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RASopathies are a group of genetic disorders caused by mutations in genes 
encoding components and regulators of the RAS/MAPK signaling pathway, 
resulting in overactivation of signaling. RASopathy patients exhibit distinctive 
facial features, cardiopathies, growth and skeletal abnormalities, and varying 
degrees of neurocognitive impairments including neurodevelopmental delay, 
intellectual disabilities, or attention deficits. At present, it is unclear how 
RASopathy mutations cause neurocognitive impairment and what their neuron-
specific cellular and network phenotypes are. Here, we investigated the effect 
of RASopathy mutations on the establishment and functional maturation of 
neuronal networks. We  isolated cortical neurons from RASopathy mouse 
models, cultured them on multielectrode arrays and performed longitudinal 
recordings of spontaneous activity in developing networks as well as recordings 
of evoked responses in mature neurons. To facilitate the analysis of large 
and complex data sets resulting from long-term multielectrode recordings, 
we developed MATLAB-based tools for data processing, analysis, and statistical 
evaluation. Longitudinal analysis of spontaneous network activity revealed a 
convergent developmental phenotype in neurons carrying the gain-of-function 
Noonan syndrome-related mutations Ptpn11D61Y and KrasV14l. The phenotype 
was more pronounced at the earlier time points and faded out over time, 
suggesting the emergence of compensatory mechanisms during network 
maturation. Nevertheless, persistent differences in excitatory/inhibitory balance 
and network excitability were observed in mature networks. This study improves 
the understanding of the complex relationship between genetic mutations and 
clinical manifestations in RASopathies by adding insights into functional network 
processes as an additional piece of the puzzle.
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Introduction

RASopathies cover a group of genetic disorders associated with 
a characteristic pattern of anomalies, including distinctive facial 
features, cardiopathies, growth and skeletal abnormalities and 
various degrees of developmental delay (Zenker and Kutsche, 2016). 
They are typically caused by germline mutations in genes encoding 
components or regulators of the RAS/mitogen-activated protein 
kinase (MAPK) signaling pathway. Common is an overactivation in 
signaling, either by activating mutations in the pathway components 
or by loss of function in negative modulators (Tartaglia et al., 2010; 
Zenker and Kutsche, 2016). The RAS/MAPK signaling pathway has 
a central role in the cellular response to extracellular stimuli (Molina 
and Adjei, 2006; Yoon and Seger, 2006). In neurons, it is 
indispensable for proper differentiation, synapse formation and 
plasticity and is therefore critical for brain development, learning, 
memory and cognition (Samuels et  al., 2009). Indeed, most 
RASopathies are associated with neurocognitive impairments and 
variable degrees of intellectual disability (Cesarini et al., 2009; Tajan 
et al., 2018; Kang and Lee, 2019). While patients with cardio-facio-
cutaneous syndrome (CFC), Costello syndrome (CS) and 
SYNGAP1-related encephalopathy show moderate to severe 
intellectual disabilities and neurodevelopmental delay, epilepsy and 
autism spectrum disorder (Roberts et  al., 2006; Armour and 
Allanson, 2008; Schulz et al., 2008; Adviento et al., 2014; Pierpont 
et  al., 2022), patients with Noonan syndrome (NS) and 
neurofibromatosis type 1 are generally less severely affected. 
Common diagnoses are mild neurodevelopmental delay, impaired 
executive functioning, learning difficulties and attention deficit 
hyperactivity disorder symptomatology (Sharland et  al., 1992; 
Mautner et al., 2002; Krab et al., 2008; Payne et al., 2011; Alfieri et al., 
2014; Pierpont et al., 2015; Kim and Baek, 2019).

Interestingly, some of the neurocognitive features diminish with 
increasing age of the patients, while different features emerge. For 
example, children with NS have shown more extensive cognitive 
problems concomitant with learning difficulties and intelligence 
impairment compared to adults (Roelofs et al., 2016).

In animal experiments, the development of neural networks has 
not yet been studied in a systematic way. While most studies 
demonstrated electrophysiological and behavioral phenotypes in mice 
carrying different RASopathy mutations, most of them did not assess 
the respective phenotypes along the animal lifespan (Costa et al., 2002; 
Cui et al., 2008; Lee et al., 2014; Altmuller et al., 2017). An exception 
is a recent study that used mice in which the Noonan syndrome-
related KrasG12V mutation was expressed exclusively in neurons. In the 
hippocampi of these animals, upregulation of RAS/MAPK signaling 
was observed during the early phases of postnatal development but 
not in the adult state (Papale et  al., 2017). Interestingly, the 
normalization of RAS/MAPK pathway activity was concomitant with 
enhanced GABAergic synaptogenesis, suggesting that maladaptive 
development of the neural network may underlie changes in 
neurocognitive effects of RASopathy observed in patients across the 
lifespan. Importantly, the switch in the cellular mechanism underlying 
network dysfunction might also have consequences for the selection 
of an effective treatment strategy. In line with that, Papale et al. (2017) 
were able to improve the cognitive phenotypes in KrasG12V mice by 
treatment with RAS/MAPK inhibitors applied in juvenile animals. 
Strikingly, the same treatment was not effective if applied in older 

animals. Here, in line with increased GABAergic synaptogenesis, 
inhibition of GABAergic neurotransmission showed positive effects.

In this study, we test the hypothesis that pathological activation of 
RAS/MAPK signaling may induce maladaptive processes leading to 
compensatory effects in developing neuronal networks. In vivo 
investigation by real-time monitoring of neuronal activity and 
functional connectivity is technically challenging and not suitable for 
large-scale testing of therapeutic compounds (Bang et al., 2021). As an 
alternative opportunity to study functional connectivity and network 
parameters, we  investigated neuronal cell cultures derived from 
RASopathy mouse models plated on multiwell MEA (mwMEA) plates 
in a longitudinal study. We  used previously characterized mouse 
models of Noonan syndrome that bear gain-of-function mutations in 
Ptpn11D61Y (Altmuller et al., 2017) or in KrasV14l (Schubbert et al., 2006; 
Gremer et al., 2011; Hernandez-Porras et al., 2014). To perform an 
extensive functional analysis of spontaneous network activity and 
electrically evoked activity, we used an in-house developed analysis 
tool written in MATLAB and routines for the application of principal 
component analysis (PCA) to reduce dimensionality in the data set for 
better data visualization and statistical evaluation. We  observed 
significant effects of RASopathy mutation on network activity at early 
developmental stages that were compensated during network 
maturation. However, the mature RASopathy networks with 
apparently normal network activity still exhibited differences in 
excitatory/inhibitory balance and network excitability.

Materials and methods

Animals

For this study, conditional Ptpn11D61Yfloxed/wt mice (B6.129S6-
Ptpn11tm1Toa/Mmjax, Jackson Laboratories, RRID# 
MMRRC_032103-JAX) (Chan et  al., 2009) and KrasV14lfloxed/wt mice 
(Hernandez-Porras et  al., 2014) were used. In both strains, a 
LOX-STOP-LOX cassette is cloned before the exon containing the 
RASopathy mutation. Constitutive expression of these mutations leads 
to severe somatic phenotypes (Araki et al, 2009; Chan et al., 2009; 
Hernandez-Porras et al., 2014). To reduce the burden of experimental 
animals, we generated animals with expression of RASopathy mutations 
restricted to neocortex. To this end heterozygous mice bearing the 
mutation were crossed with mice homozygous for Emx1-cre alleles 
(B6.129S2-Emx1tm1(cre)Krj/J animals, Jackson Laboratories, RRID# 
IMSR_JAX:005628, genotyping according to provider’s 
recommendations). Litters from this cross were all heterozygous for the 
Emx1-cre allele, controls were homozygous wt, while mutants were 
heterozygous for the Ptpn11D61Yfloxed or KrasV14lfloxed allele. All mouse 
strains were bred on a C57BL/6N background for more than 5 
generations in our laboratory. Mice were kept at 22 ± 2°C on a 12 h light-
dark cycle with food and water ad libitum. Breeding of animals and 
experiments using animal material were performed in accordance with 
the local animal welfare officer (FAU: TS12/2016) and in accordance 
with the European Directive 2010/63/EU. Animal records were kept by 
Python-based Relational Animal Tracking Software (PYRAT-Scionics 
Computer Innovation GmbH, Dresden, Germany).

