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Mild traumatic brain injury (mTBI) resulting from low-intensity blast (LIB) 
exposure in military and civilian individuals is linked to enduring behavioral and 
cognitive abnormalities. These injuries can serve as confounding risk factors for 
the development of neurodegenerative disorders, including Alzheimer’s disease-
related dementias (ADRD). Recent animal studies have demonstrated LIB-
induced brain damage at the molecular and nanoscale levels. Nevertheless, the 
mechanisms linking these damages to cognitive abnormalities are unresolved. 
Challenges preventing the translation of preclinical studies into meaningful 
findings in “real-world clinics” encompass the heterogeneity observed between 
different species and strains, variable time durations of the tests, quantification 
of dosing effects and differing approaches to data analysis. Moreover, while 
behavioral tests in most pre-clinical studies are conducted at the group 
level, clinical tests are predominantly assessed on an individual basis. In this 
investigation, we advanced a high-resolution and sensitive method utilizing the 
CognitionWall test system and applying reversal learning data to the Boltzmann 
fitting curves. A flow chart was developed that enable categorizing individual 
mouse to different levels of learning deficits and patterns. In this study, rTg4510 
mice, which represent a neuropathology model due to elevated levels of tau 
P301L, together with the non-carrier genotype were exposed to LIB. Results 
revealed distinct and intricate patterns of learning deficits and patterns within 
each group and in relation to blast exposure. With the current findings, it is 
possible to establish connections between mice with specific cognitive deficits 
to molecular changes. This approach can enhance the translational value of 
preclinical findings and also allow for future development of a precision clinical 
treatment plan for ameliorating neurologic damage of individuals with mTBI.
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1 Introduction

Exposure to low-intensity blast (LIB) has been shown to cause 
mild traumatic brain injury (mTBI) in military and civilian settings. 
In most situations, subjects exposed to LIB do not show overt physical 
impairments, and neuroimaging is often unable to detect abnormalities 
(Cernak, 2017). Nevertheless, preclinical studies with animal models 
have unveiled effects of LIB exposure causing molecular and nanoscale 
changes in brain. Ultrastructure changes, such as altered mitochondria 
and synaptic structures and changes in proteosomes and biochemical 
pathways, are indications suggesting LIB-induced cellular and 
molecular injuries (Chen et al., 2018, 2022; Song et al., 2018a, 2019; 
Konan et al., 2019). These “invisible injuries” have been regarded as 
the underlying causes leading to neurologic (e.g., dizziness, spatial 
disorientation, vision issues), somatic (e.g., headache, sleep 
disturbance, chronic pain) and mental health (e.g., depression, anxiety, 
post-traumatic stress disorder [PTSD]) symptoms. More importantly, 
mTBI due to blast has been regarded as a contributing factor for 
cognitive (e.g., poor memory, decreased concentration), and 
neurodegenerative disorders [e.g., Alzheimer’s disease-related 
dementias (ADRD), tauopathies, frontotemporal dementia (FTD), 
chronic traumatic encephalopathy (CTE)] (Elder et  al., 2019; 
Robinson-Freeman et al., 2020; Siedhoff et al., 2021; Flavin et al., 2023).

For many years, there is the evolving concept that each type of 
clinical dementia is represented by a different type of brain pathology. 
However, more recent findings from preclinical and clinical studies 
show a shift in this concept due to a high complexity of these 
pathologies. The report by the ADRD 2022 Summit summarized this 
shift and suggested that “there is not a one-to-one relationship between 
the type of brain pathology present and the clinically assigned dementia 
diagnosis in most individuals” (Rost, n.d.). In fact, recommendations 
by the ADRD Summit and its Post-TBI AD/ADRD sub-committee 
(Dams-O’Connor et al., 2023) included: (i) “generate research results 
that are more generalizable to the real-world; (ii) “maximize clinical 
translatability in the study of TBI-AD/ADRD”; and (iii) “basic and 
translational research to elucidate the mechanistic pathways, 
development, and progression of post-TBI AD/ADRD neuropathologies 
to better understand clinical symptom expression” (Rost, n.d.).

Over the past decade, numerous animal models have been crafted 
to gain a deeper understanding of the distinctive aspects of brain 
damage induced by blast, aiming to replicate “real-world scenarios” of 
mTBI (Cernak et al., 2011; Rubovitch et al., 2011, 2017; Zuckerman 
et al., 2017, 2019; Song et al., 2018a,b; Hoffman et al., 2020; Chen et al., 
2022). Research involving live animals has broadened our 
comprehension of impairments and abnormalities in the brain due to 
blast across various levels (molecular, cellular, and behavioral) and the 
progression observed at different post-injury timepoints (Rubovitch 
et al., 2011, 2017; Zuckerman et al., 2017, 2019; Chen et al., 2018, 
2022; Song et al., 2018a,c, 2019; Konan et al., 2019; Herzog et al., 2020; 
Hoffman et al., 2020; Siedhoff et al., 2022). In individuals affected by 
blast injury, cognitive disorders, including difficulties in memory, 
concentration, and deficits in multitasking, can manifest shortly after 
the injury, and these disorders may persist over a long term, posing a 
chronic burden for both patients and their families.

Despite several studies utilizing mouse models to demonstrate 
LIB-induced ultrastructural and molecular changes (Rubovitch et al., 
2011, 2017; Chen et al., 2018, 2022; Song et al., 2018a,c, 2019; Konan 
et al., 2019; Siedhoff et al., 2022), the mechanisms connecting these 

alterations to specific behavioral outcomes remain unclear. In 
preclinical studies, the most frequently used assessments for learning 
and memory include the novel object recognition (NOR), Morris 
Water Maze (MWM) and the Barnes Maze tests. These tests initially 
evaluate the animal’s ability to learn and memory using spatial cues to 
locate an “exit point.” Then, during the second phase, they assess the 
animal’s cognitive flexibility by changing the location of the “exit 
point” (Song et al., 2018a; Arulsamy et al., 2019; Leconte et al., 2020; 
Chen et al., 2022). Although these tests significantly contribute to the 
understanding of learning and memory processes in both injured and 
non-injured animals, they have the several limitations including: (i) 
The learning and memory abilities differ between species, strains, and 
ages of the animals. (ii) These tests are based on repeated short 
(1–2 min) sessions during which the animals are placed in the testing 
environment and are conducted only during the light or dark phase, 
and not both. (iii) Unlike clinical studies, where evaluations are 
conducted at an individual level, most preclinical tests are statistically 
evaluated at the group level (Rubovitch et al., 2011, 2017; Zuckerman 
et al., 2017, 2019; Chen et al., 2018, 2022; Song et al., 2018a,c, 2019; 
Konan et al., 2019; Herzog et al., 2020; Hoffman et al., 2020; Siedhoff 
et al., 2022). Consequently, variations in the analytical approach may 
constrain the translation of preclinical findings into practical 
applications in clinical settings.

