Fuxe et al., 1988). We obtained evidence for the existence 
of two main types of chemical communication in the CNS: the 
volume transmission and the synaptic transmission (Fuxe et  al., 
2010). They are in balance with each other and can become integrated 
at the cytoplasmatic level (Fuxe et  al., 2013; Borroto-Escuela 
et al., 2018a).

It was concluded that in volume VT the transmitter can reach 
their receptors via diffusion and flow in the extracellular fluid 
pathways (short or moderate distance) and the cerebrospinal fluid 
pathways (long-distance). A major impact of VT was that it could 
mediate not only interactions between nerve cells but also between 
nerve cell and glial cells and between different types of glial cells. 
All glial cells can release VT signals, and this is true for all 
non-neuronal cells in the CNS (Fuxe et al., 2010; Borroto-Escuela 
et al., 2015a).
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3.2 Understanding volume transmission

The dopamine, noradrenaline and serotonin neurotransmitters 
mainly operate via VT. This is also true for all the neuropeptide 
transitters as well as the ATP and adenosine transmitters. Also the 
classical synaptic neurotransmitters glutamate, especially upon 
mGluR activation, and GABA can to some degree signal via VT by 
entering the extracellular space (Arcos et  al., 2003; Borroto-
Escuela et al., 2018a). The VT signals involve mainly chemical 
transmitters and modulators, trophic factors, ions and gases. 
Energy for signaling is obtained from concentration, temperature, 
and pressure gradients including also gradients of electrical 
potentials (charged signals) causing the observed migration (Fuxe 
et  al., 2010). The decoding (GPCR) systems in the targets are 
mainly the receptors, reuptake proteins and the enzymes. The 
concentration of the chemical signal at the receptor is often low 

and in the nm range. The affinity of the receptor for the chemical 
signal is usually in the nM – pM range. Transmission is dependent 
inter alia on the degree of signal diffusion and the transmission 
delay is often high from seconds to minutes. There is a reduced 
space filling in the brain since the extracellular fluid and the 
cerebrospinal fluid can be used for diffusion and flow of signals 
with released extracellular vesicles also having a significant role 
(Fuxe et al., 2013; Borroto-Escuela et al., 2018a). There is a reduced 
safety in VT versus synaptic chemical transmission in view of 
frequent long-distance diffusion and flow of chemical signals in 
the extracellular fluid channels and in the cerebrospinal fluid 
(Fuxe et al., 2010). There is the VT (Fuxe et al., 2010, 2013) and 
the classical diffusion parameters like volume fraction, the 
tortuosity, that shows the increase in path length compared to the 
strait course and the clearance factor (Nicholson and 
Sykova, 1998).

FIGURE 1

Integration of volume and/or synaptic chemical transmission in the central nervous system (CNS), the striatal-pallidal GABA neuron as an example. 
Volume and synaptic chemical transmission are essential for CNS function, impacting not only synaptic activity but also the extrasynaptic neuronal 
membrane. Here, integration can occur also at transcriptional and cellular signaling levels such as phosphorylation. The volume transmission 
integration extends to interactions between neurons, astrocytes, and other glial cells through this type of chemical transmission, maintaining a balance 
in nerve cell versus glial cell activity. Astrocytes exert a dominance by modulating blood flow, facilitating mitochondrial, mRNA, receptor and/or 
chaperone proteins transfer to the neurons, and serving as a primary source of cholesterol. It has become increasingly clear in recent years that 
integrative receptor-receptor and receptor-protein interactions can exist also in the astrocytes potentially altering the affinity and density of their 
heterocomplexes. Synaptic transmission, regulated by electrical activity and dependent on calcium influx, involves the release of neurotransmitters 
triggered by voltage-dependent calcium channels in the presynaptic terminal. These neurotransmitters act on ligand-gated ion channels (e.g., NMDAR) 
at the postsynaptic membrane, generating a postsynaptic potential. In the striatal-pallidal GABA neurons, dopamine (DA) chemical transmission 
through synaptic D2Rs also modulates glutamate synaptic transmission. This modulation involves receptor-receptor interactions with synaptic NMDA 
receptors in heteroreceptor complexes via the NR2B subunit. DA can also diffuse through volume transmission to reach glutamate synapses, where it 
inhibits NMDAR signaling, thereby reducing synaptic glutamate transmission in these GABA neurons. In addition, extrasynaptic D2 receptors, such as 
those in A2A–D2 heteroreceptor complexes, further decrease the firing of striatal-pallidal GABA neurons. The inclusion of GIRK channels in the post-
synaptic striatal-pallidal GABA neuron was hypothesized based on experimental evidence in striatal medium spiny neurons (MSNs) (Shan et al., 2022).
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3.3 Cell types involved in VT and their 
signaling pathways

