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Protein kinase C (PKC) plays a key role in modulating the activities of the 
innate immune cells of the central nervous system (CNS). A delicate balance 
between pro-inflammatory and regenerative activities by microglia and CNS-
associated macrophages is necessary for the proper functioning of the CNS. 
Thus, a maladaptive activation of these CNS innate immune cells results in 
neurodegeneration and demyelination associated with various neurologic 
disorders, such as multiple sclerosis (MS) and Alzheimer’s disease. Prior studies 
have demonstrated that modulation of PKC activity by bryostatin-1 (bryo-
1) and its analogs (bryologs) attenuates the pro-inflammatory processes by 
microglia/CNS macrophages and alleviates the neurologic symptoms in 
experimental autoimmune encephalomyelitis (EAE), an MS animal model. 
Here, we  demonstrate that (2S,5S)-(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-
pentadienoylamino)benzolactam (TPPB), a structurally distinct PKC modulator, 
has a similar effect to bryo-1 on CNS innate immune cells both in vitro and 
in vivo, attenuating neuroinflammation and resulting in CNS regeneration 
and repair. This study identifies a new structural class of PKC modulators, 
which can therapeutically target CNS innate immunity as a strategy to treat 
neuroinflammatory and neurodegenerative disorders.
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Introduction

Aberrant neuroinflammation by the innate immune cells of the central nervous system 
(CNS) contributes significantly to demyelination and neurodegeneration in multiple sclerosis 
(MS) and other neurologic disorders, e.g., Alzheimer’s disease (AD), Parkinson’s disease, and 
amyotrophic lateral sclerosis (Kutzelnigg and Lassmann, 2014; Hickman et al., 2018; Reich 
et al., 2018; Xie et al., 2022). In progressive MS, where the adaptive immune response plays a 
less prominent role, microglia and CNS-associated macrophages are activated in a 
pro-inflammatory phenotype that promotes demyelination and neurodegeneration (Mahad 
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et al., 2015; Voet et al., 2018; Faissner et al., 2019). Current Food and 
Drug Administration (FDA)-approved MS drugs primarily target 
peripheral lymphocytes and thus are effective in treating relapsing–
remitting MS. However, these drugs inadequately address the disease 
progression and treatment of progressive MS by failing to modulate 
CNS innate immune cells. Therefore, compounds that therapeutically 
target CNS innate immunity to promote remyelination and CNS 
repair are greatly needed.

Protein kinase C (PKC) is a family of important signaling 
molecules that are involved in numerous cellular activities (Platten 
et al., 2003; Noh et al., 2012; Chen et al., 2014; Newton, 2018). Studies 
have demonstrated that the PKC isoforms in innate immune cells are 
important in key functions for stimulating CNS regeneration and 
repair, such as phagocytosis, secretion of neurotrophic factors, and 
providing supportive milieu (Zheleznyak and Brown, 1992; Hortelano 
et al., 1993; Smith et al., 1998; Fronhofer et al., 2006; Kooij et al., 2015; 
Lim et al., 2015). PKC is also a key signaling molecule in the triggering 
receptors expressed on myeloid cells 2 (TREM2) pathway, which is 
involved in critical microglia activities (Ulland and Colonna, 2018; 
Andreone et al., 2020; Kim and Kornberg, 2022; Wang et al., 2022). 
Thus, deletion or inhibition of this signaling pathway results in 
harmful outcomes. People with TREM2 missense mutation, Nasu-
Hakola disease, experience an early onset of dementia and severe 
demyelination (Tanaka, 2000; Dardiotis et al., 2017).

We recently demonstrated that modulation of PKC activity 
hinders pro-inflammatory responses from microglia and 
macrophages, while activating anti-inflammatory and regenerative 
responses from these cells (Kornberg et al., 2018; Abramson et al., 
2021; Gharibani et  al., 2023). In experimental autoimmune 
encephalomyelitis (EAE), an MS animal model, modulation of PKC 
activity prevented the development of neurologic symptoms, and 
therapeutic treatment of EAE mice with a PKC modulator significantly 
improved the symptoms of EAE. Surprisingly, even in very late-stage 
EAE, when the peripheral inflammatory process has mostly subsided 
and only CNS inflammation persists, PKC modulation continued to 
ameliorate EAE symptoms. We also demonstrated using a lysolecithin 
(LPC)-induced demyelination model that modulation of PKC activity 
in microglia and CNS macrophages promoted remyelination by 
activating a regenerative phenotype in these cells, which provided a 
favorable anti-inflammatory environment, enhanced phagocytosis, 
and released beneficial factors to stimulate oligodendrocyte (OL) 
differentiation.

