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Genetic tools for studying 
cochlear inhibition
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Efferent feedback to the mammalian cochlea includes cholinergic medial 
olivocochlear neurons (MOCs) that release ACh to hyperpolarize and shunt 
the voltage change that drives electromotility of outer hair cells (OHCs). Via 
brainstem connectivity, MOCs are activated by sound in a frequency- and 
intensity-dependent manner, thereby reducing the amplification of cochlear 
vibration provided by OHC electromotility. Among other roles, this efferent 
feedback protects the cochlea from acoustic trauma. Lesion studies, as well as a 
variety of genetic mouse models, support the hypothesis of efferent protection 
from acoustic trauma. Genetic knockout and gain-of-function knockin of 
the unique α9α10-containing nicotinic acetylcholine receptor (nAChR) in hair 
cells show that acoustic protection correlates with the efficacy of cholinergic 
inhibition of OHCs. This protective effect was replicated by viral transduction of 
the gain-of-function α9L9’T nAChR into α9-knockout mice. Continued progress 
with “efferent gene therapy” will require a reliable method for visualizing nAChR 
expression in cochlear hair cells. To that end, mice expressing HA-tagged α9 
or α10 nAChRs were generated using CRISPR technology. This progress will 
facilitate continued study of the hair cell nAChR as a therapeutic target to 
prevent hearing loss and potentially to ameliorate associated pathologies such 
as hyperacusis.
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Introduction

Molecular therapy for inner ear disease is gaining traction through gene replacement for 
monogenic deafness, as well as small molecule therapies to ameliorate metabolic or ototoxic 
damage (Lustig and Akil, 2019; Ma et al., 2019). Confounding any therapeutic approach is the 
continued susceptibility to acoustic overexposure, which can further weaken hair cells and 
neuronal contacts. Thus, an intriguing strategy is the complementary enhancement of 
olivocochlear inhibition to minimize acoustic damage. Acoustic protection via cholinergic 
inhibition of cochlear outer hair cells has been well established by lesion experiments and 
genetic manipulation in animals but remains to be determined in humans where such methods 
are not possible (Fuente, 2015). Two strategies have been proposed based on the unique 
nicotinic AChR (nAChR) of the hair cell: small molecules that can serve as positive allosteric 
modulators (Elgoyhen et al., 2009) and genetic alteration of the nicotinic AChR of the hair cell 
(Taranda et al., 2009; Boero et al., 2018, 2020). This mini-review will describe recent advances 
to facilitate the study of cochlear nAChRs. The ultimate therapeutic goal is not “gene rescue” 
in the usual sense, but rather the addition of a gain-of-function receptor variant to enhance 
the native neuronal mechanism for stronger acoustic protection. An appealing aspect of this 
approach is that olivocochlear efferent neurons are themselves driven by sound in a 
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frequency- and intensity-dependent manner so that the therapeutic 
effect will be matched to the nature of the threat.

The inner ear is innervated by afferent and efferent neurons that 
comprise a negative feedback loop (Spoendlin, 1985). In the 
mammalian cochlea, myelinated type I  afferents are excited by 
glutamate release from inner hair cells (IHCs) to provide all aspects of 
acoustic sensitivity to the brain (Meyer and Moser, 2010). Sparser, 
unmyelinated, acoustically insensitive type II afferents ramify among 
outer hair cells. This was described by Brown (1987) and has been 
reviewed in Zhang and Coate (2017). Medial olivocochlear efferents 
(MOCs), driven by afferent connections through the brainstem, 
release acetylcholine (ACh) to inhibit outer hair cells (OHCs) 
(Guinan, 1996), while lateral olivocochlear efferents (LOCs) contact 
type I afferent dendrites, producing a mix of excitation and inhibition 
(Reijntjes and Pyott, 2016). Inhibition of OHCs by MOCs reduces 
electromechanical amplification of cochlear vibration, causing 
maximal loss of sensitivity for IHCs to type I  cochlear afferent 
signaling at the characteristic frequency. This mechanism has been 
reviewed in Guinan (2010) and Fuchs and Lauer (2019). The 
frequency- and intensity-dependent acoustic excitation of MOC 
efferents (Robertson and Gummer, 1985; Liberman and Brown, 1986) 
thus provides cochlear gain control that is tuned to the acoustic 
environment. MOC inhibition shifts the dynamic range of afferents 
and may improve the detection of signals in noise, temporal resolution, 
and aspects of selective attention, reviewed in Guinan (2010) and 
Fuchs and Lauer (2019). While definitive evidence for these roles in 
signal processing is limited, there is agreement that efferent feedback 
can protect the inner ear from acoustic trauma. This has been shown 
by lesion studies reviewed in Fuente (2015) and electrical stimulation 
of MOC efferents (Rajan and Johnstone, 1988; Rajan, 2001).