Considering these apparent limitations and the recommendations 
of the ADRD Summit 2022 Report (Dams-O’Connor et al., 2023), a 
novel assessment method utilizing the CognitionWall test (Remmelink 
et al., 2016; Logan et al., 2018; Chen et al., 2022) has been devised that 
enables the evaluation of learning ability and general behavior in an 
individual mouse over an extended period encompassing both light 
and dark phases. This method generates data by recording the number 
of entries into the CognitionWall each hour and utilizing this 
information to construct individual Boltzmann curves. In this study, 
we used the transgenic (Tg) rTg4510 mice, a murine model with 
repressible form of human tau containing the P301L mutation 
(hTauP301L). This model, recapitulating tauopathies and 
neurodegeneration, has been linked with familial frontotemporal 
dementia (FTD) (Bailey et  al., 2014; Gamache et  al., 2019). The 
outcomes demonstrate high complexity and variations across different 
groups with respect to genotypes and exposure to LIB. Following this, 
a flow chart is devised for the evaluation and processing of data, 
leading to the categorization of individuals within the group based on 
distinct learning patterns and levels of learning deficits.

2 Materials and methods

2.1 Animals

All animal experiments were performed in a blinded manner and 
in accordance with the University of Missouri approved protocols for 
the Care and Use of Laboratory Animals and the Animal Research 
using the Reporting of In Vivo Experiments (ARRIVE) guidelines. 
This study included a total of 65 male mice at the aged 6-weeks-old 
upon arrival. This mouse strain was derived from two genotypes, 
hemizygous (HEMI) for Tg(Camk2a-tTA)1Mmay and Fgf14Tg(tetO-
MAPT*P301L)4510Kha/J (Jackson Laboratories, Bar Harbor, ME, 
United  States; Strain #/RRID: IMSR_JAX:024854) and has the 
common name as rTg4510, a murine model of tauopathies. The HEMI 
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mice were chosen for their feature of expressing high levels of hTauP301L 
in their forebrains. From the 65 mice, 32 mice were from the HEMI 
group and the remaining 33 mice were non-carrier (NCAR; RRID: 
IMSR_JAX:019019) generated by breeding with C57BL/6 J females, 
recommended by and purchased from the Jackson Laboratory. Mice 
were housed with a 12-h light/dark cycle in home-cages containing 
bedding, and with ad libitum access to food and water. Mice were used 
in a series of 3 independent experiments (20–23 mice per experiment).

2.2 Exposure to open-field low-intensity 
blast

Mice were exposed to open-field blast at 2 months of age. Open-field 
LIB exposures were conducted at the Missouri University of Science & 
Technology as previously reported (Chen et al., 2018, 2022; Song et al., 
2018a,b,c; Konan et al., 2019; Song et al., 2019; Clausen et al., 2021; Rutter 
et al., 2021; Siedhoff et al., 2022). Animals were randomly divided into 
four groups: (NCAR-Sham: n = 15, NCAR-Blast: n = 18, HEMI-Sham: 
n = 13, and HEMI-Blast: n = 19). Prior to the experiment, each mouse was 
anesthetized by injection I.P. with 10 μL/g bodyweight of ketamine/
xylazine mixture (12.5 mg/mL ketamine and 0.625 mg/mL xylazine). 
Mice from the blast groups (NCAR-Blast & HEMI-Blast) were placed in 
an upright position in 3D-printed chairs made of carbon reinforced nylon 
(Nylon X, Matterhackers) (Jackson et al., 2024a). This position was held 
using elastic mesh bands to restrain the head and body movements. The 
mouse holders were placed on a platform at 3 meters from the site of 
detonation with a 350 g C4 explosive for a single blast exposure (with peak 
overpressure of 46.6 kPa). Following LIB exposure and after fully 
awakened from anesthesia, mice were returned to their original cages. No 
mortality among these mice occurred from the blast procedure in this 
study. Mice were monitored during the entire anesthesia time, and 
15–30 min after fully awakened from anesthesia. Sham mice were treated 
as the blast mice, but did not expose to the LIB.

2.3 Automated assessments of learning in a 
home-cage environment

Based on results of our previous study (Song et  al., 2018a), 
assessment of learning abilities and cognitive flexibility, was initiated 
15- or 16-days post-exposure that belong to the early subacute phase 
using the PhenoTyper (Model 3,000, Noldus Information Technology, 
The Netherlands), an automated home-cage monitor (aHCM) 
platform equipped with the CognitionWall system (Noldus 
Information Technology, The Netherlands) as previously described 
(Chen et al., 2022). Before conducting the CognitionWall assessments, 
mice were familiarized with the aHCM environment by individually 
housing for 3 days.

The CognitionWall has three entrances (left, middle, and right) 
placed in front of the food dispenser. In order to receive a reward of 
one food pellet (Dustless Precision Pellets, 20 mg, Rodent Grain-
Based Diet, Bio-Serv, New Jersey), the mouse needs to enter the 
“correct” entrance five times (Fixed Ratio 5 schedule). The 
assessment of dynamic learning abilities encompasses a total 
duration of 96 h, divided into two phases of 48 h each: the initial 
learning phase and the reversal learning phase, as previously 
described in detail (Chen et al., 2022). During the initial learning 

phase, the left entrance of the CognitionWall is the “correct” 
entrance, while during the reversal learning phase, the right entrance 
is the “correct” entrance. The initial learning phase acts as a training 
phase, allowing the mice to learn the principle of the test (entering 
the “correct” entrance). The purpose of the reversal learning phase 
is to evaluate the learning flexibility of the mice, as they are required 
to “forget” their knowledge of the prior “correct” entrance and 
re-learn the new “correct” entrance. The PhenoTyper home-cages 
with the CognitionWall system is fully automated. Switching the 
monitoring of the “correct” entrance is programmed by the system 
at the end of the initial learning phase (48 h after the beginning of 
the assessment). In addition, the system automatically records the 
mouse’s behavior, using an infrared-sensitive video-based 
observation system located on the top unit of the aHCM. All the 
tracking data were acquired through the Etho-Vision XT software 
v14 (Noldus Information Technology, The Netherlands) and 
sampled at a rate of 15 fps. Raw data were uploaded to the web-based 
AHCODA-DB (Sylics, Bilt-hoven, The Netherlands) for meta-data 
processing and primary analysis.