Our previous studies have focused primarily on modulating PKC 
activity with bryostatin-1 (bryo-1) and bryostatin analogs, termed 
bryologs (Abramson et al., 2021). Bryo-1, a natural compound that is 
CNS-penetrant and is a potent PKC modulator (Wender et al., 1988; Sun 
and Alkon, 2006; Hongpaisan et al., 2011), was originally tested as a 
cancer drug because it inhibited the tumorigenic properties of phorbol 
esters, which activate PKC (Clamp and Jayson, 2002), and since then, 
bryo-1 has also been tested for other indications, including AD, 
immunotherapy augmentation, and HIV eradication (Bullen et al., 2014; 
Laird et al., 2015; Gutiérrez et al., 2016; Farlow et al., 2019; Hardman 
et al., 2020; Sloane et al., 2020). We established that bryologs have similar 
biological effects as natural bryo-1 on innate immune cells. We also 
demonstrated that bryologs alleviated the symptoms of EAE and that the 
activity of bryo-1 and its analogs require PKC binding. Furthermore, our 
initial study showed that prostratin and prostratin analogs also had 
similar effects in cultured macrophages (Abramson et  al., 2021), 

indicating that other PKC modulators with chemical structures distinctly 
different from bryo-1 and bryologs may have therapeutic potential in 
treating neuroinflammatory and neurodegenerative disorders.

Here, we explored further the therapeutic potential of a structurally 
novel PKC modulator in stimulating an anti-inflammatory/regenerative 
phenotype in innate immune cells and in enhancing remyelination. 
We have identified (2S,5S)-(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-
pentadienoylamino)benzolactam (TPPB) (Kozikowski et al., 1997; Irie 
et  al., 2005; Yi et  al., 2012), a benzolactam that, while structurally 
different from bryo-1 and prostratin, binds to the C1 domain of PKC 
and has similar anti-inflammatory effects as bryo-1 and prostratin in 
cultured microglia and macrophages. We also demonstrate that TPPB, 
but not prostratin, improved EAE symptoms like bryo-1 and enhanced 
OL differentiation in a focal demyelination model. Our findings 
demonstrate that (1) TPPB has similar in vitro and in vivo effects to 
bryo-1 and (2) in vitro screening techniques allow for rapid screening 
of potential PKC modulators, but in vivo models, e.g., EAE and/or 
LPC-induced demyelination models, are required to establish the 
clinical potential of these compounds.

Materials and methods

Mice

Wild-type C57BL/6 J mice were purchased from the Jackson 
Laboratory (stock #000664). Animals were housed in a Johns Hopkins 
animal facility and acclimatized in the facility for at least 1 week. All 
animal experimental protocols were approved by the Johns Hopkins 
Institutional Animal Care and Use Committee.

Induction and scoring of EAE

EAE was induced in 8-12-week-old C57BL/6 J female mice by 
subcutaneous immunization of myelin oligodendrocyte glycoprotein 
35–55 peptide (MOG35–55). Briefly, 100 μg MOG35–55 was emulsified 
with 100 μl complete Freund’s adjuvant, and 50 μl of the emulsion was 
subcutaneously injected into each of two sites on the lateral abdomen 
on day 0. Additionally, on day 0 and day 2, mice received 250 ng of 
pertussis toxin intraperitoneally (IP). Clinical signs of EAE were 
assessed daily beginning on day 7 post-immunization. Scoring was 
performed in a blinded manner according to the following scale: 0, no 
clinical deficit; 0.5, partial loss of tail tone; 1.0, complete tail paralysis 
or both partial loss of tail tone plus awkward gait; 1.5, complete tail 
paralysis and awkward gait; 2.0, tail paralysis with hind limb weakness 
evidenced by foot dropping between bars of cage lid while walking; 
2.5, hind limb paralysis with little to no weight-bearing on hind limbs 
(dragging), but with some movement possible in legs; 3.0, complete 
hind limb paralysis with no movement in lower limbs; 3.5, hind limb 
paralysis with some weakness in forelimbs; 4.0, complete tetraplegia 
but with some movement of head; 4.5, moribund; and 5.0, dead.

Treatment of mice with TPPB and SUW014

TPPB (Tocris, 5343) and SUW014 (provided by P.A.W.) were 
dissolved in DMSO to 1 mM stock solutions, which were further 
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diluted to a desired concentration in sterile PBS for animal 
experiments. Mice were treated 3 days per week by IP injection of 
TPPB (50 nmol/kg), SUW014 (35 nmol/kg), or an equal volume of 
vehicle control. Mice were randomized and received their first 
treatment on the day they reached a clinical score of 1.0 or greater; 
thereafter, a three-days/week treatment schedule was followed.