Genetically altered mice for studying 
efferent inhibition

The discovery of the genes encoding the subunits of the hair cell 
nAChR, α9, and α10 (Elgoyhen et  al., 1994, 2001) led to the 
development of mouse models in which these subunits could 
be knocked out, demonstrating their essential roles (Vetter et al., 
2007) and making these animals more prone to acoustic trauma 
(Lauer and May, 2011; Maison et al., 2013). Equally informative was 
the subsequent production of point mutation, gain-of-function hair 
cell nAChR mice (α9L9’T), in which efferent inhibition was greatly 
enhanced, and noise-induced threshold shifts in ABR and DPOAE 
were substantially reduced (Taranda et al., 2009). Complementary 
loss and gain-of-function mouse models have since been used to 
show that after identical acoustic overexposure, threshold shifts 
(ABR and DPOAE) are greater in the α9-knockout mice than in 
wildtype littermates, while the nAChR gain-of-function mice 
suffered no hearing loss due to these measures (Figure 1; Boero et al., 
2018). These studies revealed a similar outcome for measures of 
noise-induced afferent denervation of IHCs, “synaptopathy.” The 
amplitude of ABR wave 1 (a measure of the number of afferents 
responding to a saturating loud sound) was reduced after noise 
exposure in wildtype mice and α9 knockouts but unchanged 
compared to pre-exposure magnitude in the α9L9’T gain-of-
function transgenic mice.

Commensurate with the changes in ABR wave 1 amplitude, 
wildtype, and α9-knockout mice lost IHC synapses (paired CtBP2 and 
GluA2 immunolabel) 7 days after noise damage. Remarkably, α9 gain-
of-function IHCs had a small but significant increase in the number of 
IHC ribbon synapses in all cochlear regions compared to controls 
(average ABR wave 1 amplitude also was larger, but not 
statistically significant).

A reduction of age-related hearing loss (presbycusis) was 
demonstrated by comparison of ABR and DPOAE thresholds in mice 
6 and 12 months old (Boero et al., 2020). These were elevated 15 dB on 
average in wildtype mice but unchanged in the α9 gain-of-function 
mice. Similarly, ABR wave 1 amplitude diminished from 6 to 
12 months in wildtype mice but was unchanged in α9 transgenic gain-
of-function mice. The α9 gain-of-function mice also had more IHC 
ribbon synapses at 12 months of age than did the wildtype littermates. 
Thus, enhanced efferent feedback mitigated both OHC- and 
IHC-specific pathologies.

nAChR viral transduction in the mouse 
cochlea

The correlation between α9 nAChR function and acoustic 
protection in the genetically modified mice supports the hair cell 
nAChR as a target to prevent hearing loss in humans. First, however, 
as for any gene therapy, a number of barriers must be overcome to 
establish feasibility, reproducibility, and safety. How will the gene 
product be  delivered? Is it expressed at significant levels and 
localized appropriately? How long does it persist? To begin to 
address these questions, a series of experiments were carried out 
using viral carriers to express α9 nAChR subunits in the mouse 
cochlea. The first foray introduced α9L9’T to “rescue” α9-knockout 
mice (Zhang et al., 2023), with the aim of replicating the marked 
differences in acoustic protection observed between knockout and 
knockin mice (Figure 1).