2.4 Evaluation of learning process, 
patterns, and levels of learning ability of 
individual mouse

In order to evaluate the learning process, pattern and learning 
ability of an individual mouse, we developed a new method for data 
processing as indicated in the flow-chart (Figure 1). This method used 
the hourly percentage of entries to the CognitionWall “correct” 
entrance to evaluate the learning process in each hour and then 
calculate a fitting curve that represents the learning pattern.

Step 1: the total number of entries into the CognitionWall was 
calculated hourly during the test. Since each mouse could choose the 
number of times to enter the CognitionWall during each hour, there 
were instances where a mouse did not enter at all or entered only a few 
times. A low number of hourly entries might indicate a lack of 
motivation in the mouse to obtain the reward and might not necessarily 
reflect its learning effort. Consequently, hours with a low entry rate were 
considered “noise” in the calculation of the fitting curve.

Step 2: to minimize “noise,” data from any hour with fewer than 
10 total entries were excluded.

Step 3: the percentage of entries through the correct entrance (left 
entrance during the initial learning phase and right entrance during 
the reversal learning phase) was calculated for each test hour.

Step  4: the number of hours in which the mouse entered the 
CognitionWall at least 10 times was calculated and used to construct 
a fitting curve. Mice that entered the CognitionWall for less than 
one-third of the hours (fewer than 17 out of 48 h in each learning 
phase) were excluded, as a low number of hours would not permit an 
accurate calculation of the fitting curve and could impact the 
assessment of learning.

Step 5: a fitting curve for each mouse and each learning phase 
(initial & reversal) was calculated using the Boltzmann sigmoidal 
formula (Eq. 1):

 
y Bottom Top Bottom e V x Slope= + −( ) + −( )( )( )( )/ ^ /1 50  

(1)
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The fitting curves were calculated using the Prism software 
(GraphPad Software, La Jolla, CA), with the following parameters: 
x = the phase hour (1 to 48). Bottom = the low limit of the curve. This 
parameter represents the learning baseline. In the initial learning, the 
mouse started from “zero”; therefore, the bottom parameter was set 
to 0. In reversal learning, this parameter was set to be between 0 and 
100. Top = the upper limit of the curve. This parameter represents the 
highest learning score (% of correct entries). This parameter can 
be between 0 and 100. V50 = the hour at which the percentage of 
correct entries is halfway between the Bottom and Top. Lower V50 
reflects faster learning, while higher V50 reflects slower learning. 
Slope = the steepness of the curve, higher slope denotes a 
shallow curve.

Step 6: the fitting curve was roughly compared to a scatter graph 
of the percentage of correct entries. In few cases, the percentage of 
correct entries at one of the time points (hour of the learning phase) 
caused a miscalculation of the fitting curve and resulted in a “weak” 
fitting (Figure 2A). In these cases, the data from that time point were 
excluded and the fitting curve was re-calculated. It is important to 
note that the data from that time point was excluded only for the 
purpose of calculating the fitting curve but were used for all other 
calculations (number of “mistakes,” etc.).

Step 7: the number of “mistakes” was calculated. “Mistake” was 
defined as a time point during the learning phase (after the V50), in 
which the percentage of correct entries was 40% or more below the 
fitting curve (Figure 2B).

Step 8: the learning level (for each learning phase) was determined 
based on the following parameters: Top, V50, Slope, and the number 
of mistakes. Three levels of learning were used, which represent the 

general learning ability/performance of each mouse: “Normal 
learning,” “Mild learning deficits,” and “Learning deficits” (Table 1).

2.5 Statistical analyses

All statistical analyses and calculations of fitting curves were 
conducted with the Prism software Version 10 (GraphPad Software, 
La Jolla, CA). The hourly distance moved, the total number of entries, 
and the percentage of entries were analyzed by two-way repeated-
measures ANOVA or Mixed-effects model (REML) and Tukey’s 
multiple comparisons test. Data are expressed as mean values ± SEM.

3 Results

3.1 Assessment of activities of HEMI and 
NCAR mice and their exposure to LIB

As outlined in the Methods section, the CognitionWall test was 
employed to assess the learning levels and patterns of each individual 
mouse during the initial discrimination learning and the reversal 
learning phases. Prior to learning behavioral assessments, we evaluated 
each mouse’s locomotor activity by measuring hourly distance moved 
and the total number of entries to the CognitionWall during each 
hour of the test to ensure the cognitive ability measurement without 
the impact from impaired locomotor activity.

Both HEMI and NCAR Sham groups showed an increase in the 
distance moved during the dark phases as compared to the light 

FIGURE 1

Flow-chart showing data processing and calculation of learning process and level. Evaluation of the learning process and calculation of the learning 
level are based on the hourly percentage of entries to the correct entrance (right entrance) during reversal learning, and calculation of a fitting curve.
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phases. However, the HEMI group showed a significantly higher 
moving distance as compared to the NCAR group during the reversal 
learning phase as determined by Two-way RM ANOVA: [Time: 
F(1.862, 44.68) = 6.958, p < 0.0001; Group: F(1, 24) = 4.701, p = 0.0403; 
Time × Group: F(46, 1,104) = 3.856, p < 0.0001; Subject: F(24, 
1,104) = 25.51, p < 0.0001] (Figure 3A).

Studies on effects of LIB exposure on activities of HEMI and 
NCAR groups were made by comparing hourly mean distance moved 
between the Sham and Blast groups (Figures 3B,C). Results indicated 
no significant differences between the NCAR Sham and Blast groups 
[Time: F(11.13, 322.9) = 9.284, p < 0.0001; Group: F(1, 29) = 1.071, 
p = 0.3092; Time × Group: F(46, 1,334) = 1.117, p = 0.2753; Subject: 
F(29, 1,334) = 12.94, p < 0.0001].

With the HEMI groups, although LIB appeared to induce a slight 
decrease in reversal learning during both dark phases, these 
differences did not reach statistical significance upon comparing 
between the HEMI Sham and Blast groups [Time: F(4.687, 
103.2) = 39.35, p < 0.0001; Group: F(1, 30) = 0.2318, p = 0.6337; Time × 
Group: F(46, 1,380) = 0.4483, p = 0.9995; Subject: F(30,1,380) = 26.52, 
p < 0.0001].

3.2 Cognitive flexibility of the reversal 
learning

The main purpose of the reversal learning phase is to evaluate 
cognitive learning flexibility of the HEMI and NCAR mice. In the 
initial learning phase, mice learned that in order to receive a food 

FIGURE 2

Adjustment of the fitting curve and calculation of the number of “mistakes.” (A) Representative example of adjustment of the fitting curve. The data from the 
24th-hour timepoint led to a miscalculation of the fitting curve (green line). Exclusion of this timepoint (for the purpose of calculation of the fitting curve), 
results in a fitting curve that better represents the learning process (red line). Gaps in the correct entries curve resulted from excluding the data from hours 
with less than a total of 10 entries. (B) Representative example of the calculation of “mistakes.” “Mistake” was defined as a time point during the learning 
phase (after the V50), in which the percentage of correct entries was 40% or more below the fitting curve (red circles). (C) Representative learning curves of 
three mice. Each of the three mice represents one of the three learning levels: normal learning (green), Mild learning deficits (red), and learning deficits 
(black). Both mice that were defined as having Mild learning deficits (red) or learning deficits (black), showed a slow learning pattern, compared to the 
mouse that was defined as having normal learning (green). Shaded/unshaded regions in the graph represent the dark/light phase (respectively).