Preparation of tissue for flow cytometry

Mice were euthanized with an overdose of isoflurane and then 
perfused with ice-cold PBS delivered via a cardiac puncture (Godfrey 
et  al., 2023). Spinal cords were mechanically dissociated, then 
chemically dissociated with collagenase (200 U/ml) and DNase 
(100 U/ml) with constant shaking for 10 min, triturated with a pipette, 
and incubated for an additional 10 min. Cells were then passed 
through a 100-μm filter and washed with PBS. Myelin debris was 
removed by resuspending the cell pellet with a debris removal solution 
(Miltenyi Biotec), overlaying with PBS, and spinning at 3,000 g, and 
then removing the myelin debris layer. Cell pellets were resuspended 
in PBS, passed through a 100-μm filter, and stained with antibody as 
described below. Myeloid cell panels proceeded immediately to flow 
cytometry staining after cell isolation. For panels involving T cell 
cytokines, cells were first resuspended in a solution of complete RPMI 
with brefeldin/monensin and PMA/ionomycin for 4 h at 37°C.

Flow cytometry staining

All staining was performed in the dark at room temperature (RT). 
Cells were first stained with zombie NIR (1:1,500) for 10 min along 
with CD16/32 (1:100) dissolved in PBS. Cells were then washed and 
resuspended in a solution of PBS + 2% FBS + 1 mM EDTA and stained 
with the relevant antibodies. All surface antibodies were stained at a 
1:300 dilution. Cells were then washed and incubated in FoxP3 
fixation/permeabilization buffer following the manufacturer 
recommended protocol. Intracellular staining was performed with 
conjugated antibodies (1:200) against the specified proteins in 
permeabilization buffer for 1 h, washed twice, and then analyzed cells 
with a Cytek Aurora Flow cytometer. Data analysis was performed 
with FlowJo software.

Isolation and treatment of murine bone 
marrow-derived macrophages

Briefly, 8-10-week-old C57BL/6 J mice were euthanized, and bone 
marrow cells were isolated from their femurs in an aseptic 
environment by flushing with sterile PBS. The cell pellet was then 
collected by centrifugation (1,500 rpm for 8 min). The red blood cells 
(RBC) were lysed in RBC lysis buffer, followed by centrifugation 
(1,500 rpm for 8 min). The resulting cell pellet was resuspended in 
RPMI media supplemented with 10% FBS, 1% penicillin/streptomycin, 
2 mM L-glutamine, 50 μM 2-mercaptoethanol, and 20 ng/ml 
recombinant mouse GM-CSF (Peprotech). The cells were incubated 
at 37°C for 7 days to induce macrophage differentiation. Subsequently, 
on day 8, bone marrow-derived macrophages (BMDM) were replated 
and treated as needed for the experiments. For treatment of cultured 

cells, TPPB was dissolved in DMSO to a final concentration of 1 mM, 
which was subsequently dissolved in PBS or cell culture media for the 
required treatment. An equal volume of DMSO diluted in PBS or cell 
culture media was used as vehicle control.

Enzyme-linked immunosorbent assay

Bone marrow-derived macrophages were treated overnight with 
LPS (100 ng/ml) with or without TPPB (100 nM). Culture supernatants 
were collected, and cytokine production was assessed using enzyme-
linked immunosorbent assay (ELISA) kits for IL-12 (88-7121-22), and 
IL-10 (88-7105-22) purchased from eBioscience and following the 
manufacturer’s instructions. Plates were read at 450 nm on a 
plate reader.

Western blot

BMDM were treated overnight with LPS (100 ng/ml) ± TPPB 
(100 nM) or IL-4 (20 ng/ml) ± TPPB (100 nM). Cells were lysed in 
RIPA buffer supplemented with protease inhibitors, and protein 
concentration was determined by BCA assay. Protein samples were 
then prepared in SDS sample buffer and resolved by SDS/
polyacrylamide gel electrophoresis. The bands were transferred to 
PVDF Immobilon-P membranes (Millipore) and blocked in TBS-T 
containing 5% BSA for 1 h at RT. The membranes were probed 
overnight at 4°C with rabbit monoclonal antibodies against inducible 
nitric oxide synthase (iNOS; Cell Signaling Technology, 2982) or 
arginase-1 (Arg-1; Cell Signaling Technology, 93668), followed by 
incubation with horseradish peroxidase (HRP) conjugated with anti-
rabbit secondary antibodies (Cell Signaling Technology, 7074). 
Protein was detected with SuperSignal chemiluminescent substrate 
solution (Pierce), and Western blots were visualized using the LI-COR 
imaging system. The protein loading of each sample was verified by 
stripping the membrane with Restore Western blot stripping buffer, 
blocked again as described above, probed for 1 h at RT with 
HRP-conjugated anti-actin antibody (GeneScript, A00730), and 
visualized the protein expression as described earlier. The Western 
blot was quantified using ImageJ software.