The modified AAV2.7 m8 (Dalkara et  al., 2013) was shown 
previously to drive widespread expression of green fluorescent protein 
(GFP) in hair cells and supporting cells of the mouse cochlea (Isgrig 
et al., 2019). Thus, this virus was constructed commercially to carry 
the mouse α9L9’T nAChR into the inner ear of homozygous 
α9-knockout mice (C57BL/6 J genetic background) at postnatal day 
0–2 (Zhang et al., 2023). A posterior semi-circular canal approach was 
used to inject 1–2 μL of virus at ~1013 viral copies per ml. Two to three 
weeks later, the virally produced α9-containing nAChRs were 
visualized by labeling with Cy3-conjugated RgIA5727, a modified 
peptide isolated from cone snail venom that binds selectively to 
α9-containing nAChRs of hair cells (Fisher et al., 2021). Cy3-RgIA5727 
puncta were found on the synaptic pole of the majority of OHCs 
examined at 3 weeks post-injection.

Cohorts of control and experimental mice had hearing tested at 
3 weeks of age (ABR thresholds), then exposed to loud sound (2 h 
@90 dB, 2–20 kHz), and re-tested 1 and 14 days later (clicks and pure 
tones at 8, 12, 16, 24, and 32 kHz). α9L9’T-injected mice were 
compared to littermates injected with a virus expressing green 
fluorescent protein (GFP) and to uninjected littermates (Figure 2). The 
acoustic trauma protocol caused equivalent upward shifts for click and 
pure-tone thresholds (hearing loss) 1 day later in uninjected or 
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GFP-injected mice (22 dB shift averaged across all tones and click), 
while α9L9’T-injected mice experienced approximately half that 
average shift (12 dB), significant only for the higher frequencies 
(16, 24, and 32 kHz). In all cohorts, thresholds returned to normal 
14 days after trauma.

In addition to measures of threshold that reflect the function of 
OHCs, IHCs to afferent signaling were examined by measuring the 
amplitude of wave 1 of the ABR evoked by saturating, loud clicks and 
tones. All cohorts experienced a 50% drop in wave 1 amplitude 1 day 
after acoustic trauma; 14 days later, wave 1 showed no recovery in 
uninjected and GFP-injected mice, but statistically complete recovery 
in α9L9’T-injected mice. Thus, both OHC damage (threshold shift) 
and afferent denervation (synaptopathy) in α9-knockout mice were 
protected to some degree by viral expression of the gain-of-function 
α9L9’T nAChR.

Visualizing nAChRs in hair cells with 
fluorophore-conjugated conotoxin 
peptide RgIA

Immunolocalization of nAChRs generally, and in the cochlea 
particularly, has been hampered by the difficulty of producing 
robust immunolabeling of the receptor. To circumvent this 
limitation, viral expression of nAChRs was visualized in α9-null 
mice using a fluorescently tagged biotoxin. Venom from 
carnivorous cone snails contains a host of biologically active 
compounds (Olivera et al., 1991) among them a highly selective 
and potent α9 antagonist, RgIA (Ellison et al., 2006). This has been 

chemically modified to conjugate with a Cy3 fluorophore. 
Cy3-RgIA5727 was shown to retain its blocking ability and to label 
cochlear hair cells at the location of efferent synapses on older 
outer or younger inner hair cells (Fisher et al., 2021). This labeling 
is essentially irreversible, making this a promising tool for 
identifying α9-containing nAChRs in the wide variety of tissues 
where they have been proposed to act (Liu et al., 2019; Hone and 
McIntosh, 2023). One limitation however is that Cy3-RgIA5727 
only binds in unfixed tissue. In addition, the Cy3 moiety makes the 
compound sticky so that densely packed tissues tend to accumulate 
the label and resist washout (e.g., Kolliker’s organ region of 
immature cochleas) (Fisher et al., 2021).