Animals were genotyped using published protocols. Specifically, 
the EMX1-cre genotyping protocol provided by the Jackson 
Laboratory was followed. To detect the Ptpn11D61Y allele, polymerase 
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chain reaction (PCR) using TGGAGCTGTTACCCACATCA and 
GCACAGTTCAGCGGGTACTT primers followed by a melting point 
analysis using the High Resolution Melting and Gene scanning 
application on the LightCycler 480 (Roche Diagnostics) was 
performed according to Altmuller et al. (2017). To determine the 
genotype in KrasV14l, PCR was performed using AGG GTA GGT GTT 
GGG ATA GC, CTC AGT CAT TTT CAG CAG GC, CTG CTC TTT 
ACT GAA GGC TC primers using S7 Fusion High-Fidelity DNA 
polymerase (Biozym, Cat#MD-S7-100) according to Hernandez-
Porras et  al. (2014). The protocol was generated to discriminate 
between 403 bp (wild type) and 621 bp (knock-in mutation) alleles. 
Primers were purchased from Eurofins, Ebersberg, Germany.

Dissociated cell culture and plating on 
multiwell MEA plates or 18  mm coverslips

Chemical reagents are listed in Supplementary Table S1. The day 
before dissection, wells of 48-well mwMEA plates (Cytoview Cat#MEA 
48, M768-tMEA_48B, Axion Biosystems) and 18 mm Menzel glass 
coverslips (#6311342, VWR International, Radnor, United States) were 
coated with poly-L-lysine (0.5 mg/mL) followed by overnight incubation 
at 37°C. The next day, the wells and coverslips were washed three times 
with sterile double-deionized water and left in HBSS−/−, which was 
removed directly before cell seeding. Prior to seeding of cells on 18 mm 
coverslips, they were coated with 100 μL of Neurobasal™-A media (NBA) 
supplemented with 0.2 mM Glutamax, 2% (v:v) B27, 0.1 M Antibiotic-
Antimycotic (named NBA mix) and 10% fetal calf serum (FCS), as 
previously described (Anni et al., 2021), for better attachment of neurons.

Dissociated neuronal cultures were prepared from individual 
brains of newborn mice (P0–P1) as previously described in Anni et al. 
(2021). Neonates of both sexes were used for culture preparation. 
Briefly, Ptpn11D61Yfloxed/wt (here termed Ptpn11D61Y) or KrasV14lfloxed/wt 
(here termed KrasV14l) mice and their siblings (here termed control) 
were decapitated, the brains were removed, and the forebrains were 
separated and freed of meninges. Dissociation of cells took place 
chemically in Papain-protease-DNase mix (HBSS−/−, 0.01% Papain 
reconstituted in EBSS, 0.01% (w:v) DNase I, 0.1% (w:v) Dispase II) at 
37°C for 10 min followed by mechanical dissociation. This process was 
repeated 2 times. The cell suspension was passed through a 70 μm cell 
strainer. Cells were spun down and washed with NBA mix three times 
and then resuspended in NBA. Cells were counted and diluted to plate 
80,000 cells in a volume of 50 μL onto the coated wells of the mwMEA 
plate. The cells were incubated at 37°C in a 5% CO2 atmosphere for 1 h 
and allowed to settle, followed by the addition of 250 μL of NBA mix 
for further culturing. Similarly, 200,000 cells in a volume of 100 μL 
were carefully seeded onto coverslips for 1 h immediately after 
removing the NBA mix containing FCS droplets. They were then 
transferred to 12-well plates containing 1 mL of NBA mix per well and 
maintained at 37°C in 5% CO2 until maturation. Genotyping was 
performed post hoc from tail biopsies obtained from euthanized pups.

Immunocytochemistry and image 
acquisition and analysis

Neuronal cultures were prepared independently form 4 animals 
per genotype and grown on coverslips for 21 days. From each animal 

2 independent coverslips were stained for each antibody combination. 
Coverslips with neurons from both genotypes were processed in 
parallel with identical antibodies, solutions, and other chemicals as 
follows: cells were fixed with 4% (w:v) paraformaldehyde in PBS for 
4 min at room temperature (RT), washed in PBS and blocked and 
permeabilized in tandem with PBS solution containing 10% (v:v) FCS, 
0.1% (v:v) glycine and 0.3% (v:v) Triton X-100 for 45 min at RT 
(Supplementary Table S1). Coverslips were incubated with primary 
antibodies at 4 degrees overnight and after washing with PBS with 
secondary antibodies at RT for 1 h. All antibodies were applied in PBS 
containing 3% (v:v) FCS. Coverslips were mounted on glass slides 
with Fluoroshield. All antibodies used are listed in the 
Supplementary Table S1. Immunofluorescence staining of vesicular 
GABA transporter (VGAT) and vesicular glutamate transporter 
(VGLUT1) was performed as double staining in combination with 
integral synaptic vesicle protein synaptophysin. Image acquisition was 
performed by an epifluorescence microscope (Nikon Eclipse Ti, 
Nikon Corporation) equipped with an iXon EM+ 885 EMCCD Andor 
camera (Andor Technology) using a 60X/NA 1.2 objective (Plan APO 
VC Nikon CFI, Nikon Corporation) and controlled by VisiView 
software (Visitron Systen GmbH). Identical camera and illumination 
settings were applied during image acquisition for coverslips of all 
experimental conditions imaged on the same day. Three to four 
images were obtained from each cover slip. Data were stored as 
16-bit images.

Sixteen-bit images were analyzed using the in-house MATLAB 
routine SynEval, that includes an iterative, water-shed-based 
segmentation algorithm and includes preprocessing by background 
subtraction and normalization (Guhathakurta et al., 2022). SynEval 
applies filtering, dilation and flood filling to get a rough segmentation 
within which the threshold is defined as the median of the lowest 1% 
fluorescence intensity. Here, the pictures were segmented according 
to immunofluorescence staining for synaptophysin to obtain synaptic 
regions of interest (ROIs). Subsequently, ROI coordinates were 
transferred to the channel in which VGAT or VGLUT 
immunofluorescence was recorded, and then the ROI were identified 
by being positive for VGAT or VGLUT and the mean 
immunofluorescence intensity (IFI) within the transferred ROI was 
obtained. Mean IFI represented the average intensity value derived 
from pixels within the ROI. Post-processing calculations yielded the 
IFI of co-labeled puncta and their fraction of the total number of 
synaptic puncta detected.