TABLE 1 Criteria for each of the learning levels.

Learning Level Reversal learning

Normal learning

70 ≤ Top and

V50 ≤ 24 and

Slope ≤ 40 and

Number of mistakes ≤1

Mild learning deficits

70 ≤ Top and

Slope ≤ 40 and

24 < V50 and/or

1 < number of mistakes

Learning deficits

Top <70 and/or

30 < V50 and/or

40 < Slope
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pellet, they need to enter the left entrance of the CognitionWall for five 
times. In the reversal learning phase, mice need to “forget” their 
previous knowledge and re-learn to enter the correct (right) entrance 
to receive a food pellet. This process of relearning requires 
cognitive flexibility.

Evaluation of the learning process for HEMI and NCAR (sham) 
groups revealed a sigmoidal pattern, starting with a “baseline” plateau 
(about 0–10% of correct entries), followed by an increase in the 
percentage of correct entries during the first dark phase and the 
subsequent light phase, and finally culminating in a plateau of about 
70–90%. Both groups exhibited a similar pattern and performance 
during the latter half of the learning phase (from the 25th to the 48th 
hours of the phase). However, during the initial light and dark phases, 
the HEMI group demonstrated a higher mean percentage of correct 
entries compared to the NCAR group [Time: F(3.575, 61.46) = 48.22, 
p < 0.0001; Group: F(1, 24) = 2.178, p = 0.1530; Time × Group: F(47, 
808) = 2.395, p < 0.0001] (Figure 4A). The HEMI group continued to 
present a slightly higher percentage of correct entries during the 
second light phase. From the second dark phase until the end of the 
test, the NCAR group exhibited a similar or higher percentage of 
correct entries compared to the HEMI group. No significant 
differences in the hourly mean percentage of correct entries were 
found between the NCAR-Sham and NCAR-Blast groups [Time: 
F(2.803, 56.31) = 71.96, p < 0.0001; Group: F(1, 29) = 0.2070, p = 0.6525; 
Time × Group: F(47, 944) = 0.7200, p = 0.9214] (Figure 4B). However, 
during most of the reversal learning phase, the HEMI-Sham group 
showed a slightly higher (though not significant) mean percentage of 
correct entries compared to the HEMI-Blast group [Time: F(4.687, 
103.2) = 39.35, p < 0.0001; Group: F(1, 30) = 1.311, p = 0.2612; Time × 
Group: F(47, 1,035) = 1.108, p = 0.2883] (Figure 4C).

Analysis of group-level learning patterns indicated significant 
fluctuations and variability within each of the four “two-by-two” 
groups, categorized by two factors: NCAR and HEMI, each subjected 
to either Sham or Blast exposure. A closer look at a representative 
group’s individual performances revealed marked differences among 
individual mouse (refer to Figure  4D). To facilitate a deeper 
understanding of these varied learning patterns and competencies, 
we  developed a novel evaluation method to assess each mouse’s 
learning proficiency (detailed in the Method section’s flow chart, 
Figure 2). Utilizing this methodology, we classified each mouse into 

one of three distinct learning levels: Normal, Mild learning deficits, 
and Learning deficits. Notably, in this study, two mice from the 
NCAR-Sham group were excluded due to their inactivity—registering 
fewer than 10 entries per hour for over a third of the phase duration 
(as outlined in step 4, Figure 1).

3.3 Evaluation of the learning pattern and 
performance of individual mouse during 
the reversal learning phase

In the initial hours of the phase, both Sham and Blast NCAR 
groups (as illustrated in Figures 5A,B, respectively) exhibited delayed 
learning, as indicated by a low percentage of ‘correct entries,’ in 
comparison to their HEMI counterparts (as shown in Figures 5C,D, 
respectively). Specifically, during the first 6 h and from the 33rd hour 
onward, all mice in the NCAR-Sham group maintained a consistent 
mean percentage of the correct entries (Figure 5A). However, between 
the 7th and 32nd hours, mice identified with Mild learning deficits 
(n = 3) demonstrated a lower mean percentage of correct entries 
compared to those with normal learning abilities (n = 9). Furthermore, 
the NCAR-Sham mice with Mild learning deficits exhibited a quicker 
learning pace than those with Learning deficits, indicating a prolonged 
period required for learning. Similarly, all NCAR-Blast mice displayed 
a consistent mean percentage of correct entries during the first 7 h of 
the reversal learning phase (Figure 5B).

During the 48-h reversal learning phase, HEMI-Sham mice with 
either Normal learning or Mild learning deficits exhibited comparable 
learning patterns, as depicted in Figure  5C. However, within this 
group, the mice identified with Mild learning deficits (n = 5) 
experienced significant performance fluctuations. Those classified 
with Learning deficits (n = 3) demonstrated notably poorer 
performance in the phase’s latter half. Similarly, HEMI-Blast mice 
maintained consistent learning patterns for the initial 20 h and the 
concluding 6 h. Nonetheless, mice within this group, regardless of 
being identified with Mild learning deficits or Learning deficits, 
displayed considerable performance variability (Figure 5D). HEMI-
Blast mice with Normal learning (n = 7) and those with Mild learning 
deficits (n = 7) reached a comparable percentage of correct entries 
starting from the 38th hour. However, from the 8th to the 37th hour, 

FIGURE 3

Hourly distance moved. (A) HEMI-Sham mice showed higher hourly moving distance during the dark phases, as compared to the NCAR-Sham mice. 
(B,C) While significant differences were found between the sham groups, no significant differences were found between the sham and blast groups of 
the NCAR (B) and the HEMI (C). Shaded/unshaded regions in the graph represent the dark/light phase (respectively). Data is presented as Mean  ±  SEM. 
*p  <  0.05, and **p  <  0.01.
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mice with Mild learning deficits recorded a lower percentage of 
correct entries than their counterparts with Normal learning. 
Moreover, this subgroup exhibited delayed learning initiation, evident 
from a persistently low percentage of correct entries until the 26th 
hour. In contrast, mice with Learning deficits (n = 5) initially matched 
or exceeded the mean percentage of correct entries of mice with 
Normal learning during the phase’s first 13 h. Subsequently, from the 
14th hour to the test’s conclusion, these mice’s mean percentages of 
correct entries declined, exhibiting greater variability compared to 
mice identified with Normal learning.

