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Background: Intrauterine inflammation and the requirement for mechanical 
ventilation independently increase the risk of perinatal brain injury and adverse 
neurodevelopmental outcomes. We aimed to investigate the effects of mechanical 
ventilation for 24 h, with and without prior exposure to intrauterine inflammation, 
on markers of brain inflammation and injury in the preterm sheep brain.

Methods: Chronically instrumented fetal sheep at ~115  days of gestation 
were randomly allocated to receive a single intratracheal dose of 1  mg 
lipopolysaccharide (LPS) or isovolumetric saline, then further randomly 
allocated 1  h after to receive mechanical ventilation with room air or no 
mechanical ventilation (unventilated control  +  saline [UVC, n  =  7]; in utero 
mechanical ventilation  +  saline [VENT, n  =  8], unventilated control  +  intratracheal 
LPS [UVC  +  LPS, n  =  7]; in utero ventilation  +  intratracheal LPS [VENT  +  LPS, 
n  =  7]). Serial fetal blood and plasma samples were collected throughout the 
experimental protocol for assessment of blood biochemistry and plasma 
interleukin (IL)-6 levels. After 24  h of mechanical ventilation, fetal brains were 
collected for RT-qPCR and immunohistochemical analyses.

Results: LPS exposure increased numbers of microglia and upregulated pro-
inflammatory related genes within the cortical gray matter (GM) and subcortical 
white matter (SCWM) (pLPS  <  0.05). Mechanical ventilation alone increased 
astrocytic cell density in the periventricular white matter (PVWM) (pVENT  =  0.03) 
but had no effect on pro-inflammatory gene expression. The combination of 
ventilation and LPS increased plasma IL-6 levels (p  <  0.02 vs. UVC and VENT 
groups), and exacerbated expression of pro-inflammatory-related genes (IL1β, 
TLR4, PTGS2, CXCL10) and microglial density (p  <  0.05 vs. VENT).

Conclusion: This study demonstrates that 24  h of mechanical ventilation after 
exposure to intrauterine inflammation increased markers of systemic and 
brain inflammation and led to the upregulation of pro-inflammatory genes in 
the white matter. We  conclude that 24  h of mechanical ventilation following 
intrauterine inflammation may precondition the preterm brain toward being 
more susceptible to inflammation-induced injury.
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1 Introduction

Preterm infants have an increased risk of brain injury which 
underlies adverse neurodevelopmental outcomes. The causes of 
preterm brain injury are multifactorial, and most likely due to prenatal 
and postnatal compromise on top of implicit immaturity (Galinsky 
et al., 2018). Many preterm infants require respiratory support to assist 
with gas-exchange after birth. Whilst life-saving, there is now 
substantial preclinical and clinical evidence that prolonged mechanical 
ventilation of premature infants induces brain injury, termed 
ventilation-induced brain injury (VIBI) (Serenius et al., 2004; Aly 
et al., 2012; Barton et al., 2015; de Medeiros et al., 2022).

The initiation of mechanical ventilation can cause VIBI through 
two distinct pathways; (1) the haemodynamic pathway, whereby 
changes in intrapulmonary pressures causes pulmonary hemodynamic 
instability, alters cardiac output (Shekerdemian and Bohn, 1999; 
Polglase et al., 2005, 2009) and, as a consequence, causes fluctuations 
to cerebral blood pressure and flow (Hillman et al., 2010; Polglase et al., 
2012) and (2) the initiation of a pulmonary inflammatory response that 
migrates systemically and then to the central nervous system (Barton 
et  al., 2015; Vidinopoulos et  al., 2023). This neuroinflammatory 
response involves gliosis (proliferation and activation of microglia and 
astrocytes) in the periventricular and intragyral white matter (Barton 
et  al., 2015, 2016; Stojanovska et  al., 2018; Chan et  al., 2022). The 
activation of cerebral glia and pro-inflammatory mediators have 
putative roles in preterm newborn brain injury (Khwaja and Volpe, 
2007; Kelly et al., 2023); as such, neuroinflammatory mechanisms are 
believed to play a central role in VIBI pathology.

A major antecedent of preterm birth is exposure to intrauterine 
inflammation, which can manifest clinically as chorioamnionitis 
(Romero et al., 2006; Galinsky et al., 2013). In response to intrauterine 
inflammation, the fetus mounts a fetal inflammatory response, 
resulting in upregulation of pulmonary, systemic and cerebral 
inflammatory mechanisms. As a consequence, preterm infants have 
reduced respiratory function and oxygenation at birth, increased need 
for intubation and positive pressure ventilation (PPV) (Malaeb and 
Dammann, 2009; Villamor-Martinez et  al., 2019; Panneflek et  al., 
2023), and an increased risk of brain injury and adverse 
neurodevelopmental outcomes including cerebral palsy (Galinsky 
et al., 2018). Given that intrauterine inflammation and mechanical 
ventilation can independently trigger neuroinflammatory responses, 
there is a potential for a “double-hit” to the immature brain if PPV is 
initiated after exposure to intrauterine inflammation.