MEA recordings

The wells in 48-well MEA plates were equipped with 16 PEDOT 
electrodes arranged in a 4 × 4 grid with an electrode spacing of 340 μm, 
electrode diameter of 50 μm and recording area of 1.1 mm x 1.1 mm. 
Recordings were performed using a Maestro multiwell MEA recorder 
(Axion Biosystems) at 37°C in a 5% CO2:95% air atmosphere. Before 
recording, neuronal cultures were visually checked for vitality under a 
light microscope (Supplementary Figure S1A). Prior to each recording 
during the time series experiments, the MEA plate was kept in the 
MEA recorder for at least 5 min to allow the neuronal cultures to adjust 
to ambient conditions and to avoid bias by mechanical disturbances. 
To acquire data and for spike detection, we used Axion Integrated 
Studio (AxIS) software (2.4.2.13). The heatmap visualization in the 
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software enabled a first control of neuronal activity online 
(Supplementary Figure S1B). Voltage potentials were recorded 
across all electrodes with a sampling rate of 12.5 kHz 
(Supplementary Figure S1C). Recordings were subdivided into 5 min 
time units to avoid a large amount of data at once (raw file). The raw 
signal was filtered by a Butterworth filter with a 200 Hz to 2.5 Hz 
bandpass filter. The filtered signal was detected for neuronal events 
when the signal exceeded a threshold denoted as spikes (cf. Ch. data 
analysis, Supplementary Figure S1D). Specifically, an adaptive 
threshold was applied within a moving window around each spike with 
0.84 ms pre-spike and 2.16 ms post-spike range. In this window, the 
threshold was adaptively set as a multiple of the median noise level [5.5 
of standard deviation (SD)] on an electrode (Supplementary Figure S1C). 
These were stored in a spike list (.csv file) containing information about 
the time and amplitude of detected spikes chronologically.

Time series of spontaneous network activity
Multiple recordings of spontaneous activity in neuronal networks 

plated on the same mwMEA plate were longitudinally and 
noninvasively conducted in the time range 10 days in vitro (DIV) to 
33 DIV. On a measuring day, spontaneous activity was recorded for 
20 min in 5 min time units.

Disinhibition-induced stimulation experiments
The application of bicuculline (bic) to Ptpn11D61Y neuronal 

cultures was performed on 33 DIV. The baseline was recorded for 
20 min in 5 min time units, and then the plate was removed to add bic 
(volume: 10 μL, final concentration 10 μM, diluted in H2O from a 
10 mM stock solution in DMSO). After treatment, the plate was placed 
back in the MEA recorder and kept there for an additional 10 min 
without recording, followed by 50 min post bic recordings in 5 min 
time units (Supplementary Figure S2). Values were normalized to the 
baseline (100%) and presented as percentages.

Electrical stimulation experiments
Electrical stimulations were applied on mature networks (three 

independent experiments on DIV29, DIV30 and DIV39). To provide 
electrical test stimulation (STIM) and tetanus stimulation (TET), 
individual electrodes from the MEA were triggered to deliver electrical 
pulses (Supplementary Figure S3A). Protocols for STIM and TET were 
modified from Chiappalone et al. (2008) (Supplementary Figure S3C). 
The STIM protocol consists of a train of pulses (0.2 Hz). The pulses were 
biphasic from +750 mV to −750 mV lasting for 250 μs per phase. During 
STIM, six electrodes per array (stimulation electrodes e1–6, as shown 
in Supplementary Figure S3A) were triggered sequentially for 5 min, 
also denoted as sessions 1–6 (Supplementary Figure S3D). Prior to each 
STIM, which consequently lasted 30 min in total, spontaneous activity 
was recorded initially for 20 min (prior STIM1) and subsequently for 
10 min (prior STIM2 and STIM3) (Supplementary Figure S3D). TET 
was delivered from one electrode and consisted of 20 bursts at 0.2 Hz, 
each containing 11 pulses at 20 Hz (Supplementary Figure S3C).

Analysis of MEA data

Processing MEA-based data
For further data analysis, customized software packages coded in 

MATLAB were used to process the spike lists (.csv) that were output 

by AxIS software. Each analysis was run in batch mode to save time 
and avoid human bias. The packages enable an analysis for each 
experimental setting, including spontaneous network activity in time 
series recordings plus network disinhibition experiments as well as 
electrically evoked activity. We extended the spontaneous network 
activity analysis for time series experiments with MATLAB 
programmed functions performing PCA commonly applied in 
machine learning to reduce dimensionality in data sets.

Spontaneous network activity
The software package for analyzing spontaneous network activity 

in longitudinal experiments is equipped with a graphical user interface 
(GUI) (Supplementary Figure S4) to enable the user-friendly input of 
experiment-related relevant data (cf. scheme in 
Supplementary Figure S5A). In the first step, the user selects the spike 
list files (.csv) that had been output by Axion software after each 
measurement. The minimum spike rate to determine active electrodes 
(herein 0.1 Hz) and the minimum number of active electrodes (herein, 
unless otherwise stated: 10) can be specified in the GUI.

Spike calculation
Spikes, which define neuronal firing events, are detected when the 

filtered voltage signal crosses a threshold in the continuous data 
stream. The mean firing rate (MFR) is defined as the total number of 
spikes divided by recording time, MFR = nspikes/s. The weighted MFR 
is calculated as wMFR = (emax/eact)·MFR. Herein, the maximum 
number of active electrodes (emax) was determined at the culture age 
of maturity (DIV 21–24). eact refers to the currently active number of 
active electrodes. An electrode was defined as active when its spiking 
rate was at least 0.1 Hz, and then it was also described as a contributing 
channel. For disinhibition experiments, emax was determined as the 
number of active electrodes during the baseline measurement prior to 
treatment. Analogously, wtMFR [mean firing rate weighted to total (t) 
number of electrodes] indicates the same calculation, but emax refers to 
the total number of electrodes (herein 16 electrodes). The interpike 
interval is the mean time between spikes in s.

Burst detection and calculation
A burst was defined as neuronal activity that appears in high-

frequency spiking followed by a period of quiescence on a single 
electrode level. Herein, burst detection was performed along an 
interval interspike threshold detecting bursts as spiking events of no 
longer than 100 ms intervals between 5 consecutive spikes. The burst 
duration is calculated as the time from the first spike to the last spike 
within a burst. The mean bursting rate (MBR) is the total number of 
bursts within one well divided by recording time. The value is 
weighted analogously to wMFR (wMBR = (eact/emax)·MBR).

Network analysis
The analysis of synchronized spiking in network bursts (NB) and 

correlated spiking measured as spike time tiling coefficient requires 
the transformation of the spike list to a time stamp matrix, a binary 
array of sample points indicating spikes as ones and sample points 
without a spike as zeros. With a sampling rate of 12.5 kHz, one sample 
point correlates to 0.08 ms. The assessment of network-wide 
coordinated activity requires the detection of spike clusters across 
multiple electrodes. Based on the time stamp matrix, a MATLAB-
coded routine detected NBs across the array as spike clusters 
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containing a minimum number of 50 spikes with a maximum of 
100 ms interspike interval and with at least 5 contributing channels. 
Then, several NB-describing parameters, such as NB duration, 
number of NBs per well, and number of spikes per NB, were 
calculated. The NB duration was calculated as the time from the first 
spike to the last spike in an NB. To investigate changes in the network 
dynamics, the correlation of spiking between each pair of electrodes 
was analyzed by the spike time tiling coefficient (STTC) (Cutts and 
Eglen, 2014), which reveals the synchronization between pairs of 
electrodes by returning the unbiased correlation in firing. It is 
calculated as

 
STTC
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where A and B represent two spike trains. PA (PB) is the proportion 
of spikes from A (B) that occurs within the time window ±Δt (100 ms) 
around any spike from B (A). TA (TB) is the proportion of recording 
time that lies within ±Δt of any spike from A (B). The pairwise 
computation of STTC between electrodes resulted in a correlation 
matrix. For network description and illustration, we calculated the 
mean and skewness of STTC across all electrode pairs.

In the second part of the package (right side in GUI, compare 
Supplementary Figures S4C,D), functions are included that are 
capable of automatically grouping data according to a grouping file 
(.xlsx) that is provided by the user via the GUI.