In vitro phagocytosis assay with 
Escherichia coli bioparticles in BMDM

BMDM were treated overnight with LPS (100 ng/ml) with or 
without TPPB (100 nM). This was followed by aspirating the culture 
medium, and 100 μl of pHrodo Green E. coli BioParticles 
(ThermoFisher Scientific, P35366l) suspended in culture media were 
added to BMDM at a concentration of 50 bioparticles per cell. The 
cells were incubated for 3 h at 37°C in a humidified atmosphere of 5% 
CO2, washed twice with sterile PBS, and then incubated with 100 μl of 
diluted trypan blue with PBS (1:2 dilution) to quench the extracellular 
fluorescence. The cells were washed twice with PBS fixed with 100 μl 
of 4% paraformaldehyde (PFA), incubated for 15 min at RT, and 
washed with PBS (100 μl per well for each wash). Following the wash 
step, 50 μl of PBS was added to each well, and fluorescence intensity 
was measured on a SpectraMax fluorescent plate reader. The 
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phagocytosis was calculated as a percentage relative fluorescence 
intensity normalized to cell number.

Myelin isolation and in-cell Western blot 
(ICW) for myelin phagocytosis in BMDM

Myelin isolation
Myelin isolation and labeling with carboxyfluorescein 

succinimidyl ester (CFSE) were performed as previously described 
(Rolfe et al., 2017), and 8-10-week-old C57BL/6 J mice were used to 
isolate myelin. Briefly, the whole brains were dissected from 
euthanized animals and homogenized using a sterile hand-held rotary 
homogenizer in ice-cold 0.32 M sucrose solution. The homogenate 
was carefully overlaid onto ice-cold 0.83 M sucrose solution in a 50-ml 
polypropylene centrifuge tube, forming a sucrose density gradient, 
and centrifuged at 100,000 g at 4°C for 45 min in a pre-cooled 
ultracentrifuge rotor. The resulting white crude myelin interface was 
collected from the interface between two sucrose densities and further 
homogenized in a sterile hand-held rotary homogenizer for 30–60 s 
before subjecting to centrifugation at 100,000 g at 4°C for 45 min in a 
pre-cooled ultracentrifuge rotor. The solid white myelin pellet was 
resuspended in Tris-Cl solution and centrifuged at 100,000 g at 4°C 
for 45 min. Subsequently, the pellet was resuspended in sterile PBS and 
centrifuged at 22,000 g for 10 min at 4°C. The final isolated myelin 
pellet was resuspended in sterile PBS to a final concentration of 
100 mg/ml.

Myelin labeling
For CFSE labeling, 10 mg of myelin was resuspended in 200 μl of 

50 μM CFSE and incubated at RT for 30 min in the dark, followed by 
centrifugation at 14,800 g for 10 min at 4°C. The pellet containing 
labeled myelin was washed in 100 mM glycine in PBS for three times 
and resuspended in sterile PBS.

ICW for myelin phagocytosis in BMDM
BMDM were cultured on a clear bottom 96-well cell culture plate at 

a density of 2.5 × 104 cells per well. The cells were treated with either 
vehicle or TPPB (100 nM) for 3 h, followed by incubation with 1 mg/mL 
of CFSE-labeled myelin for overnight at 37°C. BMDM were washed 
several times with sterile PBS to remove non-engulfed myelin debris. The 
cells were fixed with 4% PFA for 15 min and incubated with 0.1% Triton 
X-100 in PBS for 10 min. The fixed cells were incubated for 2 h at RT with 
β-actin antibody (Cell Signaling Technology, 4967) at 1:1,000 dilution 
and then incubated with VRDye 549 Goat anti-Rabbit IgG Secondary 
Antibody (LI-COR biosciences, 926-54020) for 30 min. The plates were 
scanned on the LI-COR Odyssey imaging system according to the 
manufacturer’s protocol. Myelin phagocytosis by BMDM is represented 
as the total fluorescence intensity of CFSE-myelin and normalized to the 
fluorescence intensity measured for β-actin for each well on ImageJ.

Focal spinal cord demyelination

LPC-induced demyelination
Focal demyelination was induced in 8–12-week-old C57BL/6 J 

mice by injecting 1% LPC (Sigma) in PBS into the ventral funiculus as 
described previously (Gharibani et  al., 2023). Briefly, mice were 

anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) 
injected IP. Mice were placed on a stereotaxic frame, and a small 
midline incision was made below the ears on the back of the animal 
in the caudal direction. The prominent T2 was used as a landmark to 
expose the spinal cord and identify T3-4 intervertebral space. The dura 
was removed with a 32G needle without damaging the tissues. LPC 
(0.5 μl) was microinjected stereotaxically, at a rate of 0.25 μl/min using 
a microinjection syringe pump (UMP3; World Precision Instrument), 
into the right ventral funiculus (depth of 1.3 mm) via a 34G needle 
(Hamilton Co.) connected to a 10 μl Hamilton syringe. To avoid LPC 
efflux, there was a 2-min pause after LPC injection before retracting 
the needle. A single absorbable suture (Vicryl 5-0) was used to close 
the muscle and adipose tissues, following which the skin incision was 
closed with rodent wound clips. Saline (1 ml) and buprenorphine SR 
(1 mg/kg; ZooPharm, LLC) were administered subcutaneously after 
the surgery to prevent dehydration and pain, respectively. Gentamycin 
(2 mg/kg; Henry Schein Animal Health) was given subcutaneously 
every 12 h for 3 days. Treatment with TPPB (50 nmol/kg, three times 
a week) or vehicle started 48 h after the surgery by IP injection.