In line with these results, it has also been demonstrated that 
neuroactive compounds can be  released from astrocytes to act on 
neurons in cultures of mammalian brain cells (Nedergaard, 1994; 
Perez-Rodriguez et al., 2019; Liu et al., 2021; Goenaga et al., 2023). It is 
clear that also non-neuronal cells can produce VT signals to modulate 
neuronal signaling. There are also several observations showing that 
transmitter release from nerve terminals can take place without strict 
contact with postsynaptic membranes, reaching via VT predominantly 
extra-synaptic regions. It involves a high frequency of non-synaptic 
monoamine varicosities (Descarries et al., 2008; Fuxe et al., 2010, 2013).

There is also evidence for a high frequency of non-synaptic 
varicosities in the cholinergic nerve terminal networks (Umbriaco 
et al., 1994; Descarries et al., 1998). Thus, VT appears to have a major 
role also in central cholinergic transmission, especially in cortical 
cholinergic networks, involving diffusion and flow of acetylcholine. 
The acetylcholinesterase in the CNS does not seem to be as effective 
as the one in the peripheral nervous system, allowing an efficient 
cholinergic VT to develop in the CNS.

3.4 Presence of extra-synaptic transmitter 
receptors and role of astroglia as studied 
with electron microscopy in VT

Ultrastructural work has repeatedly shown that classical 
transmitters and peptides to a substantial degree are located in extra 
synaptic regions, outside synapses, at the presynaptic and postsynaptic 
levels of neurons (Aoki, 1992; Aoki and Pickel, 1992; Aoki et al., 1994; 
Sesack et al., 1994). It includes both GPCRs and ionotropic receptors 
and demonstrates the role of VT in local circuits with short-distance 
VT. It should be noted that beta adrenergic receptor positive astrocytes 
exist that can respond to diffusing catecholamines (CA) operating via 
VT following their release from CA nerve terminals (Aoki, 1992; Aoki 
et al., 1992; Aoki and Pickel, 1992). The activation of the astrocytic 
beta-adrenergic receptors can then modulate the astrocytic release of 
inter alia glutamate having an impact on the activity of glutamate 
synapses of surrounding neurons. Populations of astroglia are 
important targets for dopaminergic and noradrenergic volume 
transmission through their contents of dopamine and noradrenaline 
receptors, including contents of heteroreceptor complexes like A2AR–
D2R heterocomplexes (Cervetto et al., 2017, 2023; Pelassa et al., 2019). 
The monoamine including also serotonin receptors modulate key 
functions of the astroglia, including microglia (Fuxe et  al., 2012; 
Cervetto et al., 2017; Fuxe and Borroto-Escuela, 2018; Narvaez et al., 
2020; Borroto-Escuela et al., 2023).