Principal component analysis for time series 
recordings

For PCA, we developed functions in MATLAB that use the well-
level data files obtained and saved after running the first part of the 
routine. Depending on the analysis, these functions created 
parameter arrays consisting of 19-dimensional parameter vectors 
(Supplementary Table S2) to quantify cluster separation between the 
RASopathy model and wild type (wt) using principal components 1 
and 2 (PC1/2 analysis). Furthermore, PCA was performed to create 
vectors of specific parameters describing the features spiking, bursting 
and network bursting (Supplementary Figure S5B) following up the 
projection in PC1 with time. After PCA, MATLAB functions grouped 
well-level data automatically according to genotype or animal/
preparation and time. For PC1/2 analysis, PCA score plots visualized 
genotype clusters in a PC1-PC2 two-dimensional coordinate system. 
To quantify the separation between the genotype clusters, we followed 
the suggested quantification method presented in Goodpaster and 
Kennedy (2011). In brief, we calculated the Mahalanobis distance 
(Mahalanobis, 1936) resulting in the distance between the centroids 
between groups considering groups’ data distribution. The calculations 
were performed by custom-written MATLAB functions that 
additionally calculated statistical significance with F-statistics.

Electrical evoked activity in stimulation 
experiments

For an automated analysis of data derived from MEA-based 
electrical stimulation of neuronal cultures, we  developed a 
software package in MATLAB finally returning the network-wide 
evoked spiking rate upon STIM normalized to the spontaneous 
activity (evMFRnorm) (data processing illustrated in 

Supplementary Figure S6). Based on the initial measurement of 
spontaneous activity (SA1), preselection of valid wells was 
performed based on the condition of a minimum number of active 
electrodes per array (here: 8 electrodes) and with an electrode 
defined as active whenever its spiking rate exceeded a threshold 
(herein 0.1 Hz). To calculate evMFRnorm, first, the evoked activity 
evMFR’ was determined as the number of spikes within a period of 
1 s upon an electrical pulse divided by this time 
(Supplementary Figure S3B), followed by averaging across all 
pulses on one electrode during one session. For each electrode, 
evMFR’ was then normalized to the spontaneous activity (MFRSA′

) of the same electrode, resulting in evMFRnorm′ . To evaluate the 
network-wide evoked activity, evMFRnorm′  was averaged across all 
array electrodes and across all sessions within STIM, yielding 
evMFRnorm. The software package returned a data array containing 
evMFRnorm, as well as the corresponding coefficient of variance and 
the skewness for each well and STIM. Based on a user-provided 
Excel file, the package automatically grouped the wells according 
to genotype.

Data cleaning and selection of valid wells
To generate reliable results and to reduce the variability due to 

hardly predictable environment and physiological changes, criteria for 
the selection of valid wells were defined. First, wells were selected 
according to their activity as measured by the minimum number of 
active electrodes (if not otherwise stated: 10) determined by the 
minimum spiking rate (herein >0.1 Hz). For the time series 
experiments, this selection was performed based on measurements 
taken at the time of network maturity, which we denote here as the 
reference time point (DIV 21–24). For disinhibition-induced 
stimulation experiments, the baseline measurement at the fourth time 
point was taken as a reference. Wells that did not fulfil the criteria were 
discarded from the analysis. For time series experiments we implied 
further quality criteria and discarded wells once they lost their 
integrity beyond the reference time point. Loss of integrity was defined 
if both following conditions were given (1) a considerable drop in the 
number of active electrodes (drop of contributing channels ≥2 
channels compared to reference time point) and (2) a clear decrease 
in neuronal activity (wMFR <70% wMFRref). A precise overview of 
datasets obtained from recordings of spontaneous activity of both 
genotypes is given in Supplementary Table S5. Detailed description of 
criteria used for exclusion of data points are listed in 
Supplementary Table S6. For PCA, wells with missing values over the 
course of an experiment were discarded.

For stimulation experiments that were more prone to interference 
due to a measurement duration above 2 h, additional exclusion 
criteria were applied to ensure that only stable cultures were included 
in the analyses. First, cultures had to exhibit stability in their 
spontaneous activity prior to (SA1) and after (SA2) STIM1 
(Supplementary Figure S3D). For each well, the MFR and SD of the 
firing rate were computed, and significant changes between SA1 and 
SA2 were identified by Welch’s t test to discard wells that were 
significantly altered. Second of particular importance for the 
evaluation of the effect of tetanic stimulation on the network evoked 
activity, we discarded cultures that were pathologically affected by 
STIM sessions. To evaluate this, we regarded the relation between 
evMFRnorm upon STIM2 and upon STIM1 and checked for outliers 
(Supplementary Table S4).
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Statistics applied to MEA datasets

For statistical calculations, we used GraphPad Prism (version 
8.3.0) Software and MS Excel. The distribution of all data sets was 
tested by normality and lognormality tests (Supplemetary Table S3 
and Supplementary Figures S7, S8). To test significant differences 
within time series experiments, subsequent PCA and 
disinhibition-induced stimulation experiments, we performed a 
mixed-effects analysis with GraphPad Prism. For time series 
experiments, we assume an increased risk of type two error caused 
by a systematic effect by time on the whole population potentially 
superimposing the effect of genotype and therefore performed 
either an unpaired t test for normally distributed data or Mann–
Whitney U tests for nonnormally distributed data without 
correction for multiple comparisons. The effect size is indicated 
as r for unpaired student’s t-test (Lakens, 2013) and r for the 
Mann–Whitney U test according to Wendt (1972) (Figures 1, 2). 
Standard benchmarks for r fit well with our set of data: <0.3 small 
effect, 0.3–0.5 moderate effect, and >0.5 strong effect A p-value 
<0.05 was considered significant.

The projected data set on PC1 was shown to be approximately 
normally distributed (Supplementary Figure S9) with equal variances 
in all groups (Supplementary Figure S10), leading us to perform a 
mixed-effects model with Sidak’s test to correct for multiple 
comparisons for increased statistical power. Since concomitant with 
PCA, normalization of data values centers the data points around zero 
for each time point, the systematic increase of neuronal activity 
coming along with network development was filtered out in all groups. 
Thus, the effect on spiking, bursting and network bursting phenotypes 
was unveiled, decreasing the probability of error type two. 
Additionally, for disinhibition-induced stimulation experiments, 
Sidak’s multiple comparisons test was performed and for effect size 
Cohen’s d was computed and converted to correlation coefficient r as 
effect size.

To compare the evoked activity upon STIM, we  used the 
nonparametric Mann–Whitney test due to the nonnormal 
distribution of the data set for MFR. Additionally, we investigated 
differences in distribution by the Kolmogorov–Smirnov test. To 
analyze the effect of tetanic stimulation on networks, we calculated 
the relation X =evMFR

evMFR

STIM

STIM

log

log

3

2

 between the logarithmic evMFRnorm 

after (STIM 3) and prior (STIM 2) tetanic stimulation and checked 
for alterations between genotypes by Welch’s t test (Welch, 1947). 
Therefore, we  calculated descriptive measures from the 
independent, individual experiments first, followed by Welch’s t test 
according to
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The mean value X  is the average of X across all experiments for 
the indicated genotype. S2 is given by the averaged variance of the 

indicated genotype derived from the individual experiment, and n is 
the total number of all wells over all experiments for the indicated 
genotype. To check the effect of tetanus on networks, we additionally 
performed a one-sample Wilcoxon test on the pooled data set of X 
from all experiments.

Results

Increase in population-wide neuronal 
activity in neuronal networks from 
Ptpn11D61Ymice

To identify the effect of RASopathy mutations on the functional 
development of neuronal networks, we performed longitudinal recordings 
of neuronal network activity in cultured dissociated cortical neurons 
grown on mwMEA plates. The neurons were derived from the cerebral 
cortices of newborn mice. As the RASopathy model, we  used mice 
heterozygous for the floxed mutation Ptpn11D61Y or KrasV14l as well as for 
the Emx1-cre allele and as the control, their littermates homozygous for 
the Ptpn11 or Kras wild-type allele and heterozygous for the Emx1-cre 
allele. The spontaneous network activity of cortical cultures was recorded 
multiple times in cultures in a time range of DIV 10 until DIV 33 (time 
series). For one experiment, cultures were prepared from six to eight 
newborn mice (P0–P1) littermates. The number of animals and the 
number of arrays analyzed in each age cohort of the culture for all 
parameters of spontaneous activity are shown in Figure 2A.