Spinal cord harvest
The animals were anesthetized and transcardially perfused with 

PBS briefly, followed by ice-cold 4% PFA (Sigma). Spinal cord tissues 
were then harvested and made into a 3-mm piece of lesion site with 
the epicenter (site of injection) in the middle. The tissues were kept in 
4% PFA at 4°C overnight for post-fixation, followed by cryoprotection 
in gradient sucrose (10% then 30% sucrose in PBS at 4°C overnight). 
The tissues were then embedded in O.C.T. and were coronally 
sectioned into 12-μm thickness sections at 0.8 mm from the epicenter 
at both sides (rostrally and caudally) using a cryostat (Thermo 
Shandon). The sections were collected on Superfrost Plus slides (VWR 
International) and stored at −80°C until staining.

Immunofluorescence staining
The spinal cord sections were retrieved by Universal Antigen 

Retrieval Kit (R&D Systems) in a steamer for 15 min at 100°C, 
permeabilized with 1% Triton X-100 in TBS for 5 min, and incubated 
in blocking solution (10% donkey serum, 0.25% Triton X-100 in TBS) 
for 1 h at RT. Primary antibodies were diluted in blocking solution and 
incubated for two overnights at 4°C. In order to study OL 
differentiation, double staining was performed with rabbit anti-Olig2 
(1:100; Millipore) and mouse anti-APC (CC1; 1:100; Sigma). This was 
followed by incubating with appropriate fluorochrome-conjugated 
secondary antibodies (1:500; Thermo Fisher Scientific) for 2 h at RT, 
counterstaining with DAPI (3 μM in PBS; Sigma), and covering with 
antifade mounting media before placing coverslips. Minimum of six 
sections (3 rostral and 3 caudal) were counted manually by 
investigators who were blinded to the study groups. The total numbers 
of positive cells were normalized to the area of the injury using ImageJ.

Results

TPPB induces an anti-inflammatory 
phenotype in BMDM

We have previously demonstrated that the PKC modulator bryo-1 
promotes anti-inflammatory/regenerative activation of macrophages 
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while concurrently suppressing pro-inflammatory markers in myeloid 
cells (Kornberg et al., 2018; Abramson et al., 2021). We also showed 
that the structurally unrelated PKC modulator SUW014, an analog of 
prostratin, exhibits bryo-1-like effects on myeloid cells, suggesting that 
these and related PKC modulators may serve as candidate drugs for 
targeting the innate immune cells in CNS. Here, we  aimed to 
determine the anti-inflammatory potential of TPPB (Figure 1A), a 
cell-permeable high-affinity PKC modulator, on peripheral 
BMDM. BMDM were stimulated with LPS (100 ng/ml) for 24 h with 
or without treatment with TPPB (100 nM), and cytokine secretion in 
the cell culture supernatant was examined by ELISA. Treatment with 
TPPB significantly inhibited the production of the pro-inflammatory 
cytokine IL-12 induced by LPS (Figure 1B) and increased the secretion 
of the anti-inflammatory cytokine IL-10 (Figure 1C). Furthermore, 
TPPB inhibited the expression of iNOS, a key marker of 
pro-inflammatory phenotype, induced by LPS and augmented the 

expression of Arg-1, a marker of anti-inflammatory/regenerative 
phenotype, after IL-4 stimulation (Figure 1D). The purity and specific 
expression of iNOS and Arg-1  in BMDM are demonstrated in 
Supplementary Figures S1, S2. Overall, these data suggest that TPPB 
promotes the activation of macrophages that are involved in the 
regulation of the immune responses to limit inflammation and 
promote tissue repair mechanisms.

TPPB attenuates neurologic deficits in EAE

Our previous study demonstrated that bryo-1 attenuated the 
development and progression of EAE, and thus, bryo-1 represented a 
potential therapeutic agent for MS (Kornberg et al., 2018; Abramson 
et al., 2021). Similarly, having evaluated the anti-inflammatory effect 
of TPPB in vitro, we  used the EAE model to carry out in vivo 