The distribution of mice into three learning levels highlighted 
differences between the groups, although no statistical analysis was 
conducted due to the small sample sizes (Figure  5E). Among the 
NCAR groups, 69.2% (n = 9) of NCAR-Sham and 77.8% (n = 14) of 
NCAR-Blast mice were categorized as having normal learning. In 
contrast, a significantly smaller proportion of the HEMI-Sham and 
HEMI-Blast groups were classified at 38.5% (n = 5) and 36.8% (n = 7), 
respectively. Furthermore, the incidence of Mild learning deficits or 
Learning deficits was notably higher in the HEMI groups compared 
to the NCAR groups. Specifically, in the NCAR-Sham and 

NCAR-Blast groups, 23.1% (n = 3) and 5.6% (n = 1), respectively, had 
Mild learning deficits, while 7.7% (n = 1) and 16.7% (n = 3) experienced 
Learning deficits. Conversely, in the HEMI-Sham and HEMI-Blast 
groups, a higher percentage of mice were affected by Mild learning 
deficits, 38.5% (n = 5) and 36.8% (n = 7) respectively, and Learning 
deficits, 23.1% (n = 3) and 26.3% (n = 5).

3.4 Different learning patterns within each 
learning level

Analysis of the learning level subgroups showed both fluctuations 
and relatively high variability, particularly within the Mild learning 
deficit and Learning deficit categories. This observation indicates that 
despite belonging to the same learning level, individual mice may 
exhibit distinct learning patterns. By comparing each mouse’s learning 
curve from both Mild learning deficit and Learning deficit subgroups 
with those of the normal learning subgroup within the same category, 
we  identified three distinct learning patterns (illustrated in 
Figures 6A,B):

FIGURE 4

Learning patterns with the aHCM CognitionWall assessment at the group level. The learning pattern was evaluated based on the hourly percentage of 
correct entries to the CognitionWall test. (A) The HEMI mice showed a higher percentage of correct entries during the first 24  h of the phase, but lower 
during the last 10  h compared to the NCAR mice. (B,C) To evaluate the potential effect of exposure to blast on the mouse’s learning flexibility, the 
learning patterns, at the reversal learning phase, were compared between the sham and blast groups of each genotype separately. (D) Examination of 
the learning patterns of each mouse within one (representative) group reveals a complexity in the learning patterns that are not fully reflected when 
evaluating all the mice as a group (each color represents one mouse from the group, n  =  19). While all the mice showed similar results at the beginning 
and end of the phase, they exhibited a wide variety in between. Shaded/unshaded regions in the graph represent the dark/light phase (respectively). 
Data is presented as Mean  ±  SEM. *p  <  0.05, and **p  <  0.01.
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Pattern #1: this pattern is defined by a noticeable delay in learning 
onset (indicated by a high V50 value) compared to mice classified with 
normal learning abilities.

Pattern #2: here, mice show learning performances that are either 
similar to or slightly lower than those of mice with normal learning, 
in terms of the percentage of correct entries.

FIGURE 5

Learning patterns and distribution of mice to different learning levels in the reversal learning phase. The switch of the “correct” entrance (from the left 
one to the right one), challenged the mice and required two semi-connected processes: “forget” their previous knowledge of which is the “correct” 
entrance and to re-learn which is the “new” “correct” entrance. While the majority of NCAR mice showed a normal learning level (E), the HEMI mice 
showed a much lower percentage of Normal learning level (no statistical analysis was performed due to the low sample size). The learning level 
represents a general level of learning and not a specific learning pattern. The high fluctuations and SEM in the subgroup of NCAR-Blast mice, which 
were defined as having learning deficits (B), suggest that this subgroup includes some different patterns. Shaded/unshaded regions in the graph 
represent the dark/light phase (respectively). Data in A–D is present as Mean  ±  SEM (if applicable). Some error bars cannot be calculated/presented as 
the data at some time points is based on one mouse only.
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Pattern #3: mice in this category match the performance of mice 
with normal learning during the initial hours of the reversal learning 
phase, but this is followed by significant performance fluctuations and 
a generally lower percentage of correct entries compared to mice with 
normal learning.

Notably, mice demonstrating Pattern #2 were observed to 
make more errors than those exhibiting Pattern #1 (see 
Figure  6B). Representative learning curves showcasing these 
distinct patterns are displayed for mice with Mild learning 
deficits (Figure  6C) and for those with significant deficits 

FIGURE 6

Learning patterns of Mild learning deficits and Learning deficits in mice. Mice having Mild learning deficits and Learning deficits both showed three learning 
patterns: Pattern #1 to Pattern #3. (A) The distribution of three learning patterns is based on the two parameters of the learning curve: the highest 
percentage of correct entries (the Top parameter), and the V50 parameter. Mice with learning parameter #1 showed a high percentage of correct entries, but 
with a slow (delayed) learning rate (as represented by the V50 parameter). Mice with learning parameter #2 showed a mid-high percentage of correct entries, 
but with a fast-learning rate. Mice with learning parameter #3 showed a relatively low percentage of correct entries, but a fast-learning rate. (B) Mice with 
learning Pattern #2 showed a higher number of “mistakes” compared to mice with learning Pattern #1. (C,D) representative learning curves of mice with 
Mild learning deficits (C) or Learning deficits (D). Each line (color) represents different learning patterns. (E,F) The distribution of the different learning 
patterns in each of the groups. Mice with Mild learning deficits showed only Patterns #1 or #2 (E), while mice with Learning deficits showed all three 
learning patterns (F). Shaded/unshaded regions in the graph (C,D) represent the dark and light phases, respectively.
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(Figure  6D), with each line (or color) denoting a different 
learning pattern.

The analysis of the learning pattern distribution highlights the 
potential influence of genotype and exposure to LIB on learning levels. 
In the group of mice with Mild learning deficits (referenced in 
Figure 6E), a majority of the NCAR-Sham mice displayed learning 
Pattern #1 (66.7%, n = 2), whereas a significant portion of HEMI-
Sham mice exhibited learning Pattern #2 (80%, n = 4). For both 
genotypes, exposure to blast appeared to increase the proportion of 
mice demonstrating learning Pattern #1, with all NCAR-Blast mice 
(100%, n = 1) and more than half of the HEMI-Blast mice (57.1%, 
n = 4) showing this pattern. Notably, no mice with Mild learning 
deficits were observed to exhibit learning Pattern #3. Conversely, mice 
classified with Learning deficits (illustrated in Figure 6F) presented all 
three identified learning patterns. The sole NCAR-Sham mouse in this 
category showed learning Pattern #1 (100%, n = 1), while HEMI-
Sham mice were divided between Pattern #2 (33.3%, n = 1) and 
Pattern #3 (66.7%, n = 2). The influence of blast exposure on these 
mice mirrored the trend seen in those with Mild learning deficits, with 
two-thirds of NCAR-Blast mice (66.7%) displaying learning Pattern 
#1 and one mouse (33.3%) showing Pattern #3. Among the HEMI-
Blast mice, the majority were categorized under learning Pattern #1 
(60%, n = 3), with the remainder exhibiting learning Pattern #2 
(40%, n = 2).