This study aimed to determine: (1) The effects of 24 h of in utero 
mechanical ventilation on markers of inflammation and injury to the 
preterm brain, and (2) whether exposure to intrauterine inflammation, 
induced by intra-tracheal administration of lipopolysaccharide (LPS), 
amplifies markers of neuroinflammation and injury. We hypothesized 
that exposure to intrauterine inflammation would augment the 
ventilation-induced increase in gene and cellular markers of 
neuroinflammation and injury in preterm fetal sheep.

2 Materials and methods

2.1 Animal ethics and welfare

All experiments were performed in accordance with the ARRIVE 
guidelines 2.0 (Supplementary File 1; Percie du Sert et al., 2020). The 
use of animals was approved by Monash Medical Centre Animal 
Ethics Committee (MMCA/2020/15) and was conducted in 
accordance with the Australian Code of Practice for the care and use 
of Animals for Scientific Purposes established by the National Health 
and Medical Research Council of Australia.

2.2 Sterile animal surgery

Pregnant Border-Leicester ewes carrying singletons or twins were 
utilized in this study. At 110 days of gestation (dGA; term is ~148 
dGA), after withdrawal of food for at least 18 h, ewes were 
anaesthetized with intravenous sodium thiopentone (20 mg·kg−1) and 
intubated. General anesthesia was maintained by inhalation of 
1.5–3.5% isoflurane in oxygen. Under sterile conditions, a midline 
laparotomy was performed on pregnant ewes to expose the fetal head, 
neck and left forelimb. In the case of a twin pregnancy, only one fetus 
was operated on. Instrumentation of pregnant ewes and their fetuses 
has been previously described in Vidinopoulos et al. (2023). Briefly, a 
tracheostomy was performed to secure a modified reinforced 
endotracheal tube in the lower trachea and was connected to a saline 
filled large-bore ventilation tube. A separate saline-filled catheter was 
inserted into the upper trachea and connected to the ventilation tube 
externally to create an exteriorised tracheal loop, to allow normal flow 
of lung liquid. The left brachial artery and left jugular vein were 
catheterised for serial arterial blood sampling and antibiotic 
administration, respectively. The fetus was returned to the uterus and 
the catheters and tracheal loop were exteriorised via the ewe’s right 
flank. Postoperative analgesia was maintained for 3 days via a 
transdermal fentanyl patch on the left hind leg of the ewe (75 μg·h−1; 
Jansen Cilag, North Ryde, NSW, Australia). Antibiotics were 
administered i.v. to the ewe (ampicillin, 800 mg and engemycin, 
500 mg) and the fetus (ampicillin, 200 mg) for 3 consecutive days after 
surgery. Three to 5 days of post-operative recovery were allowed prior 
to commencing the experiment.

2.3 Lipopolysaccharide administration and 
in utero ventilation

At 113–115 dGA, fetuses were randomly assigned to four groups: 
unventilated controls without (UVC; n = 7) or with intratracheal LPS 
(UVC + LPS; n = 7); or ventilated controls with (VENT + LPS; n = 7) or 
without intratracheal LPS (VENT; n = 8). Ventilation tubing was 
disconnected, and lung liquid passively drained. To induce localized 
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acute inflammation, LPS (Escherichia coli, 055:B5, Millipore Sigma, MO, 
USA; 1 mg in 2 mL saline) was infused into the tracheal tube 1 h before 
the onset of in utero ventilation (Polglase et al., 2009). For UVC and 
VENT fetuses, 2 mL of saline was administered. After 1 h, the 
endotracheal tube was connected to a neonatal ventilator (Babylog 
8000+, Dräger, Lübeck, Germany) and ventilated (Vidinopoulos et al., 
2023). Both VENT and VENT + LPS fetuses were ventilated in utero with 
non-humidified air with a peak inspiratory pressure (PIP) 25–40 cmH2O 
targeting a tidal volume (VT) between 3 and 5 mL·kg−1, positive end 
expiratory pressure (PEEP) 4 cmH2O, flow 10 L·min−1, 60 inflations·min−1 
and FiO2 21% for 24 h. The in utero ventilation technique in fetal sheep 
is an established model to investigate the mechanisms of ventilation-
induced injury independent of haemodynamic instability involved with 
the cardiorespiratory transition and removes potential confounders that 
occur when ventilating preterm neonates for extended periods of time 
ex utero, including: maintaining oxygen, cardiovascular support, 
nutrition, temperature and corticosteroid exposure (Blanco et al., 1987; 
Allison et al., 2008). Further, it enables the mechanical ventilation of 
preterm fetal sheep at a much younger gestation than what would 
be viable ex utero, allowing us to investigate the sheep brain that is 
comparable to a preterm infant (Back et al., 2006).