To analyze the parameters describing spontaneous activity in 
neuronal networks, we averaged the data derived from individual 
wells across preparation/animal and subsequently grouped the 
datapoints according to genotype. To assess differences between 
groups and time points, a mixed-effects model was calculated. Herein, 
we accepted the violation of the distributional assumption of equal SD 
within groups due to the robustness of the mixed effects model 
(Supplementary Figure S8). The global evaluation revealed that all 
groups reliably exhibited spontaneous activity on DIV 11–13. A 
gradual increase in population-wide firing activity (assessed as spiking 
and bursting, Figures 1A,B) and in functional connectivity/network 
synchronicity (assessed as network bursting and correlation in 
spiking, Figures 2B,C) was evident between DIV 19 and DIV 25, when 
all parameters stabilized, presumably marking network maturity. 
Sample sizes are listed in Figure 2A.

To assess the effect of RASopathy mutations on spiking and bursting 
behavior, we followed up on four parameters, including wMFR, interspike 
interval, burst duration and wMBR (Figure 1). Ptpn11D61Y networks were 
significantly different in most parameters compared to their control 
according to the F test in the mixed effects model. The spiking activity was 
increased as reflected by significantly higher values in wMFR at the early 
time points (DIV 11–13 and DIV 15–16) and in a decreased interspike 
interval reaching significance throughout all observation time points 
except on DIV 30–33 (Figure 1A, left column). Furthermore, Ptpn11D61Y 
networks showed increased bursting behavior compared to their control 
(Figure 1B, left column). The appearance of spontaneous bursts during 
development is important for the formation of neuronal circuits (Kirkby 
et al., 2013). Ptpn11D61Y networks exhibited significantly higher wMBR on 
DIV 11–13, DIV 15–16 and DIV 19–20. However, the burst duration 
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A

B

FIGURE 1

Spontaneous spiking and bursting activity in neuronal networks from the RASopathy models Ptpn11D61Y and KrasV14l. (A,B) Parameters describing neuronal 
activity as a function of culture age as box plots indicating the median and interquartile range with whiskers extending from 5 to 95% confidence interval. 
(A) wMFR and interspike interval. (B) Burst duration and wMBR. Parameters are statistically evaluated by a mixed-effects model approach. Below the 
graphs, p and F values for main and intermediate effects are shown. If the F test reveals significance in genotype, p-values from the Mann–Whitney U test 
(black) and effective size r according to Wendt (gray, cursive) are shown in the graphs. Stars indicate significant differences between genotypes for a time 
point: <0.05 (*), <0.01 (**). A data point represents the mean values across the wells related to one animal/preparation (preparation level).
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remained unchanged. In contrast, except the significantly increased 
wMBR at DIV 17–19 we  detected no significant differences in any 
parameter describing spiking and bursting behavior in KrasV14l. However, 
visualization of the data indicates a conspicuous trend of higher median 
values in parameters reflecting neuronal activity (wMFR, wMBR, burst 
duration) (Figures 1A,B, right column).

A fundamental feature of neuronal networks is their functional 
connectivity/network synchronicity, which describes the impact of 
the activity of other neurons within the same network on the activity 
of a given neuron (Makarov et  al., 2005). To assess functional 
connectivity during network development, we calculated the number 
of network bursts (Figure  2B) and determined the correlation 
between all pairs of electrodes during NBs measured as STTC 
(Figure 2C). Ptpn11D61Y networks globally demonstrated significantly 
higher functional connectivity than their control groups, as revealed 
by a mixed effects model in all observed parameters (Figures 2B,C, 
left side). In Ptpn11D61Y networks, the number of NBs was increased 
at early time points (DIV 11–13, DIV 15/16 and DIV 19/20), but this 
effect was abolished at later time points. Moreover, compared to 
controls, Ptpn11D61Y networks indicated significant differences in the 
mean and skewness of STTC throughout the whole observation time, 
as tested by multiple comparison tests (Figure  2C, left side). In 
contrast, compared to the control group, KrasV14l showed no 
alterations in the number of NBs, in the mean STTC and in the STTC 
skewness (Figures 2B,C, right side). However, a significant global 
difference was calculated for the skewness of STTC according to the 
F test on the main effect genotype on DIV 15–16. In general, 
we  identified elevated predicted median values in the KrasV14l 
networks in most parameters; however, the differences were not 
significant, likely due to large variability, which is typical of 
MEA-derived data.

Principal component analysis of MEA 
parameters reveals differences in genotype 
clusters and identifies differences in 
spiking, bursting and network bursting in 
both RASopathy models

Analysis of most individual parameters from the longitudinal 
recordings in Ptpn11D61Y neurons revealed higher effect sizes in 
younger cultures in several parameters (wMFR, ISI, wMBR, no. of 
network bursts) that were reduced at later time points. Similar 
tendency (i.e., large effect size r) was observed in KrasV14l neurons, 
although it did not reach significance. To increase the interpretability 
of data sets and the power of statistical testing and to allow simpler 
visualization, we introduced PCA, which reduces data dimensionality. 
We  performed PCA including 19 parameters obtained from a 
custom-written MATLAB program (Supplementary Table S2). 
We conducted the PCA at the well level. In contrast to the preparation 
level, we yielded a higher number of data points, resulting in a lower 
probability of error type two but decreased power.

We analyzed all age cohorts from the longitudinal recordings and 
visualized the transformed data points into a PC1 and PC2 
coordination system (Figures 3A, 4A). Sample numbers are shown in 
Figures 3D, 4D. In both RASopathy disease models, the respective 
clusters and their controls appear to converge with culture age, also 
indicated by the visualized distance between the cluster centroids in 

the graphs. To quantify the separation between genotype clusters, 
we  calculated the Mahalanobis distance that accounts for the 
correlation of the variables (Mahalanobis, 1936). Statistical 
significance was evaluated by Hotelling’s two-sample T2 related to an 
F value as introduced earlier (Goodpaster and Kennedy, 2011). For 
both RASopathy model networks, the Mahalanobis distance to the 
control group turned out to be strongly significant at the early stages 
but dramatically decreased with culture age (Figures 3B, 4B). At the 
end of the observation period, Ptpn11D61Y networks still differed 
significantly from their control group according to the F-statistic on 
DIV 30–33, while for KrasV14l, the clusters converged more closely and 
did not differ significantly from DIV 24/25 on. The reliability of the 
results is underpinned by the cumulative fraction of variance of PC1 
and PC2 explaining approximately 70% of the variation in both data 
sets (Figures  3C, 4C). This approach confirmed a developmental 
phenotype in spontaneous network activity in both RASopathy 
disease models.

To further identify at which level spontaneous network activity 
is particularly affected in RASopathy models, we  performed a 
further PCA that specifically combines parameters describing the 
features of spiking, bursting and network bursting behavior 
(Supplementary Figure S5B). Therefore, we  formed parameter 
vectors from the extracted parameters from the spontaneous 
activity analysis. The values were logarithmized for nonnormally 
distributed data. This resulted in a 4-dimensional vector for spiking 
(log10(wMFR), log10(wtMFR), log10(interspike interval), and number 
of contributing electrodes), a 3-dimensional vector for bursting 
(log10(wMBR), log10(burst duration), and log10(number of spikes per 
burst)) and a 4-dimensional parameter vector for network bursting 
(number of network bursts, mean NB duration, number of spikes 
per NB, and number of contributing channels). The PCA resulted 
in a component projection on PC1 for each age cohort (Figure 5). 
We  visualized the projected parameter vector on PC1 for each 
neuronal age cohort (Figures 5A–C). We were able to identify a 
changed phenotype in spiking, bursting and network bursting for 
both RASopathy models compared to wt.