3.5 Volume transmission along 
extracellular fluid pathways may mediate 
the diffusion and flow of neurotransmitters 
and extraneuronal signals in acupuncture 
meridians

As discussed, volume transmission is a major communication in 
the CNS involving short and long-distance diffusion and flow of 

neurotransmitters and glial derived signals in the extra synaptic fluid 
and the extracellular (interstitial) fluid including also the 
cerebrospinal fluid for long-distance diffusion and flow (Fuxe et al., 
2013). These observations may have relevance for understand the 
meridian theory of traditional chinese medicine (Zhang et al., 2015). 
The meridians (interstice) were begun to be understood when VT 
was introduced and supported by the observations that meridians 
were found to have low hydraulic resistance channels (Zhang 
et al., 2015).

3.6 VT and the glymphatic system

Glial-lymphatic system is described as representing the astrocytic 
transport of waste from the interstitial fluid towards the paralymphatic 
regions (Mestre et  al., 2020). This interplay between neurons and 
astroglia for brain integration and clearance, e.g., in the glymphatic 
system, is one of the examples that illustrates the key role of VT 
communication within the CNS. It likely involves allosteric receptor-
receptor and receptor-protein interactions (Fuxe et  al., 2014a,b; 
Borroto-Escuela et al., 2015a, 2021; Borroto-Escuela and Fuxe, 2019) 
to optimize the clearance of metabolic waste from the glial-neuronal 
circuits (Mestre et al., 2020).

Our hypothesis is that the glymphatic system is part of the 
extracellular pathways mediating volume transmission, which 
operates through energy gradients to produce flow (Fuxe et al., 2010; 
Borroto-Escuela et al., 2015a). As discussed by Prof. Nedergaard and 
colleagues, there exist aquaporin-4 water channels (AQP4) in high 
densities on the vascular astrocytic end-feet which increases clearance 
of the waste in the astrocytic-neuronal networks (Mestre et al., 2020). 
It is now hypothesized in the current paper that certain types of GPCR 
like A2AR, D2R, D4R are located on the membrane of vascular 
astrocytes can form a heterocomplex with AQP4 water channels and 
other types of water channels. An AQP4 – GPCR receptor-protein 
complex may enhance the opening of the AQP4 water channels 
through an allosteric mechanism. This can also increase the passage 
of fluid through the astrocytes into the interstitial fluid around the 
glial and neuronal cells inside the blood–brain barrier. It may further 
improve the flow and clearance of their metabolic products towards 
the fluid surrounding the beginning of the para venous/para 
lymphatic regions.

This positive receptor-protein interaction may be in operation 
mainly at night since the clearance of metabolites may be enhanced 
in this time period (Mestre et al., 2020). This hypothesis may lead to 
the introduction of novel treatment of CNS disorders with deficits in 
removal of waste products in the interstitial fluid of the astrocytic-
neuronal networks. Besides influx of fluid over the blood brain barrier 
through the astrocytic AQP4 water channels modulated by GPCR, 
we suggest that there also exist in the neuronal-astrocytic network 
inside the blood brain barrier, AQP4 – GPCR e. g., A2AR 
heterocomplexes in the astrocytes. In support of this hypothesis, 
using two-hybrid methods it was demonstrated a potential 
interactions between GPCR37-like 1 receptor with both, aquaporin 
1(AQP1) and aquaporin 10 (AQP10) as well as AQP10 with GPR152 
(Luck et al., 2020). It remains to be determined which is the major 
aquaporin ion channel for participating in the glymphatic system. 
Through allosteric receptor-protein interactions also these complexes 
can increase the passage of interstitial fluid through the increased 
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allosteric opening of AQP4 and other water channels on the 
membrane of astrocytes inside as well as outside the blood 
brain barrier.

This mechanism can further enhance the flow of interstitial fluid 
into the extra-cellular pathways from the neuronalglial networks. It 
will help in the further passage of the interstitial fluid into the para-
venous space and the lymphatic vessels (Mestre et al., 2020). This 
hypothesis can be tested with various types of GPCR complexes to 
develop a suitable AQP – GPCR complex followed by a 
pharmacological analysis to optimally increasing the clearance of 
waste products from the interstitial fluid around astroglia and 
nerve cells.