3.5 Evaluation of mouse’s cognitive 
learning flexibility

One key facet of cognitive learning flexibility is the capacity to 
discard old knowledge in favor of acquiring new information. During 
the initial learning phase, mice were trained to use the left entrance of 
the CognitionWall. Conversely, in the reversal learning phase, they 
were required to switch their preference to the right entrance. 
We propose that a deficit in learning may stem from limited cognitive 
learning flexibility, manifested as a delay in transitioning from the left 
to the right entrance. To examine this theory, we monitored the hourly 
percentage of entries into the left entrance as an indicator of the mice’s 
ability to “forget” their prior learning. This metric also helped us 
determine whether the observed differences among the three learning 
levels and patterns could be  attributed to variations in the mice’s 
capacity to discard old knowledge. Our findings reveal that, by the end 
of the reversal learning phase, there was a universal decline in left 
entrance usage across all mice, indicating some degree of learning and 
adaptation (see Figure 7).

Initially, all NCAR-Sham mice displayed a comparable frequency 
of left entrance usage during the early hours of the phase (Figure 7A). 
Subsequently, mice with normal learning capabilities exhibited a 
steady and swift decrease in using the left entrance, indicating effective 
relearning and entrance switching. In contrast, mice with Mild 
learning deficits or Learning deficits required additional time to adjust 
and adopt the new entrance preference. This divergence in learning 
speeds and abilities among the groups—Normal learning, Mild 
learning deficits, and Learning deficits—became particularly evident 
in the middle of the assessment phase, despite all mice showing similar 
entry patterns at both the start and conclusion of the phase.

In the analysis of NCAR-Blast mice (referenced in Figure 7B), 
those with either Normal learning abilities or Mild learning deficits 
exhibited patterns similar to their NCAR-Sham counterparts. Yet, 

NCAR-Blast mice with Learning deficits maintained a comparable 
frequency of left entries to that of NCAR-Blast mice with Normal 
learning abilities until the conclusion of the first dark phase. From the 
9th hour onward, these mice displayed considerable variability in their 
behavior. After the first dark phase, there was an increase in the mean 
percentage of left entrance entries among these mice, even though 
their variability remained notably high.

For HEMI-Sham mice (Figure 7C), those with Normal learning 
abilities or Mild learning deficits showed consistent behavior 
throughout the phase. In the phase’s first half, HEMI-Sham mice with 
Learning deficits used the left entrance less frequently than those with 
Normal learning abilities. In the latter half, however, their average 
entry rate to the left entrance increased, surpassing that of other mice.

HEMI-Blast mice across all three learning levels initially 
demonstrated a uniform mean entry rate to the left entrance during 
the first 12 h and in the closing hours of the phase (Figure 7D). During 
the intervening period, mice with Normal learning abilities 
consistently reduced their usage of the left entrance. In contrast, mice 
with either Mild learning deficits or Learning deficits exhibited an 
increase in the average percentage of left entrance entries, 
accompanied by a high degree of variability within each subgroup. 
Mice exhibiting learning Pattern #1, as shown in Figures  7E,F, 
demonstrated a pronounced delay in switching from the left to the 
right entrance. This observation supports the hypothesis that 
decreased learning flexibility adversely impacts the mice’s learning 
performance, particularly in learning Pattern #1.

4 Discussion

Memory and learning deficits are commonly reported in 
individuals with blast-induced mTBI (Bogdanova and Verfaellie, 2012; 
Cook et al., 2014; Karr et al., 2014; Miller et al., 2017; Pagulayan et al., 
2018). However, assessing these impairments in humans is challenging 
due to methodological limitations and conceptual misunderstandings. 
Moreover, outdated notions, such as the idea that each type of clinical 
dementia corresponds to a distinct brain pathology, may hinder our 
comprehension of LIB-induced brain pathologies (Dams-O’Connor 
et  al., 2023; Rost, n.d.). The assessment of learning and memory 
capabilities is a standard clinical practice for diagnosing and 
conducting research across various patient groups and age ranges. 
Within each group, a wide range of learning and memory abilities is 
typically observed (Uttl, 2005). Indeed, numerous studies employing 
sophisticated analytical techniques have identified distinct learning 
patterns (Uttl, 2005; Barbot et  al., 2016; Padhy et  al., 2016; Sáiz 
Manzanares et al., 2017; Breton et al., 2021; Lou et al., 2022). Given 
these findings, it is reasonable to conclude that different learning 
patterns may be indicative of varied types of damage affecting specific 
brain regions. Consequently, the nature and severity of disabilities 
among individuals may vary based on the extent and location of brain 
damage (Huang et al., 2017).

Pathological forms of tau phosphorylation have been identified as 
playing a significant role in neurodegenerative diseases, leading to 
reduced learning capacity and memory deficits, as seen in tauopathies 
like CTE and FTD (Morrison et al., 2022; Stathas et al., 2022; Stoner 
et al., 2023). Research has demonstrated that rTg450 HEMI mice that 
overexpress human tau exhibit frontal brain pathologies characteristic 
of FTD. These pathologies include synapse loss, increase in 
hyperphosphorylated tau, tau-containing neurofibrillary tangles 
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(NFTs), β-amyloid (Aβ) accumulation, and upregulation of microglia 
and inflammatory indices, thereby making them an effective model 
for FTD research (Frautschy and Cole, 2010; Wes et al., 2014; Logan 
et al., 2018; de Oliveira et al., 2022). A recent study (Corrigan et al., 

2021) highlighted tau hyperphosphorylation’s crucial role in cognitive 
and neurological deficits induced by blast exposure. In our study using 
the CognitionWall test, HEMI mice showed a significant increase in 
activity compared to NCAR mice (Figure  3A), aligning with 