On the spiking level, the mixed effects model revealed a strongly 
significant effect of genotype for both RASoapthy models (Figure 5A). 
Multiple comparisons testing showed the strong differences primarily at 
early time points (Ptpn11D61Y: DIV 11–13, DIV 15/16, DIV 19/20; KrasV14l: 
DIV 15/16, DIV 17–19, DIV 20–22). Similarly, for network bursting, the 
mixed effects model indicated a significant effect of genotype for both 
mutations, with differences on DIV 11–13 and on DIV 19/20  in 
Ptpn11D61Y and on DIV 15/16 and on DIV 17–19 in KrasV14l, respectively 
(Figure 5C). In contrast, as assessed by multiple comparisons testing, for 
bursting, Ptpn11D61Y showed significant differences at latest time point 
(DIV 30–33), when networks are expected to be mature, while KrasV14l 
reveals significant differences at DIV 17–19 and DIV24/25. Interestingly, 
the mixed effects model identified a strong interaction effect over time 
and between genotypes in all parameter vectors describing the network 
activity for both RASopathy models (genotype × time, indicated in all 
graphs in Figure 5) indicating differences in the functional maturation of 
neuronal networks.

Overall, we observed strong significant differences in spiking for 
both RASopathy models, that were more pronounced during early 
development and shades out during network maturation. The changes 
in bursting and network bursting were also significant, but observed 
only at specific timepoints.
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FIGURE 2

Functional connectivity/synchronicity in networks with RASopathy mutations Ptpn11D61Y and KrasV14l. (A) Number of animals and wells analyzed at each 
culture age cohort for all parameters of spontaneous activity. (B,C) Parameters describing functional connectivity as a function of culture age as box 
plots indicating the median and interquartile range with whiskers extending from 5 to 95% confidence interval. (B) Values of the number of network 

(Continued)
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Pharmacological disinhibition has a 
specific effect on network bursting in 
Ptpn11D61Y

Our experiments revealed a change in neuronal activity and 
functional connectivity during network development in both RASopathy 
models. Interestingly, the effect of mutations on network characteristics is 
attenuated over time, pointing to possible adaptation. To assess the 
possible contribution of a shift in excitatory/inhibitory (E/I) balance, as 
previously suggested in Papale et al. (2017), we decided to test the effect 
of pharmacological interference with inhibitory tone on spontaneous 

network activity. Therefore, we applied bic, a potent antagonist of the 
GABAA receptor, to cultured cortical neurons (DIV 33) from Ptpn11D61Y 

mice and their wild-type littermates (Figure  6A). As expected, the bic 
treatment resulted in a reliable increase in spiking activity reflected in 
increased wMFR (Figures 6B,C), which was statistically confirmed by one 
sample Wilcoxon test for each well (Figure  6C). While spiking and 
bursting behavior did not differ between genotypes upon bic treatment 
(Figure 6C; Supplementary Figure S11), we detected elevated network 
bursting in disinhibited Ptpn11D61Y networks compared to the control. 
The mixed effects model revealed a global interaction effect of time and 
genotype (genotype x time p < 0.0001), leading us to perform Sidak’s 

A

B C D

FIGURE 3

PCA of the Ptpn11D61Y 19-dimensional parameter vector. (A) Principal component PC1 versus PC2 scores plotted as a function of culture age (DIV). A 
solid line is drawn between the centroids of the control cluster (triangle) and mutant cluster (rectangle). Each color-coded data point represents a 
recording from one well. (B) Cluster separation in dependence of culture age was measured by Mahalanobis distance (green dotted line), and the F 
value shows statistical significance (black solid line) (Fcritical  =  3.1). (C) Fraction of variance explained by each PC summed over all PCs. The cumulative 
fraction of variance is indicated for each evaluated culture age. (D) Sample size is given per culture age as the number of animals and wells.

FIGURE 2 Continued
bursts. (C) Values of mean STTC and skewness STTC. Parameters are statistically evaluated by a mixed-effects model approach. Below the graph, p 
and F values for main and intermediate effects are shown. If the F test reveals significance in genotype, in B, p-values from the Mann–Whitney U test 
(black) and effective size r according to Wendt (gray, cursive) are shown; in C, p-values from the unpaired t-test together with effect size r2 are shown 
in the graphs. Stars indicate significant differences between genotypes for one time point <0.05 (*), <0.01 (**), <0.001 (***), <0.0001 (****). A data point 
represents the mean values across the wells related to one animal/preparation (preparation level).
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multicomparison tests resulting in significant differences from minute 50 
post bic (Figures 6C,D). For an overall conclusion of the main effect 
genotype, the mixed effects model returns a p-value of.06 that is near 
significance. This result revealed changes in the inhibitory system in 
Ptpn11D61Y networks, which likely developed to counteract increased 
spontaneous network activity.

Fewer GABAergic synapses but higher 
expression of vesicular transporters for 
GABA and glutamate were detected in the 
networks with the Ptpn11D61Y mutation

To examine the altered inhibitory tone on a synaptic level, 
we visualized and quantified glutamatergic and GABAergic boutons 
in Ptpn11D61Y networks and their control. Therefore, neuronal 
cultures were immunolabeled with specific antibodies against 
vesicular GABA transporter (VGAT) or vesicular glutamate 
transporter (VGLUT1), together with antibodies against 
synaptophysin (Syp), to visualize all synapses (Figures  7A,B). 

We used our in-house developed MATLAB-based program SynEval 
to obtain Syp-positive puncta (ROIs) and to sort them as VGAT- or 
VGLUT-positive in an automatized batch mode, which reduces 
human bias and time effort. The fraction of glutamatergic boutons 
was significantly higher in the Ptpn11D61Y group than in the control 
group (Figure  7D), and accordingly, the fraction of GABAergic 
boutons decreased (Figure 7C). Interestingly, we noticed an increased 
synaptic IFI for VGAT or VGLUT, indicating increased synaptic 
abundance of these neurotransmitter transporters (Figures 7C,D). 
These findings further point toward changes in the excitation-
inhibition balance in Ptpn11D61Y networks.

Altered evoked activity in Ptpn11D61Y cells 
probed by electrical stimulation

The longitudinal analysis indicated a normalization of 
spontaneous network activity during maturation in the neuronal 
networks expressing RASopathy mutations. To assess whether 
there are functional defects in the processing of information in 
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FIGURE 4

PCA of the KrasV14l 19-dimensional parameter vector. (A) Principal component PC1 versus PC2 scores plotted as a function of culture age (DIV). A solid 
line is drawn between the centroids of the control cluster (triangle) and mutant cluster (rectangle). Each color-coded data point represents a recording 
from one well. (B) Cluster separation in dependence of culture age was measured by Mahalanobis distance (green dotted line) between the clusters of 
genotypes, and the F value shows statistical significance (black solid line) (Fcritical  =  3.1). (C) Fraction of variance explained by each PC summed over all 
PCs. The cumulative fraction of variance is indicated for each evaluated culture age. (D) Sample size is given per culture age as the number of animals 
and wells.
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FIGURE 5