Fetal arterial blood was sampled for blood gas measurements 
(ABL80 FLEX, Radiometer Medical ApS, Denmark) before LPS/vehicle 
infusion (Pre-LPS), before ventilation (Pre-Vent), +15, +30, +45, 
+60 min post-vent and +3, +6, +9, +12 h, +24 h post-vent. Pre-vent, +3, 
+6 and, +12 h post-vent plasma samples were collected for IL-6 
analysis. At 24 h, the ewe and fetus were humanely euthanised with an 
intravenous overdose of sodium pentobarbitone (100 mg·kg−1 i.v.; 
Valabarb Euthanasia Solution; Jurox, NSW, Australia) via the maternal 
jugular vein catheter. UVC fetuses were instrumented and received 
intratracheal vehicle/LPS but were not ventilated and were euthanised 
at the same age as the VENT groups. At post-mortem, the fetal brain 
was removed, weighed and hemisected. The left hemisphere was 
dissected coronally to obtain a ~1 cm block at the level of the ansate 
sulcus. The subcortical white matter (SCWM) was collected via 
microdissection of the white matter within the 1st and 2nd gyri, 
samples were pooled and immediately snap frozen in liquid nitrogen. 
Similarly, cortical gray matter (GM) of the 1st and 2nd gyri were pooled 
and immediately snap frozen in liquid nitrogen. The periventricular 
white matter (PVWM) was located as the white matter surrounding the 
ventricle above the subventricular zone, tissue was microdissected, 

collected and snap frozen. All collected tissue was stored at −80°C for 
RT-qPCR analysis. The right hemisphere was immersion fixed in 10% 
neutral-buffered formalin for immunohistochemical analyses.

2.4 Plasma IL-6 analysis

Arterial blood was collected via the fetal brachial artery catheter 
before ventilation (Pre-Vent), and at 3, 6, and 12 h for assessment of 
plasma IL-6 using a sandwich enzyme-linked immunosorbent assay 
(ELISA) assay as described previously (Galinsky et al., 2020). Briefly, 
plates were read on a SpectraMax i3 microplate reader (Molecular 
Devices, CA, USA) at 450 nm to determine optical density. Standards 
(recombinant ovine IL-6; Kingfisher Biotech, MN, USA) were 
included and a standard curve was generated for every ELISA plate 
used (R2 > 0.99). Due to a freezer malfunction, some plasma samples 
could not be  assessed. The final group numbers for plasma IL-6 
analysis were as follows, UVC, n = 6; UVC + LPS, n = 7; VENT, n = 6; 
and VENT + LPS, n = 5.

2.5 RT-qPCR

RNA extraction, cDNA preparation and analysis were conducted 
as described previously (Tran et al., 2023). Briefly, RNA was extracted 
from frozen brain tissue (20–30 mg) using an RNA extraction kit 
(RNeasy Mini Kit, Qiagen, Germany) following the manufacturer’s 
instructions. RNA yield was determined by spectrophotometry 
(Nanodrop, Analytical Technologies, Biolab). cDNA was transcribed 
from RNA, then pre-amplified at 50 ng·μL−1 (SuperScript® III First-
Strand Synthesis System for RT-PCR kit; Invitrogen). Gene expression 
was analyzed using a Fluidigm Dynamic array Biomark HD system 
(Fluidigm, USA). Gene expression of 8 genes of interest (Table 1) was 
determined by relative expression calculated by change in cycle 
threshold (ΔCt) between each gene of interest and the geometric 
average of two endogenous housekeeping genes, YWHAZ and RPS18. 
These genes were selected based on markers identified form previous 
clinical and preclinical studies investigating inflammatory markers in 
the context of intrauterine inflammation and mechanical ventilation 
(Bohrer et  al., 2010; Polglase et  al., 2012; Barton et  al., 2016; 
Stojanovska et  al., 2022). Levels of mRNA expression relative to 

TABLE 1 Genes of interest.

Biological process Gene name ID Taqman code

Inflammation Interleukin 1 beta IL1B Oa04656322_m1

Interleukin 6 IL6 Oa04656315_m1

Interleukin 10 IL10 Oa03212724_m1

Tumor necrosis factor alpha TNF Oa04655425_g1

Toll-like receptor 4 TLR4 Oa04656419_m1

Prostaglandin-endoperoxide synthase (Cyclooxygenase 2) PTGS2 Oa04657348_g1

C-X-C Motif Chemokine Ligand 2 CXCL2 Oa04677078_m1

Chemokine interferon-γ inducible protein 10 kDa CXCL10 Oa04655787_g1

Housekeeping genes 14–3-3 protein zeta YWHAZ Oa04913608_m1

Ribosomal Protein S18 RPS18 Oa4906333_g1
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geometrical average of house-keeping genes were determined using 
the 2−ΔΔCT method (Livak and Schmittgen, 2001) and expressed 
relative to the UVC group.