3.7 Long-distance volume transmission

There are also indications for the existence of long-distance VT 
based on the presence of mismatches between transmitters and 
receptors involving the monoamine and peptide systems (Herkenham, 
1987; Fuxe et al., 1988; Zoli et al., 1989). Similar binding characteristics 
in match and mis-match receptors support the view that the mismatch 
receptors are reached by the diffusing transmitter and can mediate 
long-distance VT (Jansson et al., 1998, 1999, 2001).

A marked mismatch for DA transmission has also been observed 
in the retina (Bjelke et al., 1996). The DA nerve cells are in the inner 
plexiform layer with their DA nerve terminal networks innervating 
the same layer. Instead, high densities of D1R and D2R are found in 
the outer plexiform layer representing DA mismatch receptors and 
mediate DA VT, also found to some extent in the ganglion cell layer 
and photocell layer (Bjelke et al., 1996). The DA retina VT may have 
a role in modulating light/dark adaptation.

Long-distance VT for opioid signaling is well illustrated by the 
beta-endorphin and enkephalin immunoreactive nerve terminal 
distribution in relation to the distribution pattern of its mu and delta 
opioid receptors (MOR and DOR) (Agnati et al., 1986; Fuxe et al., 
1988). There was a lack of correlation of the distribution of the beta-
endorphin and the distribution of MOR and DOR. The mismatches 
involved long-distances, especially in the cerebral cortex and in the 
striatum. There are indications that beta endorphin microinjected into 
the striatum can be detected in the cerebrospinal fluid as an intact beta 
endorphin which can be  detected in the membrane of nerve cell 
bodies of the globus pallidus, colocated with MOR (Hoistad et al., 
2005). It is of high interest that beta-endorphin of the brain formed in 
the arcuate nucleus (Bloom et al., 1978) can migrate via diffusion and 
flow in the extracellular fluid and the cerebrospinal fluid to modulate 
to a large degree via long-distance VT, the function of these opioid 
receptor subtypes all over the brain and the spinal cord reducing pain 
and increasing reward leading to addiction development. The work of 
Bjelke et al. (1996) studying diffusion of dextran in the living brain 
have also indicated the existence of diffusion and flow of dextran along 
myelinated fibre bundles and vascular fibres bundles. These can 
represent fluid pathways for chemical signaling based on long-
distance VT.

CSF signaling can also be  looked upon as representing long-
distance VT, especially prior to synaptic development (Fuxe et al., 
2010). Segal has proposed several molecules that can be regarded as 
relevant CSF signals (Segal, 2000). Of special interest are those with 
global actions like effects on sleep modulation.

3.8 Integration of volume and synaptic 
chemical transmission of chemical 
information in the CNS

The major targets for VT signals are various types of GPCR 
located in the plasma membrane (Figure 1). The neurons in the CNS 
are therefore continuously modulated by VT signals reaching the 
plasma membrane where integration with synaptic transmission takes 
place in addition to integration at the nuclear and cytoplasmatic levels. 
The main mechanism involved for the integration at the membrane 
level can be receptor-receptor interactions between synaptic GPCRs 
and fast synaptic ionotropic receptors, like NMDAR and GABAAR, in 
the synaptic membranes. Such GPCR-ionotropic heterocomplexes 
were first discovered by Fang Liu and her group (Lee et al., 2002; Liu 
et  al., 2006; Nai et  al., 2009) involving e. g., D5R-GABAAR, 
D1R-NMDAR, and D2R-NMDAR. Indications for GABAA-D2R 
receptor-receptor interactions were obtained in striatal membranes 
already in 1997 based on changes induced in D2R binding affinity 
(Perez de la Mora et  al., 1997). The possible existence of direct 
interactions between nicotinic and DA receptors in the basal ganglia 
was discussed in 1995 (Li et al., 1995) and 2008 (Belluardo et al., 
2008). It includes also interactions of nicotinic receptors with trophic 
factors that can underly the neuroprotective effects of nicotine 
(Belluardo et al., 2008) and interactions of nicotinic receptor with and 
fast synaptic ionotropic receptors, like NMDAR (Li et al., 2012; Zhang 
et al., 2016; Jiang et al., 2021). Also, a D2R–nicotinicR and D3R–
nicotinicR hetermeric complexes were found in the striatal DA nerve 
terminals (Quarta et al., 2007; Bontempi et al., 2017). The integration 
of GPCR and Receptor tyrosine kinases (RTK) in heteroreceptor 
complexes also has a fundamental role in understanding the 
mechanism for neuronal plasticity, trophism and modulation of 
GPCR function (Borroto-Escuela et al., 2012, 2013a,b, 2014, 2015b, 
2016a, 2017a,b, 2021; Di Liberto et al., 2017; Di Palma et al., 2020; 
Ambrogini et al., 2023).