PCA of parameter vectors related to spiking, bursting and network bursting from Ptpn11D61Y and KrasV14l. (A–C) PC1 projection as a function of culture 
age as box plots indicating the median and interquartile range with whiskers extending from 5 to 95% confidence interval. (A) Quantification of spiking 
behavior calculated as a projection of a 4-dimensional parameter vector (number of spiking electrodes, wMFR, wtMFR, interspike interval). 
(B) Quantification of bursting behavior calculated as the projection of a 3-dimensional parameter vector (wMBR, bursting duration, no. of spikes per 
burst). (C) Quantification of network bursting calculated as a projection of a 4-dimensional parameter vector [number of network bursts (NB), mean 
NB duration, number of spikes per NB, mean number of contributing channels per NB]. Statistical significance was assessed by a mixed-effects model 
approach. p-values (in black) for each comparison were obtained by Sidak’s multiple comparisons test, and effect size (r2, in gray, cursive) was derived 
from the unpaired t-test. Stars indicate significant differences in median values between genotypes for time points: 0.05 (*), 0.01 (**), 0.001 (***), 
<0.0001 (****).
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these apparently “normal” networks, we  analyzed network 
activity evoked by the delivery of electrical stimulation. 
We recorded network activity evoked by single-pulse stimulation 
(test stimulus, STIM) delivered from different electrodes in 
Ptpn11D61Y networks grown for 33 days (DIV 33) 
(Supplementary Figures S3A,D). Of note, we  solely analyzed 
robust and stable networks, which were not affected by the 
application of STIM itself, i.e., the activity evoked by STIM1 was 
the same as the activity evoked by STIM2 (cf. Material and 
Methods, Data cleaning and selection of valid wells). The data 
points plotted in Figure 8A display the evMFRnorm representing 
the evoked MFR induced by STIM at the electrode level and 
normalized to recorded spontaneous activity on the same 
electrode, averaged across an array (for detailed information on 
calculation, see Supplementary Figure S6). Interestingly, 
evMFRnorm was found to be significantly decreased in Ptpn11D61Y 
networks compared to wt (Figure  8A, upper plot). The graph 
shows the data for STIM2, and similar results were obtained for 
STIM1 (Supplementary Figure S12). The Kolmogorov–Smirnov 
test confirmed a different distribution of data between 
both genotypes.

Effect of high-frequency electrical 
stimulation on evoked activity in Ptpn11D61Y 
mice

We observed that evoked neuronal activity upon STIM is 
affected by Ptpn11D61Y mutations and that excitability is 
dampened. Next, to understand whether neuronal plasticity 
might also be affected in Ptpn11D61Y networks, we tested the effect 
of tetanic stimulus (TET) on evoked synaptic activity. The 
stimulation protocol described in Supplementary Figure S3C was 
previously suggested to be  suitable for analysis of neuronal 
plasticity since it affected evoked activity in networks 
(Chiappalone et  al., 2008). The TET stimulus applied on 
Ptpn11D61Y networks induced different effects compared to 
controls in all three independent experiments individually 
plotted in Figure  8B. Calculating the relative change (ratio) 
between post and pre TET logarithmic (log10)evMFRnorm showed 
that the mean value in Ptpn11D61Y was higher than that in the 
control group for each experiment (Exp1-Exp3), with an overall 
significant difference confirmed by Welch’s t test (Mann–Whitney 
test for individual experiments: Exp1: p = 0.03, Exp2: ns, Exp3: 

A C

B D

FIGURE 6

Effect of disinhibition on neuronal network activity in Ptpn11D61Y on DIV 33. (A) Number of animals (from 3 independent experiments) and wells used for this 
analysis. (B) Representative raster plots showing spatiotemporal spiking activity of control and Ptpn11D61Y networks prior to and 30  min after bicuculline 
application (bic). (C,D) Line graphs of wMFR (C) and MNBR (D) as a function of time prior to and after application of bic showing an elevated spiking upon 
treatment in both genotypes. Values are represented in percent relative to a baseline generated from values recorded over a time interval of 20  min prior to 
bic treatment, averaged and set to 100%. A significant increase against baseline was statistically tested by one-sample Wilcoxon. In (D), the interaction effect 
between time and genotype was calculated by a mixed effects model approach. Sidak’s multiple comparison tests were used to determine significance 
between genotypes. Stars indicate significant differences <0.05 (*). To assess the possible contribution of a shift in excitatory/inhibitory (E/I) balance, as 
previously suggested in Papale et al. (2017), we decided to test the effect of pharmacological interference with inhibitory tone on.
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ns). More precisely, the findings reveal that TET resulted in a 
significant increase in evMFRnorm in Ptpn11D61Y networks while 
not inducing an effect in controls (Figure 8C). That was shown 
by testing the pooled data set against the hypothetical value 1 (no 
change between pre and post TET logarithmic evMFRnorm) by a 
one-sample Wilcoxon test. Interestingly, the difference in 
evMFRnorm, demonstrated between Ptpn11D61Y and control pre 
TET, was diminished post TET (Figure  8A, bottom plot). 
According to the Kolmogorov–Smirnov test, the difference in 
distribution also failed significance after TET. Indeed, in contrast 
to the control, Ptpn11D61Y demonstrated a shift between STIM2 
and STIM3 curves in their relative frequency plots, particularly 
for higher evMFRnorm, pointing to an altered distribution in the 
data set (Supplementary Figures S13B,C).

Discussion

RASopathies are a group of rare genetic disorders with various 
symptoms, including heart defects, skeletal anomalies, increased 
risk for tumors and variable degrees of neurocognitive deficits. 
Clinically, the severity of neurocognitive impairments in 
RASopathies often varies over the lifetime and often becomes 
milder with the age of the patients. Neurodevelopmental 
phenotypes were also described in RASopathy mouse models, 

where the involvement of maladaptive changes in cortical networks 
was suggested Papale et al. (2017).

To investigate whether similar maladaptation occurs in 
neuronal networks on a chip, we  cultured cortical neurons 
carrying two distinct RASopathy mutations on mwMEAs and 
recorded their population-wide spontaneous network activity to 
monitor network establishment and maturation during a time 
period of 5 weeks. To facilitate the evaluation of large data sets 
acquired longitudinally with a high sampling rate (12.5 kHz), 
we developed and implemented an analysis pipeline programmed 
in MATLAB. From the list of spikes per electrode, provided by 
acquisition software, it computes a custom set of parameters 
describing various features of neuronal spontaneous network 
activity, including spiking, bursting, network bursting and 
correlation in spiking. This custom-written software package 
permits fast and unbiased analysis of large MEA data sets while 
being flexibly applicable for a wide set of experimental designs 
in general. The provision of a GUI renders the package user-
friendly. Furthermore, we  developed an add-on package of 
MATLAB-based functions that implements PCA to reduce the 
complexity of analysis outcomes by projecting the resulting 
parameters into a two-dimensional system. The package allows 
the calculation of Mahalanobis distance and statistical testing to 
mathematically compare the network behavior between two 
groups derived in our case from mutant and wild-type animals 

A C

B D

FIGURE 7

Immunolabeling of excitatory and inhibitory synapses in neuronal networks from Ptpn11D61Y mice. (A) Representative images of neurons (DIV 21) 
labeled using antibodies against VGAT (green) and Syp (red). (B) Representative images of neurons labeled using antibodies against VGLUT1 (green) and 
synaptophysin (Syp, red). (C) Quantification of VGAT IFI in Syp-positive synaptic puncta and of the fraction of VGAT-positive synapses. 
(D) Quantification of VGLUT1 IFI in Syp-positive synaptic puncta and of the fraction of VGLUT1-positive synapses. (C,D) Sample size is given as the 
number of analysed images. Statistical significance was determined by the Mann–Whitney test. Data points correspond to individual analyzed visual 
fields derived from two independent experiments. The scale bar is 5  μM.
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and determine if these constitute significantly distinguishable 
populations. In the next step, it also computes whether the 
difference between network clusters can contribute to one 
specific network function feature (spiking, bursting and network 
synchronicity) or whether changes in multiple features contribute 
to the clusters’ differences. This approach turned out to 
be suitable to uncover effects in the MEA data that are inherently 
characterized by high complexity and variability.