2.6 Immunohistochemistry

Immersion-fixed fetal brains were paraffin embedded and then 
microtome sectioned at 8 μm corresponding to section 720 according 
to the Michigan State University Sheep Atlas (Johnson et al., 2013; 
Figure  1). Two sections per  animal per  antibody were utilized. 
Immunohistochemical staining was conducted using primary 
antibodies: rabbit anti-neuronal nuclei (NeuN; 1:200; Abcam, UK; 
CAT#: 177487) for mature neurons; rabbit anti-ionized calcium 
binding adaptor molecule 1 (Iba-1; 1:250; Abcam, UK; CAT#: 
ab178846) for microglia; rabbit anti-glial fibrillary acidic protein 
(GFAP; 1:200; Abcam, UK; CAT#: ab68428) for astrocytes; rabbit 
anti-Olig-2 (1:200; Abcam, UK; CAT#:ab109189) for 
oligodendrocytes. Immunohistochemical staining protocol was 
conducted as described previously (Tran et al., 2023). Briefly, tissue 
sections were subjected to antigen retrieval using citrate buffer 
(10 mM Tri-sodium citrate in dH2O, pH 6.0; Sigma Aldrich), PBS 
washes, endogenous peroxidase blocking, and overnight incubation 
in primary antibodies at 4°C in primary diluent of 3% normal goat 
serum in PBS. Sections were incubated in secondary goat biotinylated 

anti-rabbit IgG for 2 h (1:200; Vector Laboratories, UK; CAT#: 
BA-100) then incubated with avidin-biotin complex (ABC Elite kit; 
1:1:200 in PBS; Vectastain®, Vector Laboratories, UK) and visualized 
with 3,3′-diamniobenzidine solution (DAB; MP Biomedicals, 
Australia).

Prior to analyses, all slides were coded, and assessors (NTT, AS) 
were blinded to the treatment group. Slides were scanned at 40× 
magnification using Aperio Scanscope AT Turbo (Leica Biosystems, 
Germany). Regions of interest included the cortical gray matter (GM) 
and subcortical white matter (SCWM) of the first and second 
parasagittal gyri (i.e., GM 1st and 2nd gyri, SCWM 1st and 2nd gyri), 
and the periventricular white matter (PVWM) (Figure 1). For each 
region, 2 fields of view (FOV; 410 μm × 320 μm) were analyzed with 
FOV placement kept consistent across all antibodies. All analyses were 
averaged across a total of four FOV (two sections per subject with two 
FOV per region).

Total cell density for all antibodies was conducted and expressed 
as cells/field. For analysis of total cell density, cells were identified 
by their immunopositive densely stained round somas with 
diameters >6 μm. Specifically for Iba-1 analysis, total cell density 
was manually counted as cell bodies with immunopositive staining 
irrespective of the morphology of the processes, and ameboid 
microglia were identified by characteristic enlarged and round, 
densely stained soma with resorbed processes (Kettenmann et al., 
2011). To assess area coverage of GFAP immunostaining, expressed 
as % area coverage, each FOV was exported from Aperio and the 
image was processed using ImageJ software (version 
2.0.0-rc-69/1.52p, National Institutes of Health) and an optimized 
set threshold was used to calculate area coverage for all images 
using ImageJ. The optimized set threshold was conducted by 
calculating an average threshold range of 20 randomly selected 
FOV that would allow optimal detection of positive staining. The 
optimized threshold was then set for all slide assessments and the 
‘area fraction tool’ in ImageJ was used to automatically quantify the 
percentage of positive immunostaining in each FOV. Microglial 
aggregations were also identified as dense clusters of positive 
staining and the aggregated area expressed as a percentage of the 
total brain regions of interest (SCWM, GM, PVWM).

2.7 Statistical analysis

All statistical analyses were conducted using GraphPad Prism 
(version 10.1.0; GraphPad Software, CA, United States). Data were 
assessed for normality using the Shapiro–Wilk Test. Data for 
animal characteristics and immunohistochemical were assessed 
using a parametric two-way ANOVA and assessed for the main 
effects of LPS (pLPS), ventilation (pVENT) and interactions between 
LPS and ventilation (pLPS X VENT). Post-hoc analysis of significant 
interactions and group effects was used to determine differences 
between groups using a Tukey’s multiple comparisons test. For 
mRNA expression analysis, data was non-parametric and was 
log10-transformed to conduct two-way ANOVA analyses as above. 
For plasma IL-6 and blood chemistry measurements, a parametric 
three-way ANOVA was used to assess the main effects of LPS (pLPS), 
ventilation (pVENT) and time (pTIME). Post-hoc analysis was 
performed on significant interactions using Tukey’s multiple 
comparison test or a Bonferroni’s multiple comparisons test where 