FIGURE 7

Cognitive learning flexibility. Reduced cognitive learning flexibility is one of the factors that might lead to learning deficits. The purpose of the reversal 
learning phase is to evaluate that “flexibility,” as the mouse is required to “switch” from the left entrance to the right one. In this process of “switching,” 
the percentage of entries to the left entrance (considered as perseverative errors) is expected to be reduced, while the percentage of entries to the 
right entrance is expected to increase. The errors to the middle entry are considered as neutral errors. Therefore, an examination of the number of 
entries to the left entrance can give important information on the mouse’s cognitive learning flexibility. To evaluate the connection between learning 
flexibility and learning level, we examined the mice’s hourly percentage of entries to the left entrance during the reversal learning phase. The results 
were gathered according to the mouse’s genotype, exposure group (Sham or Blast), and learning level as shown in Figure 3 [i.e., mice in the NCAR-
Sham normal learning (Figure 4A) are the same mice as in the NCAR-Sham normal learning subgroup in Figure 3A]. (A–D) The hourly percentage of 
entries to the left entrance. Mice defined as having Mild learning deficits or learning deficits showed a slower and/or delayed reduction in the 
percentage of entries to the left entrance. However, the high fluctuation and SEM (in all subgroups) imply that additional factors may influence the 
learning levels. (E,F) The hourly percentage of entries to the left entrance according to the learning level: Mild learning deficit and Learning deficits (E,F, 
respectively). Mice in learning Pattern #1 showed a clear delay in the switching from the left entrance to the right one, supporting the hypothesis that a 
reduction in learning flexibility may have affected the mice’s learning level (especially learning Pattern #1). Shaded/unshaded regions in the graph 
represent the dark/light phase (respectively). Data is present as Mean  ±  SEM (if applicable). Some error bars cannot be calculated/presented as the data 
at some time points are based on one mouse only.
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hyperactivity observed in tau-mediated neuropathology development. 
The HEMI genotype, expressing the P301L mutant variant of human 
four-repeat Tau (4R0N tauP301L) predominantly in the forebrain, 
demonstrated Tau protein expression levels 13-fold higher than those 
in NCAR mice. This expression difference clearly leads to behavioral, 
histological, and functional disparities between the two genotypes 
(Kopeikina et al., 2013). While some pathologies are age-independent, 
others, such as the progression of neurodegenerative tauopathies are 
age-dependent (Ramsden et al., 2005; Santacruz et al., 2005; Yue et al., 
2011; Logan et al., 2019). Studies have shown that the accumulation 
of tau pathology in rTg4510 transgenic mice, correlating with 
age-dependent memory declines, becomes evident at 6–8 months of 
age (Santacruz et al., 2005; Castanho et al., 2020). In our recent study 
(Jackson et al., 2024b), discrimination learning was assessed using the 
CognitionWall test in rTg4510 mice at 30 days following a single LIB 
exposure over a 48-h period. Results showed that blast-exposed 
rTg4510 mice showed a lower learning index compared with all other 
groups. The individual analysis identified either top ten increased or 
decreased expression of phosphopeptides in turquoise and black 
module eigenpeptides, characterized by such altered phosphopeptides 
associated with learning ability, that confer an increased risk for 
learning deficits following LIB exposure. In addition to the high 
expression levels of Tau, upregulation of microglia and 
neuroinflammation are also reported in rTg4510 mice (Wes et al., 
2014; de Oliveira et al., 2022).

However, despite of physical differences between the HEMI and 
NCAR groups, neither genotype demonstrated obvious alterations in 
activities upon exposure to LIB. This absence of a marked difference 
may be due to the assessment method and the use of younger mice 
(2-month-old) in the current study.

The learning process evaluated through the CognitionWall test is 
continuous, unlike other learning assessments, such as the Morris 
Water Maze (MWM) and Barnes Maze, that are session-based. Studies 
have analyzed learning performance based on 24-h blocks for each 
phase of the test and/or the time it takes for mice to achieve a 
performance threshold (for example, selecting the “correct” entrance 
in 80% of the last 30 entries) (Hadas et al., 2016; Logan et al., 2018; 
Chen et al., 2022). However, these methods do not fully capture the 
dynamic nature of the learning process. A mouse might meet the 80% 
threshold at one point but subsequently drop to only 50%. To 
thoroughly assess the learning process, patterns, and abilities of each 
mouse, we analyzed the hourly percentage of entries to the “correct” 
entrance of the CognitionWall throughout the reversal learning phase. 
This approach mirrors the Learning Index [(Correct entries – 
Incorrect entries)/Total Entries] utilized by Logan et al. (2018). By 
evaluating the percentage of correct entries in one-hour segments, 
we can compare the performance of different mice across various 
hours of the phase with high resolution, shedding light on the 
learning dynamics.

The CognitionWall test offers the advantage of assessing 
individual mice over an extended period. This study, analyzing 
reversal learning patterns based on the hourly percentage of correct 
entries, revealed significant differences between HEMI and NCAR 
mouse groups in the first 24 h of the phase. However, a deeper 
examination of individual mouse within each group exposed a 
complexity in learning patterns not apparent when evaluating mice 
as a collective (Figure 4D). This heterogeneity was present in both 
HEMI and NCAR groups, irrespective of sham or LIB exposure. 

Consequently, we  developed a new method employing the 
Boltzmann fitting curve, based on hourly data, to classify each 
mouse into one of three distinct learning levels: Normal learning, 
Mild learning deficits, and Learning deficits (see Figure 1). This 
detailed analysis highlighted differences between HEMI and NCAR 
mice, and variations stemming from LIB exposure (Figure  5E). 
Comparing the learning curves of mice with Mild learning deficits 
or Learning deficits to those with relatively Normal learning 
identified three distinct learning levels. Mice with Mild learning 
deficits presented normal-like performance during the beginning 
and the end of the learning period. All mice (regardless of their 
learning level) start the learning process from the same level, and 
therefore, showed similar results in the beginning of the learning 
period. At the end of the learning period, mice with Mild learning 
deficits showed high percentage of learning performance (similar 
to mice with normal learning), although theirs learning process was 
longer and/or required more trials (compare to mice with normal 
learning). Therefore, the difference between their performance and 
the performance of mice with normal learning, could mostly 
be seen during the “middle” of the learning period. Similar results 
were previously reported by Zuckerman et al. (2017). These findings 
emphasize the complexity of the learning process, suggesting that 
individual mice may exhibit unique brain deficits. Importantly, the 
analysis revealed that some sham mice also showed learning deficits 
and varied learning patterns, highlighting the complexity and 
diversity within each group. Moreover, this finding demonstrates 
the common assumption that the “control” group representing 
“normal” and hemogenic behavior properties (including learning 
abilities) is not evidence-based. Variations in learning ability, 
including learning deficits, can be found in any random group of 
animals or humans.