On the basis of MEA-recorded data and supported by the 
MATLAB analysis pipeline, we  identified a convergent 
developmental phenotype in both RASopathy models. Multiple 
parameters describing neuronal activity and functional connectivity 
were significantly different in neurons with the Ptpn11D61Y mutation. 
The differences were more pronounced in younger networks and 
faded out as networks matured. In contrast, the neurons with the 
KrasV14l mutation showed only a tendency toward similar changes 
in spontaneous network activity parameters as seen in Ptpn11D61Y 
neurons. Being aware of the high inherent variance of MEA data, 
we performed PCA to obtain an overall description of network 
parameters for both models. This analysis revealed a significant 
separation between clusters representing neurons with the 
Ptpn11D61Y or KrasV14l mutation and their respective controls. 
Moreover, for both mutations, the cluster separation from control 
networks decreased throughout development, even though for 
Ptpn11D61Y the difference in the individual parameters mean STTC 
and skewness of STTC remains significant at DIV 30. Consecutive 

analysis identified a major contribution of changes in spiking and 
network bursting to the PCA cluster separation. Thus, based on the 
analysis of spontaneous network activity according to PCA, we have 
clearly demonstrated developmental phenotypes for both 
mutations, confirming that the effect of RASopathy mutations on 
neuronal network function converges. It is interesting to note that 
the strength of mutations’ effect on network function correlates 
with the strength of their activation assessed biochemically in 
previous studies. While the Noonan syndrome associated KrasV14l 
exhibits attenuated biochemical activation compared to common 
cancer associated KRAS alleles (Schubbert et al., 2007), strong 
activation was shown for Ptpn11D61Y, which is frequently linked to 
juvenile myelomonocytic leukemia (JMML) in patients (Chan et al., 
2009). Still, both mouse models used in this study are appropriate 
to investigate the neurodevelopmental effect of RASopathies. The 
mice with cortex specific expression of Ptpn11D61Y display lower 
exploratory activity, reduced memory specificity, and alteration of 
neuronal activity-induced gene expression (Altmuller et al., 2017). 
Similarly, the mice with neuron-specific expression of oncogenic 
KrasG12V reliably model Noonan-syndrome linked neurocognitive 
symptoms (Papale et al., 2017). Of note, the cortical cultures used 
in this study contain next to neurons also astrocytes and to lesser 
extent also oligodendrocytes. Non-neuronal cells affect the 
functional maturation and network activity of neuronal networks 
on chip as well as in vivo (Enright et al., 2020). It is therefore feasible 
that expression of RASopathy mutations in astrocytes as it occurs 

A B C

FIGURE 8

Assessment of evoked network activity in Ptpn11D61Y neurons. (A) Evoked mean firing rate (evMFRnormed) before and after TET stimulation. Black lines 
indicate median values, and data points correspond to one well. Significance was tested by the Mann–Whitney (MW) test to check differences in mean 
values and the Kolmogorov–Smirnov (KS) test to check differences in data distributions. (B) Relative change (ratio) of evMFRnormed recorded before and 
after application of TET are shown from three independent experiments (Exp1–Exp3). Numbers indicate the group sizes for the experiment (animals/
wells). Whiskers indicate SEM. The p-value was calculated by Welch’s t test; the number of wells included for the corresponding genotype is color-
coded for each experiment. (C) Analysis of data pooled from all 3 experiments. Black lines indicate median values, and one data point refers to one 
well. The one-sample Wilcoxon test (WT) was tested against a hypothetical value of 1 (indicating no change in evMFRnormed caused by TET), and the 
Mann–Whitney test (MW) was used to calculate significant differences between genotypes.
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in our model system as well as in patients contribute to the 
phenotypes observed in this study.

The normalization of network activity parameters in mature 
networks suggests that compensatory mechanisms develop to 
counteract the increased network activity observed in juvenile 
networks. A shift in the E/I balance might represent one such 
mechanism. Indeed, the balance between E/I within neuronal 
circuits is crucial for correct brain development and function, and 
its disturbances contribute to numerous neurodevelopmental 
disorders, such as autism spectrum disorders and epilepsy, which 
are common comorbidities in more severe RASopathies, including 
CFC or CS (Adviento et al., 2014; Pierpont et al., 2022). Moreover, 
the recent characterization of a RASopathy animal model expressing 
the strongly activating allele KrasG12V indicated that increased 
inhibitory drive contributes to the electrophysiological and 
behavioral abnormalities in this model Papale et al. (2017). In line 
with these assumptions, we  demonstrated increased network 
bursting in mature Ptpn11D61Y networks upon pharmacological 
disinhibition of GABA receptors, which indicates an increase in the 
inhibitory tone. However, the immunocytochemical analysis 
revealed an increased proportion of excitatory and decreased 
proportion of inhibitory synapses in Ptpn11D61Y networks, but an 
increased expression of vesicular transporters for both glutamate 
and GABA. Thus, although it is difficult to directly correlate 
morphology and function, our morphological findings confirm that 
specific network and synaptic adaptation occur in Ptpn11D61Y 
neuronal networks. Further, we  found that the application of 
electrical test stimuli elicited a reduced evoked response in the 
Ptpn11D61Y networks. The attenuated response to stimulation points 
toward maladaptive dampening of network activity and is well 
compatible with a compensatory increase in inhibitory tone. An 
application of TET stimulation that had no effect on evoked 
responses in the control had a significant impact on responses in 
neurons with the Ptpn11D61Y mutation. Interestingly, TET 
stimulation statistically restored the affected evoked activity in the 
RASopathy model. However, the change in the distribution of data 
values between pre- and posttetanus stimulations indicates that 
there is much higher variability in the responses of individual tested 
networks expressing Ptpn11D61Y mutations compared to controls. 
Taking together, while several results of our study point to a 
compensatory increase in inhibitory tone, the exact mechanisms 
involved in RASopathy-induced network adaptation require further 
investigation. A better understanding of the underlying cellular and 
molecular mechanisms will facilitate therapeutic approaches to 
disrupt the maladaptive circuits and develop targeted treatments for 
RASopathies and their comorbidities.

In summary, our study reveals that Ptpn11D61Y and KrasV14l 
mutations have convergent effects on neuronal network activity. 
We observed more severe differences in network characteristics 
in juvenile networks that were compensated in the late stages of 
network maturation, which is in good agreement with clinical 
data. Despite the apparent normalization of spontaneous network 
activity, we uncovered significant differences in evoked responses 
in mature networks, which are likely due to changes in E/I 
balance. Finally, the cell on-a-chip approach developed here is 
well scalable, accessible for treatments and manipulations and 
adaptable for stem cell technology-derived humanized disease 
modeling. Therefore, we  assume that the analysis workflow 

developed here could be  implemented for drug screening and 
testing platforms also for unrelated brain diseases.
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Glossary

AxIS Axion Integrated Studio

bic Bicuculline

CFC Cardio-facio-cutaneous syndrome

CS Costello syndrome

DIV Days in vitro

eact Currently active number of active electrodes

emax Maximum number of active electrodes

E/I excitation and inhibition

FCS Fetal calf serum

GUI Graphical user interphase

ICC Immunocytochemistry

IFI Immunofluorescence intensity

JMML Juvenile myelomonocytic leukemia

MAPK Mitogen-activated protein kinase

MBR Mean bursting rate

MEA Multielectrode array

MFR Mean firing rate

mwMEA Multiwell MEA

NB Network burst

NBA Neurobasal™-A media

NS Noonan syndrome

PC Principle component

PCA Principal component analysis

PCR Polymerase chain reaction

ROI Region of interest

RT Room temperature

SA Spontaneous activity

SD Standard deviation

STIM Test stimulation

STTC Spike time tiling coefficient

TET Tetanus stimulation

VGAT Vesicular GABA transporter

VGLUT1 Vesicular glutamate transporter

wMBR Weighted mean bursting rate

wtMFR Mean firing rate weighted to total number of electrodes
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