Visualizing HA-tagged nAChRs in 
CRISPRed mice

While Cy3-RgIA5727 was a boon for studying “rescued” 
α9-null mice and could be useful to localize α9 nAChRs in other 
tissues, the ultimate goal is to carry out efferent gene therapy on 
wild-type mice. As Cy3-RgIA5727 will label nAChRs whether 
native or of viral origin, another tool is needed. Thus, the 
CRISPR-Cas9 technique was used to produce mice with an HA tag 
on either the α9 or the α10 subunit of the hair cell nAChR (Vyas 
et  al., 2020). These α9HA, or α10HA mice had no discernible 
change in hearing (normal ABR thresholds and waveforms), no 
obvious vestibular deficits (e.g., circling) and growth and breeding 
appeared normal. When fixed and processed cochlear tissues of 
adult mice were examined with fluorescence microscopy, HA 

FIGURE 1

ABR measurements before and after acoustic trauma (AT). (A) Representative ABR traces from WT, Chrna9 KO, and Chrna9L9T KI mice at P21 before 
trauma (Pre-AT, black trace), 1  day after AT (AT1d, dark gray trace), and AT7d (light gray trace). The arrow indicates peak 1 amplitude. Calibration: 
vertical, 0.4  μV; horizontal, 1  ms. (B) ABR thresholds in WT (n  =  12), Chrna9 KO (n  =  14), and Chrna9L9T KI (n  =  15) mice at P21 before AT, 1  day after AT, 
and 7  days after AT. Median and interquartile ranges are shown, and the comparisons were made using the Friedman tests followed by a post-hoc test. 
Dark gray asterisks represent the statistical significance of AT +1d values compared with Pre-AT, and light gray asterisks represent AT +7d values 
compared with Pre-AT controls. *p  <  0.05; **p  <  0.01; ***p  <  0.001 (Boero et al., 2018; Figures 2A,B; https://www.jneurosci.org/content/38/34/7440).
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immunolabel was aligned with SV2-immunolabeled efferent 
terminals of outer hair cells throughout the cochleas of both α9HA 
and α10HA mice. Labeling was equivalent in hetero- and 
homozygotes. In early postnatal mice (P7-P8) when inner hair cells 
have inhibitory cholinergic synapses, HA immunolabel of inner 
hair cells was juxtaposed to ChAT-immunolabeled efferent 
processes, though not at older ages (P20) when the efferent 
synapses have retracted. In addition to the dense synaptic location 
of the HA immunolabel, lower level, diffuse cytoplasmic 
immunoreactivity occurred in young inner hair cells and near the 
cuticular plate in older outer hair cells. Type II vestibular hair cells 
also express α9-containing nAChRs (Yu et al., 2020). An ongoing 
study is examining the distribution of HA-tagged α9-containing 
nAChRs in these CRISPRed mouse lines, as well as following viral 
injection of HA-tagged α9L9’T in wild-type mice.

The 9 amino acid HA peptide and an 11 or 12 amino acid 
spacer were attached to the carboxy tail of either subunit (after 
transmembrane region 4). This location is predicted to 
be extracellular, so potentially could interact with other segments, 
particularly the longer extracellular ligand-binding amino-
terminal. To examine the possibility of functional changes, tight-
seal whole-cell recordings were made from inner and outer hair 
cells from apical segments of cochleas from P9 to P11 aged mice 