After initial categorization, subgroups were further divided into 
three distinct learning patterns, as depicted in Figure 6A. The results 
revealed that, within a subgroup sharing the same learning level, 
mice could exhibit varied learning patterns (Figures  6E,F). This 
diversity not only underscores the complexity within the population 
but also suggests that individual mouse may possess unique 
pathologies related to learning. The variation in learning pattern 
occurrence between the blast and sham groups, within each 
genotype, highlights several points: (1) genotypic differences 
influence the prevalence of each learning pattern, as evidenced by 
comparisons within sham groups. (2) Blast exposure may induce 
distinct pathologies. (3) Each genotype exhibits susceptibility to 
different types of pathologies, resulting in varied learning patterns. 
Learning Patterns #1 and #2 were characterized by some deficits, 
such as delayed learning or a reduced percentage of correct entries. 
However, in the final hours of the phase, their performance 
converged with that of mice demonstrating normal learning. In 
contrast, Pattern #3 represented a more complex deficit, with mice 
initially showing normal learning behavior but failing to elevate the 
percentage of correct entries above 60%.

Motor activity analysis across the patterns also revealed 
differences. Mice in Pattern #1 generally moved less, particularly in 
the blast-exposed groups (NCAR-Blast and HEMI-Blast) and made 
fewer visits to all three entrances of the CognitionWall, compared to 
those with normal learning. Mice exhibiting Pattern #2 moved 
distances comparable to, or slightly greater than, those with normal 
learning, and they visited the CognitionWall more frequently, 
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especially the HEMI mice during the dark phases. Conversely, mice 
with Pattern #3 exhibited significantly higher activity levels, 
particularly in dark phases, traveling longer distances and making 
more visits to the CognitionWall than mice identified with normal 
learning. This heightened activity, along with fluctuations in activity 
levels, suggests impulsivity, potentially explaining these mice’s 
performance. Early-phase multiple visits to the CognitionWall may 
facilitate learning the correct entrance. However, this impulsivity may 
hinder the mice’s ability to consistently choose the correct entrance in 
later stages. Hadas et al. (2016) reported similar observations in rats 
exposed to dynamic sensory stimuli during development, identifying 
higher activity levels and learning rates in adulthood but poor 
performance in the presence of distractions. Despite uniform 
environmental stimuli exposure in our study (except for the blast, 
conducted under anesthesia), the observed high activity level might 
also indicate impulsivity.

Cognitive learning flexibility encompasses more than just 
acquiring new knowledge; it involves the replacement of old 
knowledge with new information through a sequential process. This 
progression involves several steps: (1) The mouse must recognize that 
entering the left entrance of the CognitionWall (representing “old” 
knowledge) is no longer rewarding. (2) The mouse must learn that the 
right entrance now offers rewards (“new” knowledge). (3) The mouse 
must integrate these insights, decreasing its visits to the unrewarding 
left entrance while increasing visits to the rewarding right entrance. 
The observed decrease in left entrance visits and corresponding 
increase in right entrance visits across all mice demonstrate successful 
navigation of the first two steps. However, while some mice quickly 
mastered all three steps, showcasing Normal learning, others faced 
challenges, indicative of Mild learning deficits or more pronounced 
learning difficulties. Classifying these mice into three distinct learning 
levels illuminates various factors influencing their ability to complete 
the entire learning process. The significant variability observed within 
each learning level suggests that the challenges in learning are 
multifaceted, rather than stemming from a single cause.

5 Limitations

The CognitionWall test facilitates the assessment of dynamic 
learning processes over an extended period. This test leverages the 
mouse’s natural motivation and activity patterns, making comparisons 
of learning processes across different mice challenging. Additionally, 
the prolonged isolation periods during the test could affect their 
behavior, given that mice are social animals. Despite these challenges, 
the data presented in this study effectively illustrate the complex 
nature of ‘real-world’ learning deficits resulting from blast-induced 
mTBI. The increased awareness for sex-related differences on the 
physiology, behavior and other aspects, has led to the increasing 
demand to include both males and females in each study. Even 
though, only males were used in this study. The decision to use males 
only, resulted from the novelty of this analysis method, and our effort 
to reduce the number of variables. Future studies with this novel 
method, which include females, will extend our understanding on 
sex-related learning behavior and learning deficits. Despite efforts to 
replicate the ‘real-world’ conditions of blast-induced mTBI and its 
impacts on behavior and learning, certain aspects of this study fall 
short of fully emulating the actual scenario due to various limitations. 

For instance, differences in brain size, structure, and orientation 
between mice and humans may influence the applicability of findings. 
The severity of learning deficits might also vary with age and the time 
elapsed post-injury, potentially intensifying with increased age and/or 
longer durations post-injury. Exposure to single versus repeated LIB, 
may also affect the incidence and level of learning deficits. 
Additionally, the small number of mice in certain learning levels and 
patterns constrained our capacity to thoroughly investigate the 
mechanisms underlying the development of these deficits. 
Comparisons between results from clinical and preclinical studies 
reveal significant differences. Primarily, most clinical assessments 
involve linguistic learning tasks, which are inapplicable to animal 
models. Furthermore, human participants are typically aware of being 
evaluated and understand the purpose and rules of the test, often 
conducted in familiar and safe settings. In contrast, assessments of 
animal learning and memory typically proceed without the animals’ 
awareness of the evaluation, lacking initial understanding of the test’s 
rules and objectives. Moreover, while it is common in preclinical 
studies to evaluate and report results at multiple time points 
throughout the test, many clinical studies do not provide or report 
data on the learning process in such detail.

6 Conclusion

This study has revealed a considerable degree of complexity and 
heterogeneity in learning flexibility across different mouse groups, 
notably in relation to LIB exposure. By employing the innovative 
CognitionWall system, we were able to categorize each mouse based 
on its specific learning level and pattern. The observed increase in 
learning deficits within the HEMI group, relative to the NCAR 
group, could be attributed to elevated tau expression, a factor known 
to contribute to neuropathology development. Interestingly, LIB 
exposure in NCAR mice resulted in a decreased incidence of Mild 
learning deficits but an increased prevalence of Learning deficits. 
Our findings suggest that various genotypes may exhibit distinct 
responses in learning ability post-LIB exposure, a revelation with 
potential implications in the clinical setting. Specifically, it 
emphasizes the need for behavioral and cognitive assessments of 
mTBI to consider diverse patient demographics, including ethnicity, 
sex, age, and injury type.

The identification of three unique learning patterns further 
indicates that Learning deficits may stem from multiple mechanisms. 
In summary, these results highlight the critical need for analyzing data 
at the level of individual animals and adopting a high-resolution 
approach to data evaluation. Such detailed analysis not only mirrors 
the individualized assessment common in clinical practice but also 
enhances the study’s applicability to translational research. By 
analyzing behavior at the individual level, this study paves the way for 
linking specific behavioral deficits with underlying cellular and 
molecular mechanisms, thereby increasing the relevance of our 
findings to translational studies.
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