FIGURE 1

Schematic indicating fields sampled for histological assessment. 
Representative image for histological assessment of fields of views 
(FOV) sampled within the cortical gray matter (GM; yellow) and 
subcortical white matter (SCWM; green) regions within the first and 
second parasagittal gyri and the periventricular white matter (PVWM; 
red). Scale bar is 5  mm.
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a significant main effect was observed. Data are presented as 
mean ± SD. A p < 0.05 was considered statistically significant for 
all analyses.

3 Results

3.1 Fetal characteristics, blood gas and 
metabolite measurements

Fetal characteristics at post-mortem (112–119 dGA) of the four 
groups are presented in Supplementary Table 1. LPS fetuses were older 
and had higher body weights than non-LPS fetuses (pLPS = 0.024). 
There were no differences in male to female ratios. Due to the small 
numbers for each group, sex differences could not be assessed.

Between 6 and 24 h of ventilation, arterial pH and PaO2 
decreased and PaCO2 and lactate increased in VENT + LPS fetuses 
compared to both UVC and VENT fetuses (Figures  2A–E and 
Supplementary Table  2). Arterial pH was significantly lower in 
VENT + LPS fetuses at 12 h compared to UVC + LPS fetuses 
(p = 0.011; Figure 2A).

3.2 Plasma IL-6 levels

Plasma IL-6 levels in VENT + LPS fetuses were significantly higher 
compared to both UVC and VENT fetuses 12 h after starting 
ventilation (p = 0.014 and p = 0.017, respectively; Figure 3).

3.3 Effects of LPS and ventilation on gene 
expression

The effect of LPS and in utero ventilation on gene expression in 
the cortical GM, PVWM and SCWM of the fetal sheep brain are 
summarized in Figure 4.

3.3.1 Independent effects of ventilation and LPS 
on gene expression

LPS administration, irrespective of ventilation, resulted in 
up-regulation of mRNA expression of multiple genes involved in 
inflammation. Within the GM and SCWM, IL1B and TLR4 were 
increased in LPS-exposed fetuses (all pLPS < 0.05; Figure  4). TNF, 
CXCL10, and PTGS2 (the gene encoding cyclooxygenase 2 involved 
in producing prostaglandins) were also increased in LPS-exposed 
fetuses (all pLPS < 0.05 except TNF expression in the GM pLPS = 0.064; 
Figure 4). In the PVWM, the expression of IL10 was increased in 
LPS-exposed fetuses (pLPS = 0.005; Figure 4). No significant effects of 
ventilation alone were found on mRNA levels of any genes assessed.

3.3.2 Combined effects of LPS and ventilation on 
gene expression

In ventilated fetuses, exposure to LPS exacerbated increased 
expression of IL1B, IL10, TNF, TLR4 and PTGS2, with expression 
higher in VENT + LPS fetuses compared to VENT only fetuses (all 
p < 0.05; Figure 4). PTGS2 expression in the SCWM of VENT + LPS 
group was significantly higher compared to all other groups (vs. UVC, 
p < 0.0001; vs. UVC + LPS, p = 0.006; and vs. VENT, p < 0.0001; Figure 4).

FIGURE 2

Blood gas and Metabolite measurements. Blood gas measurements of fetal arterial (A) pH, (B) partial pressure CO2 (PaCO2), (C) partial pressure O2 
(PaO2), (D) blood glucose and (E) lactate taken pre-LPS and pre-ventilation (dotted line). Time shown relative to ventilation in min and then h. Data are 
mean  ±  SD. Unventilated control (UVC; n  =  7), LPS unventilated (UVC  +  LPS; n  =  7), ventilated vehicle (VENT; n  =  8), and ventilated LPS (VENT  +  LPS; 
n  =  7) fetuses. Two-way ANOVA and Tukey’s multiple comparisons. Significant differences between UVC vs. VENT  +  LPS indicated as ^p  <  0.05; 
^^p  <  0.01; ^^^p  <  0.001; VENT vs. VENT  +  LPS indicated as *p  <  0.05, **p  <  0.01, ***p  <  0.001; UVC  +  LPS vs. VENT  +  LPS indicated as †p  <  0.05.
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3.4 Effects of LPS and ventilation on glial 
and neuronal cell density

In LPS-exposed fetuses, numbers of Iba-1-positive cells were 
increased in the SCWM (1st and 2nd gyri) and GM (1st gyri) 
(pLPS = 0.010; pLPS = 0.006; pLPS = 0.003, respectively; Figures 5A,C). The 
increase in numbers of microglia in LPS-exposed fetuses was greatest 
in the VENT + LPS fetuses compared to VENT alone (SCWM 1st gyri: 
p = 0.021; SCWM 2nd gyri: p = 0.016 and GM 1st gyri: p = 0.037). In 
LPS-exposed fetuses, numbers of ameboid microglia were increased 
within the GM (1st gyri) (pLPS = 0.044; Figures 5B,C).