(efferent innervation is present on both populations of hair cells at 
this time and place). Heterozygous and homozygous α9HA and 
α10HA mice were studied. Electrical stimulation evoked synaptic 
release while hair cell membrane potential was altered to determine 
the ionic constituents of the postsynaptic current. In addition, the 
probability of synaptic release was measured during these long 
1-Hz shock trains (that do not cause facilitation) (Ballestero et al., 
2011). In all cases, postsynaptic currents included calcium-
dependent potassium current as well as cation current through the 
nAChR, replicating the well-established inhibitory mechanism. 
Synaptic transmission to inner and outer hair cells of heterozygous 
α9HA and α10HA mice was quantitatively indistinguishable from 
that of wild type. However, in homozygous mice (both α9HA and 
α10HA), the probability of release was significantly lower onto 
outer hair cells than in heterozygotes (and wildtype). Perhaps 
related to this, efferent synaptic terminals onto the outer hair cells 
of homozygous mice (α9HA and α10HA) were significantly smaller 
(although equal in number) than those onto the outer hair cells of 
heterozygous mice (Supplementary material in Vyas et al., 2020). 
It is not certain how presynaptic release efficacy could be altered 
by HA-tagged postsynaptic receptors, although retrograde 
facilitation has been observed at these synapses (Kong et al., 2013), 
perhaps pointing to a change in nAChR binding or gating 

FIGURE 2

Effect of noise exposure on (A) uninjected C67BL/6 J mice, (B) mice injected with virus-bearing GFP, and (C) mice injected with the α9L9’T-bearing 
virus ABR thresholds collected prior to 1 and 14 days after acoustic trauma for all cohorts. The amplitude of wave 1 for saturating loud click and tone 
ABRs for (D) uninjected, (E) GFP-injected, and (F) α9L9’T-injected mice (same cohorts as in upper panels). Darker asterisks denote pre- to 1-day post. 
Lighter asterisks denote pre- to 14 days post. No significant differences between pre- and 14-day post in α9L9’T-injected mice were observed (F). 
Statistical significance from multiple unpaired t-tests with Welch correction, *p < 0.05, **p < 0.01, ***p < 0.001 [Reprinted with permission from Zhang 
et al., 2023].
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efficiency. Whatever the cause, future functional studies should 
employ heterozygous HA mice that have normal synaptic 
transmission and robust synaptic immunolabeling. The more 
diffuse cytoplasmic HA labeling also recommends caution if 
seeking HA-nAChR expression in other tissues. The preferential 
synaptic localization of the HA label in hair cells and its 
developmental regulation confirm the biological reality of this 
expression in cochlear hair cells. Some confirmatory evidence 
should be sought for other, novel expression patterns.

Discussion

Substantial progress has been made in detailing the 
morphology, neurochemistry, and cellular physiology of hair cell 
inhibition. The efferent projection to the inner ear was identified 
by Rasmussen in the early 20th century (Rasmussen, 1946). Details 
of that innervation, including the identity of acetylcholine as a 
principal neurotransmitter, have been well documented and 
reviewed in Klinke and Galley (1974). Galambos showed that 
electrical stimulation of the efferent axons reduced the amplitude 
of the acoustically evoked compound action potential (Galambos, 
1956), while Wiederhold and Kiang confirmed this effect at the 
level of single cochlear afferents (Wiederhold and Kiang, 1970). 
Intracellular recordings by Russell in fish (Flock and Russell, 1973, 
1976) and frogs (Ashmore and Russell, 1982) provided the first 
direct evidence for hair cell hyperpolarization by efferent input. 
This was elaborated by studies in the turtle inner ear that detailed 
effects on acoustic sensitivity and tuning (Art et al., 1982, 1985; Art 
et al., 1984; Art and Fettiplace, 1984). Voltage-clamp recording 
from single isolated chicken hair cells revealed a two-channel 
mechanism for cholinergic inhibition (Fuchs and Murrow, 
1992a,b): calcium influx through a ligand-gated nAChR that drives 
a far larger increase in calcium-dependent potassium current. This 
two-channel mechanism of cholinergic inhibition appears to 
be  universal for vertebrate hair cells whether in the cochlea, 
vestibule, or lateral line. Also universal, efferent terminals are 
aligned with a near-membrane postsynaptic cistern (Smith and 
Sjostrand, 1961; Saito, 1980; Fuchs et al., 2014) that may be integral 
to postsynaptic calcium homeostasis (Lioudyno et al., 2004; Fuchs, 
2014; Zachary et al., 2018; Moglie et al., 2021).