FIGURE 1

TPPB promotes an anti-inflammatory phenotype in BMDM. (A) Chemical structures for TPPB, SUW014 (prostratin analog), and bryo-1. BMDM were 
treated overnight as indicated in the figure with LPS (100  ng/ml), IL-4 (20  ng/ml), and TPPB (100  nM). Secretion of IL-12 (B) and IL-10 (C) into the culture 
media was measured via ELISA; n  =  4 experiments performed in replicates of three. (D) Representative Western blots of iNOS and Arg-1 (left) along with 
the histograms showing their quantification normalized to β-actin; n  =  3 for iNOS and Arg-1. The statistical differences between groups were calculated 
using one-way ANOVA for multiple-group analyses. All error bars depict SEM; p-value of <0.05 was considered significant (*p  <  0.05; **p  <  0.01; 
***p  <  0.001; and ****p  <  0.0001).
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investigations of TBBP to better understand its clinical potential. 
MOG35-55-induced EAE model was used, and drug treatment began 
when the animals demonstrated EAE symptoms (clinical score of at 
least 1). In this experiment, we also tested prostratin analog SUW014, 
which was not done in the previous study (Abramson et al., 2021). 
We discovered that SUW014 (35 nmol/kg) had no effect on attenuating 
EAE symptoms when administered IP 3 days a week, and both vehicle- 
and SUW014-treated mice progressively developed neurologic 
symptoms (Figure  2A). On the other hand, TPPB (50 nmol/kg) 
attenuated the clinical symptoms of EAE and showed lower peak 
clinical score when administered IP 3 days per week at the onset of 
symptoms (Figure 2B). These results suggest that TPPB, like bryo-1, 
provides a beneficial effect on EAE mice and serves as a promising 
candidate for MS treatment.

TPPB suppresses CNS inflammation in EAE

To better understand the beneficial effect of TPPB on EAE, 
we examined the impact of TPPB on myeloid and lymphoid cell 
phenotypes in the CNS at peak EAE using flow cytometry. MOG35-

55-induced EAE mice were treated with vehicle or TPPB (50 nmol/
kg, 3 days per week) at the onset of clinical symptoms, and analyses 
were performed at peak disease on post-immunization day (PID) 
19. Flow cytometry analyses revealed that treatment with TPPB 
suppressed CNS inflammation as demonstrated by a reduction in 
the population of CD11b+CD45+ cells expressing MHC class II in 
the spinal cord of EAE mice compared to the vehicle-treated group 
(Figure  3A). Furthermore, TPPB increased the population of 
CD11b+CD45+CD206+ cells in the spinal cord, suggesting that TPPB 
favors the activation of an anti-inflammatory phenotype (Figure 3B). 
In addition, there was a significant downregulation in the proportion 
of CD4 lymphocytes displaying IL-17 (CD4+IL-17+) in the TPPB-
treated group compared to the vehicle group, which indicates an 
efficient alleviation of inflammation by TPPB (Figure  3C). The 
gating strategy and representative negative control for flow 
cytometry for this experiment are shown in Supplementary Figure S3. 
Overall, these results demonstrate that TPPB has a profound 
protective effect on the immune response in the MOG35-55-induced 
EAE model of MS.

TPPB potentiates the repair mechanism by 
enhancing phagocytosis

Having evaluated the potential of TPPB in the resolution of 
inflammation both in cultured BMDM and EAE animal model, 
we next sought to better understand the impact of TPPB on repair 
mechanisms by investigating its effect on phagocytosis. Phagocytosis 
is a key function of innate immune cells during remyelination by 
removing the deleterious and inhibitory myelin debris for an effective 
OL differentiation to occur. For the phagocytosis assay, BMDM were 
treated with either vehicle or TPPB (100 nM) for 24 h, and then were 
incubated with pHrodo E. coli BioParticles for 3 h followed by the 
measurement of relative fluorescence intensity on a plate reader. 
Compared to the vehicle condition, TPPB-treated group showed a 
significantly higher percentage of relative fluorescence intensity, 
suggesting increased phagocytosis when BMDM were treated with 
TPPB (Figure 4A). In addition, we performed a phagocytosis assay 
with CFSE-tagged myelin, where the BMDM were cultured on clear 
bottom 96-well plates and treated with either vehicle or TPPB 
(100 nM), followed by overnight incubation with CFSE-tagged myelin. 
ICW was performed to visualize the phagocytosed myelin, and β-actin 
staining was used to normalize the data (Figure 4B). Treatment of 
BMDM with TPPB significantly increased the phagocytosis of myelin 
(Figure 4C). The results from this experiment confirm that, in addition 
to the significant anti-inflammatory effect, TPPB also potentiates 
repair functions by promoting phagocytosis in innate immune cells.