4 Integration of chemical transmission 
with electrical transmission

4.1 Interaction of electrical and chemical 
signals

Electrical synapses are mediated by gap junctions which are 
aggregates of intercellular channels permitting cell to cell transfer of 
ions (Figure 2). The gap junctions are built up of connexin proteins 
(Perkins et  al., 1998). Various factors modulate the gap junction 
channels like voltage, calcium ions and phosphorylation. This 
modulation makes it possible to open or close the gap junctions 
(channels), modulating the diffusion and flow of electrical currents 
between the two cells (Connors, 2017). To date, dendrodendritic, 
dendrosomatic or somatosomatic electrical signaling via gap 
junctions is accepted and recognized as an established part in 
communication of nerve cells in mammals. However, electrical 
communication can also happen between nerve terminals and 
postsynaptic elements. The possibility that the presynaptic current 
can influence the postsynaptic component through gap junctions may 
occur in specific electrochemical (mixed) synapses (Figure 2). The 
combination of electrical coupling and neurotransmitter-mediated 
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chemical signaling allows for a complex and dynamic form of 
communication between neurons where the electrical component of 
the synapse provides fast and synchronized transmission, while the 
chemical component offers modulation, plasticity, and the ability to 
integrate information from multiple sources (Hamzei-Sichani 
et al., 2012).

Morphologically mixed synapses were first identified by Sotelo 
and Llinas (1972) in mammals at axon terminals on soma and 
dendrites. In the classical morphologically mixed synapses, 
depolarization or hyperpolarization of the postsynaptic nerve cell can 
have a substantial influence on presynaptic neurotransmitter release 
through the electrical synapse (Zolnik and Connors, 2016). It is of 