Microglial aggregation area within the white and gray 
matter regions did not differ between groups (all p > 0.05; 
Supplementary Table 3).

In ventilated fetuses, numbers of astrocytes were significantly 
increased in the PVWM (pVENT = 0.03; Figure 6). No other changes to 
astrocyte cell density or area coverage were found.

Numbers of Olig2-positive oligodendrocytes and NeuN positive 
neurons did not differ between groups for any of the white and gray 
matter regions examined (all p > 0.05; Figure 7).

4 Discussion

Inflammation is a key mechanism underlying the pathogenesis of 
perinatal brain injury. We investigated the relative contributions of 
intrauterine inflammation and subsequent mechanical ventilation, 
two of the most common causes of inflammation-induced perinatal 
brain injury, on markers of brain inflammation and injury in preterm 
fetal sheep. We show that 24 h of mechanical ventilation in of itself 
caused modest effects on markers of brain inflammation, whereas 
intratracheal LPS alone resulted in upregulation of pro-inflammatory 
related processes, which included increased microgliosis and 
increased mRNA expression of pro-inflammatory mediators in the 
cerebral white matter and gray matter. Importantly, combined 

exposure to LPS and mechanical ventilation amplified circulating 
levels of the pro-inflammatory cytokine IL-6, increased microglial 
density and amplified mRNA expression of pro-inflammatory 
markers. These observations suggest a synergistic inflammatory 
response of intrauterine inflammation and mechanical ventilation on 
the immature brain.

In this study, 24 h of in utero ventilation alone increased astrocyte 
cell density in the PVWM suggesting 24 h of mechanical ventilation 
had a modest effect on brain inflammatory markers. The increase in 
astrocyte cell density was associated with no change in astrocyte area 
coverage, potentially indicating a change in morphological state of 
these astrocytes with more retracted processes, indicative of an 
activated state (Schiweck et al., 2018). These findings are similar to 
those from a 24 h postnatal ventilation study, whereby no changes to 
numbers of microglia were observed in the white matter of late 
gestation lambs delivered at 125 dGA compared to non-ventilated 
lambs (Malhotra et al., 2018). However, in a separate study, mechanical 
ventilation of newborn lambs at a similar gestation (128 dGA) for 48 h 
resulted in significant gray and white matter gliosis and increased 
markers of neuronal and oligodendrocyte apoptosis (Nott et al., 2020). 
Potentially, the limited increase in markers of brain inflammation 
observed after 24 h of mechanical ventilation could be due to the 
limited duration of mechanical ventilation. Collectively, these data 
suggest that extending the duration of in utero mechanical ventilation 
to 48 h may promote a greater increase in markers of 
neuroinflammation and injury. Indeed, we have shown that 24 h of in 
utero ventilation, in the absence of LPS, increases inflammation in the 
lungs and caused a modest increase in inflammatory markers, with 
increased numbers of activated microglia but no differences in 
astrocyte immunoreactivity, in brainstem respiratory centers of 
preterm fetal sheep (Vidinopoulos et al., 2023; Azman et al., 2024). 
The difference in inflammatory presentation within the brainstem 
(increased respiratory center microgliosis) and cerebrum (increased 
periventricular astrocytosis) after mechanical ventilation could relate 
to how systemic inflammation is relayed to the central nervous system, 
which can occur across the blood brain barrier or chemosensory 
signaling via the brainstem dorsal vagal complex (Goehler et al., 2000; 
Marvel et al., 2004). For example, brainstem microglial activation has 
been linked to inflammation-induced activation of vagus nerve 
afferents (Quan and Banks, 2007; Pavlov and Tracey, 2012; 
Kaczmarczyk et al., 2017), whereas in the periventricular white matter, 
astrocytosis caused by endothelial activation at the endothelial-
astrocyte interface could play a more prominent role in modulating 
the response to systemic inflammation (Galea, 2021). Furthermore, in 
this study, we achieved tidal volumes of 3–5 mL·kg−1 throughout the 
24 h ventilation period. This relatively gentle ventilation strategy and 
the intact umbilical circulation would have limited the local 
inflammation and injury response within the brain, when compared 
to other studies investigating VIBI that delivered larger tidal volumes 
during mechanical ventilation (Bel et al., 1994). Furthermore, 24 h of 
mechanical ventilation had no effect on cerebral white and gray matter 
mRNA expression of inflammatory genes, which is consistent with 
previous studies showing no differences in brainstem inflammatory 
gene expression in the same experimental paradigm.