TPPB increases OL differentiation following 
focal demyelination

To evaluate the remyelination potential of TPPB in MS, we used 
the LPC-induced focal demyelination model. Focal demyelination was 
induced in the ventral spinal cord of the mice by stereotaxic injection 
of LPC. Treatment with TPPB (50 nmol/kg, 3 days/week) or vehicle 
was initiated 48 h post-LPC injection for 2 weeks. Representative 
images of lesions from 15 days post-lesion (dpl) in the TPPB- and 
vehicle-treated mice stained for Olig2+, CC1+, and DAPI are shown in 
Figure 5A. The number of total OL-lineage cells (Olig2+) did not 
change with TPPB treatment (Figure 5B). However, the number of the 

FIGURE 2

TPPB attenuates neurologic deficits in MOG35-55-induced EAE mice. Mice were treated with SUW014 (A) and TPPB (B) by IP injection three times a week 
at the onset of EAE symptoms. TBBP significantly ameliorated the neurologic symptoms of EAE, but SUW014 did not improve the symptoms. Data 
represent mean  ±  SEM; n  =  5 for vehicle and SUW014 (A) and n  =  9 and 11 for vehicle and TPPB (B), respectively. Statistical significance was determined 
by a two-tailed Student’s t-test for EAE clinical score; p-value of <0.05 was considered significant (*p  <  0.05 and **p  <  0.01).
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differentiating OL (Olig2+CC1+) within the lesions showed a trend 
towards increased differentiation in the TPPB-treated group when 
compared to the control group at 15 dpl (Figure 5C). The number of 

differentiating OL (Olig2+CC1+) represented as a percentage of total 
Olig2+ also showed a similar trend of increased OL differentiation in 
the TPPB-treated group (Figure 5D). Similar to bryo-1, this result 

FIGURE 3

TPPB suppresses CNS inflammation in EAE mice. MOG35-55-induced EAE mice were treated with TBBP (50  nmol/kg, 3  days/week) or vehicle when 
neurologic symptoms first appeared, and they were sacrificed on PID 19. (A) Flow cytometry dot plots indicate the infiltrating CD11b+CD45+ cells 
examined for expression of MHC II and gated for MHC IIhi cells in the spinal cords of the EAE mice (left). The bar graph (right) shows the decreased 
percentage of these cells in the TPPB-treated group as compared to the vehicle control group. (B) Flow cytometry dot plots show 
CD11b+CD45+CD206+ cells as percentage of CD11b+CD45+ cells in the spinal cord (left), and the bar graph (right) demonstrates the increase in the 
percentage of these cells in EAE mice treated with TPPB. (C) Flow cytometry dot plots show the expression of IL-17+ cells as percentage of total CD4+ 
T cells in the spinal cord of EAE animals (left), with the bar graph (right) indicating significant reduction in IL-17+ cells as a percentage of CD4+ T cells in 
the TPPB-treated group. n =  4 for flow cytometry. All error bars represent SEM. Statistical significance was determined by a two-tailed Student’s t-test 
for flow cytometry data; p-value of <0.05 was considered significant (*p <  0.05 and ***p <  0.001).
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suggests TPPB’s potential enhancement of OL differentiation, which 
is critical during remyelination (Gharibani et al., 2023).

Discussion

In our previous study, we  demonstrated that our screening 
platform provided a rapid method for identifying PKC modulators for 
treating neuroinflammatory and neurodegenerative disorders 
(Abramson et al., 2021). That study showed that the prostratin analog 
SUW014 has a similar anti-inflammatory effect on cultured 
macrophages as bryo-1, and in this study, we have also identified 
TPPB as another potential PKC modulating compound with bryo-1-
like properties. Our initial study primarily focused on bryo-1 and its 
analogs, but it did not further examine the in vivo effects of SUW014. 
Thus, to advance TPPB and/or SUW014 forward in our drug assay 
progression, we  investigated the in vivo activity of these agents. 
We found that SUW014 interestingly did not ameliorate the neurologic 
symptoms of EAE, while TPPB was able to improve EAE phenotype 

like bryo-1 and bryologs. We recently established that bryo-1 is able 
to activate phagocytosis in macrophages and microglia (which is 
critical during remyelination as myelin debris inhibits myelin 
formation) and enhance remyelination in LPC-induced demyelination 
model (Gharibani et al., 2023). Here, we also demonstrated that TPPB 
stimulates phagocytosis by macrophages and increases OL 
differentiation in focal LPC-induced demyelination animal model.

The results from this current study indicate that while the in vitro 
immunologic assays are a useful initial screening method to identify 
candidate compounds, in vitro assays are not sufficient. As is found in 
many preclinical studies, in vitro activities do not always correlate with 
in vivo effects – in this case, a compound’s ability to mitigate 
neuroinflammation and promote remyelination. SUW014 demonstrates 
a greater potency than bryo-1  in triggering an anti-inflammatory 
response from in vitro macrophages, but it failed to alleviate EAE in 
vivo. While beyond the scope of this study but prompted by its findings, 
it would be important to determine why SUW014 was not able to treat 
the neurologic symptoms of EAE given that it had such promising in 
vitro activity. It is possible that SUW014 has poor bioavailability or was 