FIGURE 2

Examples of interactions between electrical and chemical synapses in the CNS. (A) Chemical synaptic transmission relies on a complex presynaptic 
molecular machinery that regulate the probabilistic release of neurotransmitters in a precise and dynamic fashion upon depolarization triggered by an 
incoming action potential. A similarly complex postsynaptic molecular machinery is essential, including ionotropic and metabotropic receptors. GPCRs 
(shown in red and orange) are capable of detecting and translating the presynaptic message (neurotransmitters) into various postsynaptic events, 
ranging from changes in resting potential to alterations in gene expression. The trafficking of glutamate receptors into and out of synapses is regulated, 
with postsynaptic densities providing scaffolding to manage this process. Key components of these densities include PSD-95 and CaMKII. The 
regulated trafficking and function of NMDA receptors (NMDARs, shown in blue) are believed to underpin modifications in synaptic strength at 
glutamatergic synapses. Neurotransmitter modulators released by adjacent synaptic terminals (synaptic varicosities) influence the synaptic strength of 
both chemical and electrical synapses through the activation of GPCRs, including metabotropic receptors. Regulation at chemical synapses can occur 
either presynaptically or postsynaptically. (B) Electrical transmission is facilitated by clusters of intercellular channels known as gap junctions, which 
allow direct, bidirectional passage of electrical currents carried by ions (depicted by arrows), as well as intracellular messengers and small metabolites, 
between adjacent cells. Electrical synapses exhibit bidirectionality: an action potential in the “presynaptic” cell propagates to the “postsynaptic” cell, 
while the resting membrane potential of the “postsynaptic” cell concurrently influences the “presynaptic” cell (arrows). Proteins within the “semi-dense 
cytoplasmic matrix” serve as scaffolds, with ZO-1 being a structural component and CaMKII playing a non-essential role in the macromolecular 
complex of gap junction channels. (C,D) Mixed synapses exhibit the coexistence of electrical and chemical synapses. At these synapses, glutamatergic 
transmission regulates the strength of electrical synapses via a postsynaptic mechanism that involves the activation of NMDA receptors (NMDAR) and 
CaMKII. Regulation of electrical synapses by glutamatergic transmission could also be formed as a hetero synapse (D). Nearby glutamatergic synapses 
can regulate the electrical transmission through NMDAR or metabotropic glutamate receptor activation (see also Pereda, 2014).
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interest that an axon terminal can form a chemical synapse with one 
dendrite and can be  connected via gap junction also to a second 
adjacent dendrite located in a parasynaptic position (functionally-
mixed synapses) (Sotelo and Korn, 1978). In this way the gap junction 
may make possible depolarization and calcium influx into the second 
dendrite, which may cause activation of a silent AMPA receptor in the 
first dendrite also in a parasynaptic membrane position that may 
move into a postsynaptic position. It can represent a relevant 
regulatory mechanism, especially during development with 
coexistence of electrical and silent glutamate receptors (Peinado et al., 
1993; Poncer and Malinow, 2001). In addition, in the first dendrite 
calcium influx via the postsynaptic NMDAR may modulate the 
electrical state in the close by gap junction providing one more 
modulatory mechanism in synapses with mixed morphology (Nagy 
and Lynn, 2018; Nagy et al., 2019). These observations are of high 
interest since it opens the possibility that close by dendrites from the 
same nerve cell can be in dynamic balance with each other through 
gap junctions, electrically modulating the activity of different 
glutamate receptors. As a result, homo and heteroreceptor glutamate 
complexes in these dendrites in parasynaptic positions can become 
altered in terms of signaling and density through electrical modulation 
(Figure 2). Thus, electrical, and chemical signal integration can play a 
significant modulating role in synaptic transmission.

Besides the physical electrical coupling mediated by gap junctions, 
there exists the ephaptic coupling which involves integration with a 
close by neuron through the electrical fields produced by their 
electrical activities (ephaptic transmission). The integration develops 
when the electrical field of one neuron modulates the electrical 
potential of another adjacent neuron. It leads to altered excitability 
with potential synchronization of their activities (Anastassiou et al., 
2011). Furthermore, the diffusion of charged neurotransmitters with 
or without coupling to membrane receptors, can via volume 
transmission in the extracellular space form electrical fields 
(Savtchenko et  al., 2004). It should be  noted that the volume 
transmission can involve spread of electrical currents between nerve 
cells via the extracellular fluid through the electrogenic activity of 
neurons, modulating their activity, membrane potential and receptor 
function (Jefferys, 1995). Therefore, electrical fields of synaptic 
currents can become integrated with chemical transmission including 
both synaptic and volume transmission. The chemical transmission 
has the ability to integrate information from different types of 
receptors participating in chemical or electrical transmission. It 
includes ionotropic receptors and/or GPCRs and/or RTKs through 
their allosteric receptor-receptor interactions with each other, giving 
high plasticity to these types of synapses (Fuxe and Agnati, 1985; 
Borroto-Escuela et al., 2012; Fuxe et al., 2014a). The various types of 
receptor-receptor interactions can, e.g., lead to local activation or 
inhibition of transmitter or modulator release, altering diffusion of 
charged transmitters. Changes in in the presynaptic potential could 
also be involved at the site of transmitter release. Changes in electrical 
fields may also be  considered in these events through alterations 
in polarization.