In the present study, we used intratracheal LPS administration 
to simulate intrauterine inflammation. Intratracheal LPS causes 
translocation of the endotoxins from the airspaces to the systemic 
circulation resulting in a systemic inflammatory cascade (Kramer 

FIGURE 3

Plasma IL-6 levels. Plasma IL-6 levels taken at baseline prior to LPS 
and ventilation (dotted line). Time shown relative to ventilation in h. 
Data are mean  ±  SD. Unventilated control (UVC; n  =  7), LPS 
unventilated (UVC  +  LPS; n  =  7), ventilated (VENT; n  =  8), and 
ventilated LPS (VENT  +  LPS; n  =  7) fetuses. Two-way ANOVA and 
Tukey’s multiple comparisons. Significant differences between UVC 
vs. VENT  +  LPS indicated as ^p  <  0.05; VENT vs. VENT  +  LPS indicated 
as *p  <  0.05.
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et al., 2002; Polglase et  al., 2009; Barton et  al., 2015). Endotoxin 
exposure is first recognized by Toll-like receptor 4 (TLR4). This 
TLR4-dependent signaling leads to pulmonary and systemic 
cytokine release (e.g., IL-6, IL-1β and TNF) that can ultimately result 
in cerebral inflammation (Chen and Nuñez, 2010). Indeed, 
intratracheal LPS upregulated gene expression of pro-inflammatory 
cytokines IL1B and TNF, TLR4, prostaglandin-endoperoxide 
synthase (PTGS2), and pro-inflammatory chemokine CXCL10, and 
increased numbers of microglia in the white and gray matter after 
24 h, which is consistent with the known neuroinflammatory 
response after LPS-exposure (Galinsky et al., 2020). However, when 

LPS-exposed fetuses were mechanically ventilated, markers of 
systemic and brain inflammation were exacerbated. We observed 
increased systemic IL-6 levels in VENT + LPS fetuses compared to 
both VENT and UVC groups along with greater upregulations of 
pro-inflammatory gene expression (specifically TNF, TLR4 and 
PTGS2) and increased microglial density and activation in 
VENT + LPS fetuses compared to VENT fetuses. Collectively, these 
data suggest there was a synergistic effect of intrauterine 
inflammation and mechanical ventilation on markers of 
neuroinflammation in the preterm brain. Interestingly, PTGS2 
expression was particularly affected by the combination of LPS and 

FIGURE 4

Fold change of mRNA expression of genes relating to inflammation. mRNA expression (relative to UVC) of genes relating to inflammation measured 
within (A) the cortical gray matter (GM), (B) periventricular white matter (PVWM) and (C) subcortical white matter (SCWM) in unventilated control (UVC; 
n  =  7), LPS unventilated (UVC  +  LPS; n  =  7), ventilated vehicle (VENT; n  =  8), and ventilated LPS (VENT  +  LPS; n  =  7) fetuses. Data are mean  ±  SD. Two-way 
ANOVA and Tukey’s multiple comparisons, *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.0001.
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FIGURE 6

GFAP positive immunohistochemistry. (A) Numbers of GFAP immunopositive cells and (B) area coverage of GFAP staining. Data are mean  ±  SD. Two-
way ANOVA and Tukey’s multiple comparisons, *p  <  0.05. Unventilated control (UVC; n  =  7), LPS unventilated (UVC  +  LPS; n  =  7), ventilated vehicle 
(VENT; n  =  8), and ventilated LPS (VENT  +  LPS; n  =  7) fetuses. (C) Representative images of GFAP-positive cells. Scale bar represents 100  μm.

FIGURE 5

Iba-1 positive immunohistochemistry. (A) Iba-1 immunopositive cell density indicating microglia population and (B) ameboid or activated microglia cell 
density. Data are means  ±  SD. Two-way ANOVA and Tukey’s multiple comparisons, *p  <  0.05. Unventilated control (UVC; n  =  7), LPS unventilated 
(UVC  +  LPS; n  =  7), ventilated vehicle (VENT; n  =  8), and ventilated LPS (VENT  +  LPS; n  =  7) fetuses. (C) Representative images of Iba-1-positive cells 
indicating microglia in the subcortical white matter (SCWM), cortical gray matter (GM), putamen and caudate. Arrowheads indicate ameboid microglia 
morphology. Insert are zoomed images of dashed box. Scale bar represents 100  μm.
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ventilation. Increased PTGS2 expression and subsequent 
prostaglandin E2 (PGE2) synthesis has been reported in the 
circulation and brain parenchyma of preterm humans and fetal sheep 
exposed to infection/inflammation (Westover et al., 2012; Siljehav 
et al., 2015; Stojanovska et al., 2022). In addition, increased PGE2 
levels are associated with respiratory distress and the need for 
respiratory support (Clyman et al., 1980; Hofstetter et al., 2007). 
Prostaglandin synthesis is strongly associated with microglial activity 
(Monif et al., 2016). The increase in PTGS2 expression is therefore 
consistent with the increase in microglial density in VENT + LPS 
fetuses compared to UVC and VENT groups.