FIGURE 4

TPPB promotes phagocytosis in BMDM in vitro. (A) BMDM cells were cultured in a 96-well plate and treated with either vehicle or TPPB (100  nM) and 
then incubated with E. coli bioparticles for 3  h. Following this, the fluorescence intensity of phagocytosed E. coli particles was measured. The bar graph 
representing the percentage relative fluorescence intensity shows significantly increased phagocytic activity of BMDM against E. coli particles when 
treated with TPPB (100  nM) measured on a plate reader. All error bars depict SEM (n  =  3). (B) Representative image of an ICW with representative 40x 
magnified images of BMDM phagocytosing myelin. BMDM cells were cultured in a 96-well plate and treated with either vehicle or TPPB (100  nM) 
followed by overnight incubation with CFSE-tagged myelin. β-actin expression was used as the control. (C) Calculated total fluorescence of ICW data 
quantified on ImageJ shows a significant increase in phagocytosis of CFSE-tagged myelin in the TPPB-treated group compared to the vehicle group. 
Quantification (mean  ±  SEM) from n  =  3 and statistical significance were determined by a two-tailed Student’s t-test; p-value of <0.05 was considered 
significant (**p  <  0.01 and ***p  <  0.001).
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not absorbed adequately when administered IP. It is also feasible that 
SUW014 did not reach a therapeutic concentration in the CNS or that 
the dosing regimen of three times a week is insufficient. Loss through 
metabolism is another potential contributing factor as SUW014 has an 
esterase-labile ester functionality while TPPB has more stable amide 
bonds. Therefore, in vivo ester loss would eliminate PKC binding. It is 
also possible that off-target associations by SUW014 might contribute 
to the observed in vitro versus in vivo differences.

The discovery that TPPB and bryo-1 have similar in vitro and in 
vivo activities has several important implications. Our results 
demonstrate that TPPB, which is a specific and potent PKC modulator 
like bryo-1, has immunomodulatory effects in an EAE model, enhances 
phagocytosis, and increases OL differentiation. Identification of TBBP 
also indicates that the anti-inflammatory and regenerative properties of 
innate immune cells depend on PKC activity and not off-target effects 
of bryo-1, as it is unlikely that both bryo-1 and TPPB have the same 
off-target activities to provide these beneficial effects on innate immune 
cells. Additionally, our previous study established that modification of 
bryo-1 so that it can no longer bind to PKC (SUW275) prevents anti-
inflammatory effects in myeloid cells and does not ameliorate EAE 
symptoms (Abramson et al., 2021). Finally, having structurally different 
chemicals with similar functional effects on PKC and in animal models 
of MS allows for diversification of candidates, which increases the 

probability of identifying the best candidate to advance forward in drug 
development for neuroinflammatory and neurodegenerative disorders.

PKC isoforms belongs to one of three classes, which are conventional 
(α, β, and γ), novel (δ, ε, η, and θ), and atypical (ζ and ι/λ). Conventional 
and novel PKCs have a C1 domain that binds to bryo-1, TPPB, and 
endogenous diacylglycerol (DAG), but atypical PKCs do not (Das and 
Rahman, 2014; Katti et  al., 2022). Currently, it is unknown which 
isoform(s) is involved in anti-inflammatory and regenerative effects in 
microglia and CNS-associated macrophages. It is possible that TPPB 
intracellularly could activate more specifically the isoform(s) critical for 
immunomodulation of CNS innate immune cells, which would decrease 
the side effects that are typically observed with bryo-1, such as myalgia. 
The identification of PKC isoform(s) involved in this process and the 
specificity of TPPB and bryo-1 are under ongoing investigation.

Overall, we  have discovered that TPPB, while significantly 
different in structure from bryo-1, has similar beneficial activities to 
bryo-1. This finding is consistent with their sharing common chemical 
properties that allow binding to PKC (Wender et al., 1986; Loy et al., 
2015). TPPB serves as a new structural lead in an armamentarium of 
PKC-modulating drugs that could prove effective in the treatment of 
neuroinflammatory and neurodegenerative disorders for which there 
is a lack of therapeutic options. This study shows for the first time that 
the EAE activities of bryo-1 and its analogs are also exhibited in vivo 

FIGURE 5

TPPB shows a trend towards enhancing OL differentiation following focal demyelination. (A) Representative images of LPC-induced demyelination 
lesions from 15 dpl in vehicle- and TPPB-treated mice stained for the shown markers. (B) Quantification of total OL-lineage cells (Olig2+) shows no 
significant difference in the total number of Olig2+ cells when treated with TPPB. (C) There is a trend towards increased differentiating OL (Olig2+CC1+) 
within the lesions at 15 dpl in TPPB-treated mice. (D) The bar graph shows the number of differentiating OL (Olig2+CC1+) represented as a percentage 
of Olig2+ cells, which also demonstrates similar trend as the total number of differentiating OL (B). Quantification (mean  ±  SEM) from n  =  4 mice for 
vehicle and n  =  3 mice for the TPPB group and statistical significance were determined by a two-tailed Student’s t-test; p-value of <0.05 was 
considered significant.
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by a structurally distinct molecular class, thus creating another 
therapeutic options for targeting CNS innate immune cells to modulate 
neuroinflammation and to promote CNS regeneration and repair.
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