4.2 Possible voltage dependence of GPCR

While many ion channels have long been known to be voltage-
sensitive, this property has not been attributed to GPCRs until quite 

recently. A notable example was the discovery in 2003 that M2 
muscarinic acetylcholine receptors (M2R) display depolarization-
induced decreases in agonist binding and functional potency 
(Ben-Chaim et al., 2003). M2R voltage sensitivity has been implicated 
in the autoreceptor function of this GPCR, by permitting rapid control 
of neurotransmitter release kinetics by membrane voltage. The agonist 
binding affinity and the activity level of some GPCRs, e.g., 
metabotropic mGluR3 and mGluR1a (Ohana et  al., 2006), and 
alpha2A adrenergic receptors (Rinne et  al., 2013) were shown to 
be also regulated by membrane potential in vitro, suggesting a voltage-
dependence of these receptors (Ben-Chaim et al., 2003). Additionally, 
using Förster resonance energy transfer-based (FRET) biosensors in 
patch clamp experiments, it was discovered that prostanoid receptors 
exhibit a robust voltage dependence at the receptor level as well as in 
downstream signaling (Kurz et al., 2020). Agonist-mediated activation 
of prostaglandin F receptors and prostaglandin E(2) receptors as well 
as thromboxane receptors are activated upon depolarization, whereas 
prostacyclin receptors are not. The discovery that GPCRs are voltage-
sensitive has improved our understanding of their behavior. For 
instance, the M2R was found to exhibit depolarization-induced charge 
movement associated currents, implying that this prototypical GPCR 
possesses a voltage sensor (Ben-Chaim et al., 2003). However, the 
typical domain that serves as a voltage sensor in voltage-gated 
channels is not present in GPCRs, making the search for the voltage 
sensor in the latter challenging (Barchad-Avitzur et  al., 2016; 
Rozenfeld et al., 2021).

Although many of the physiological and pharmacological 
implications of this effect remain unclear, the demonstrated ability of 
depolarization to potentiate GPCRs at near threshold agonist 
concentrations represents a novel mechanism for chemical and 
electrical signal integration (Gurung et al., 2008).

In recent years, a physiological role for the voltage dependency of 
GPCRs has been identified by demonstrating crucial involvement of 
GPCR voltage dependence in neuronal plasticity and behavior 
(Rozenfeld et al., 2021). Studies on muscarinic receptors by Rozenfeld 
et al. suggested that GPCR voltage dependency plays a role in many 
diverse neuronal functions, including learning and memory.

Sahlholm et al. (2008a,b,c) further investigated voltage sensitivities 
of D2-like dopamine receptors (D2R, D3R, D4R) using Xenopus 
oocytes expressing DA-like receptors with G protein inwardly 
rectifying potassium (GIRK) channels as readouts. It was found that 
the dopamine potency was reduced by depolarization to a similar 
extent in both isoforms of the D2R (Sahlholm et al., 2008a). However, 
the dopamine D3R potency was not significantly affected, while a 
weak, albeit significant decrease in potency was observed with the 
dopamine D4R (Sahlholm et al., 2008a,c). Thus, a differential voltage 
sensitivity was observed. In mammalian cells, changes in FRET were 
used as a readout for D2(short)R activation, showing similar potency 
shifts as observed with GIRK channels (Sahlholm et  al., 2008b). 
Furthermore, radioligand binding experiments carried out on oocytes 
in hyperpolarizing vs. depolarizing buffer established that dopamine 
binding is reduced by depolarization. Voltage effects varied among 
agonists at D2(short)R, independent of G protein subtypes. Specific 
agonist-receptor interactions, particularly involving hydroxyl and 
amine groups, influenced voltage-induced potency shifts, highlighting 
differential voltage sensitivity among D2-like receptors (Sahlholm 
et  al., 2008b). This underscores the relevance of GPCR voltage 
sensitivity in dopaminergic signaling, and reveals insights into 
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voltage-sensitive agonism, and suggests using differentially voltage-
modulated agonists to explore this phenomenon in native tissue and 
for and for drug development.