In utero ventilation alone did not cause any changes to blood 
chemistry, while LPS exposure decreased pH, and PaO2, and increased 
PaCO2 and lactate concentration, consistent with previous studies 
(Dalitz et al., 2003; Galinsky et al., 2013, 2020). However, in fetuses 
ventilated after LPS exposure, there was a further decrease in pH and 
increase in PaCO2 and lactate compared to VENT and UVC fetuses. 
Indeed, systemic inflammation impairs placental function, increases 
tissue oxygen consumption and alters oxygen demand in fetal sheep 
(Dalitz et al., 2003; Galinsky et al., 2013, 2020). The combination of 
intrauterine inflammation and mechanical ventilation may have 
induced an even greater increase in tissue oxygen consumption and 
systemic metabolism akin to the increase in systemic inflammation 

observed in LPS + VENT group. These data support the synergistic 
effect of mechanical ventilation and intrauterine inflammation on 
systemic inflammation.

A limitation of this study is that assessments were conducted at a 
single time point (24 h). Whilst this provides important insight into 
the acute pathophysiological pathways of systemic and central nervous 
system inflammation, it does not fully reflect the dynamic and 
evolving nature of brain injury and repair. We observed no differences 
in total neuronal and oligodendrocyte numbers between the cohorts. 
The consequences of mechanical ventilation and/or LPS may be more 
evident with time or with longer durations of mechanical ventilation. 
For example, induction of the prostaglandins and increased circulating 
pro-inflammatory cytokines are associated with diffuse white matter 
injury and inhibition of neuronal and oligodendrocyte maturation 
(Shiow et al., 2017; Kelly et al., 2021, 2023). Thus, it is possible that this 
early inflammation has the potential to promote subsequent 
neurological injury that manifests beyond the first 24 h. Future 
assessments at a later timepoint are needed to confirm this. In 
addition, the fetuses in both LPS groups were older (118 dGA vs. 
114 dGA) and heavier than the non-LPS fetuses. However, it is 
unlikely that the immune responses to ventilation or LPS-exposure 
would differ within this short period of gestational development (Park 
et al., 2020).

FIGURE 7

Olig2 and NeuN positive immunohistochemistry. (A) Numbers of Olig-2 and (B) NeuN immunopositive cells. Data are mean  ±  SD. Two-way ANOVA. 
Unventilated control (UVC; n  =  7), LPS unventilated (UVC  +  LPS; n  =  7), ventilated vehicle (VENT; n  =  8), and ventilated LPS (VENT  +  LPS; n  =  7) fetuses. 
(C) Representative images of Olig-2 and NeuN-positive staining in the periventricular white matter (PVWM) and cortical gray matter (GM). Scale bar 
represents 100  μm.
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4.1 Clinical implications and considerations

The ventilatory strategy used in this study was one that aimed 
to simulate a gentle cardiorespiratory and cerebrovascular 
transition by using lower tidal volumes. While we did demonstrate 
that this ventilation strategy, in the absence of LPS, induces 
minimal neuroinflammation at 24 h, the inflammatory 
consequences following mechanical ventilation after intratracheal 
LPS exposure amplifies systemic and central nervous system 
pathways of neuroinflammation. We have shown previously that 
irrespective of the ventilatory strategy, continuous positive airway 
pressure (CPAP) or mechanical ventilation (PPV), prior 
inflammatory exposure resulted in similar degrees of 
inflammation within the lungs and the circulation (Polglase et al., 
2009). Collectively, these data suggest that 24 h of mechanical 
ventilation per se may not be  a major influence on 
neuroinflammation; but instead, what is critical is the degree of 
systemic and central nervous system inflammation at the time of 
birth. Overall, these data suggest that targeting systemic and 
central nervous system inflammatory pathways are likely to be key 
for improving interventions for preterm neuroprotection (Kelly 
et al., 2023).

5 Conclusion

In this study, we demonstrate that 24 h of mechanical ventilation 
in preterm fetal sheep has limited effects on markers of 
neuroinflammation or injury responses. However, exposure to 
LPS-induced systemic and central nervous system inflammation prior 
to 24 h of mechanical ventilation, augmented systemic and brain 
mRNA and histological markers of inflammation. These data suggest 
that exposure to intrauterine inflammation and subsequent 
mechanical ventilation could have a synergistic effect on 
neuroinflammation and injury in the preterm brain.
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