More recently, Ambrogini et al. (unpublished findings) evaluated 
the voltage sensing properties of adenosine A2AR and dopamine D2R 
in HEK 293 cells, single transfected with A2AR or D2R. The results 
indicated that both A2AR and the D2R lacked voltage dependence. 
These results suggest that for at least these two GPCRs in the model 
and protocol used, there is a lack of integration between chemical and 
electrical transmission. However, in view that the HEK-293 cells 
express endogenously both adenosine A2AR and dopamine D2R, 
there is a possibility that the existence of A2AR–D2R heteroreceptor 
complexes may have a major role on the control of these promoters 
voltage sensing properties. It is demonstrated that A2AR and D2R can 
form heteroreceptor complexes with antagonistic allosteric receptor-
receptor interactions. Thus, the possible voltage dependence of D2R, 
previously demonstrated, would be affected within the A2AR–D2R 
heteroreceptor complexes. We cannot exclude also that the intrinsic 
voltage sensing properties observed in GPCRs, may depends on 
several other factors such as the expression level of G protein subunits 
and their stoichiometry, and/ or the GPCR-lipid interaction (e.g., 
cholesterol).

5 Concluding remarks

Volume and synaptic chemical transmission plays a highly 
significant role in the CNS and become integrated not only in the 
synapses but also in the neuronal cytoplasm through integration at the 
level of transcription and cellular signaling like phosphorylation. The 
integration of neurons and astrocytes and other types of glial signaling 
takes place via volume chemical transmission enabling a balance in 
the activity of nerve cells versus glial cells. The astrocytes in 
dominance, can modulate blood flow and mediate transfer of 
mitochondria to neurons and is the major source of cholesterol 
(Siracusa et al., 2019). It has become increasingly clear in recent years 
that integrative receptor-receptor and receptor-protein interactions 
can exist also in the astrocytes potentially altering the affinity and 
density of these heterocomplexes (Cervetto et al., 2017; Narvaez et al., 
2020; Borroto-Escuela et  al., 2023) as previously demonstrated in 
neurons (Borroto-Escuela et  al., 2012, 2014, 2017c, 2018b, 2023; 
Chruscicka et al., 2019; Di Palma et al., 2020; Chruscicka et al., 2021; 
Romero-Fernandez et al., 2022).

Electrical transmission becomes integrated with chemical 
transmission through its electrical synapses formed by gap junctions, 
which elicit ion channels between two nerve cells through their low 
resistance. Presynaptic currents can modulate the postsynaptic part 
via gap junctions in electro-chemical synapses. Another integration 
mechanism is that electrical fields generated by synaptic currents 
through ephaptic transmission can modulate electrical currents and 
rhymes in adjacent nerve cells.

As to the glymphatic system, AQP water channels–GPCR 
complexes may enhance the opening of e. g. the AQP4 water 
channels through the allosteric interactions in the complex 
involving e. g. the A2AR. This increased passage of fluid through 
the astrocytes outside and potentially inside the blood brain-barrier 
may improve the flow and clearance of the metabolic waste 
products by enhancing their passage to the para-venous regions. 

This hypothesis will be  further tested in future experiments, 
including pharmacological experiments. It underlines the potential 
role of volume transmission combined with e. g. AQP4–A2AR 
complexes in the clearance of waste products in the glymphatic 
system. The potential existence of volume transmission along 
acupuncture meridians may open a up a new understanding of the 
mechanism for the operation of the acupuncture meridians in 
chinese medicine.
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