The two-channel hypothesis was cemented by the discovery of 
novel nicotinic receptor subunits, α9 and α10 that comprise the hair cell 
nAChR (Elgoyhen et al., 1994, 2001). These are distantly related to the 
muscle and neuronal alpha subunits but differ pharmacologically. In 
particular, nicotine inhibits, rather than activates, and the most potent 
small molecule antagonist is strychnine (Elgoyhen et  al., 2009). 
Knockout and gain-of-function knock-in mice have since demonstrated 
a strong correlation between the function of the hair cell nAChR, and 
protection from acoustic trauma (Taranda et al., 2009; Boero et al., 2018, 
2020). Thus, the ability of efferent feedback to protect from acoustic 
trauma is well established in animal models, although the significance 
of this effect for humans remains unsettled. Standard techniques for 
quantifying efferent feedback, contralateral sound to suppress DPOAEs, 
show smaller effects in human trials than in animal experiments (Collet 
et al., 1990; Chambers et al., 2012), consistent with less dense efferent 
innervation in the human cochlea (Liberman and Liberman, 2019). 
Nonetheless, the experimental evidence from animals is sufficiently 

strong to consider the hair cell nAChR as a therapeutic target for the 
prevention of noise-induced hearing loss, particularly for those at risk 
of early-onset age-related hearing loss in the military, workplace, or 
other loud sound environments. Indeed, enhanced efferent function 
and expanded innervation driven by the gain-of-function nAChR 
(Murthy et al., 2009; Boero et al., 2018) could have an outsized impact 
in humans by increasing the modest efferent innervation that declines 
with age (Liberman and Liberman, 2019). Viral transfection in the 
mouse cochlea can persist for at least 1 year (Bankoti et  al., 2021). 
Ongoing gene therapy trials (e.g., otoferlin; Qi et  al., 2024) will 
determine this for humans.

An unresolved issue concerns the complex development of 
efferent innervation of the cochlea. In the first two postnatal 
weeks in rodents, IHCs express α9-containing nAChRs and are 
inhibited by ACh release from efferent neurons (Glowatzki and 
Fuchs, 2000; Simmons, 2002). This transient innervation of IHCs 
is thought to be  important in modulating ribbon synapse 
maturation and spontaneous afferent firing that shapes central 
connectivity, reviewed in Rutherford et  al. (2021), Frank and 
Goodrich (2018), and Di Guilmi et al. (2019); 2 weeks postnatally, 
those IHCs synapses are lost. In contrast, efferent contacts on 
OHCs begin to function late in the first postnatal week, beginning 
in the cochlear base and extending to the apex in the second 
postnatal week (Rohmann et al., 2015), consistent with the basal-
to-apical maturation of OHC function (Beurg et al., 2018; Jeng 
et al., 2020). Thus, both IHCs and OHCs of genetically modified 
mice could be impacted by altered expression of α9-containing 
nAChRs. However, it takes 2–3 weeks post-injection for maximal 
viral expression (Isgrig et al., 2019; Zhang et al., 2023), so early 
postnatal injection of the gain-of-function α9L9’T may not affect 
IHC development. Nonetheless, improving the efficacy of viral 
delivery in adult animals (Zhu et  al., 2021) will eliminate 
development as a confounding factor and will expand future 
clinical applications.

A second consideration is whether viral transduction will 
be effective after synaptic maturation is complete. Viral injections 
in early postnatal mice may benefit by integration of introduced 
α9 subunits into still-developing synapses. It is conceivable that 
integration will be  suppressed in stabilized adult synapses. 
However, adult nAChRs do turn over. At the mature 
neuromuscular junction, bungarotoxin-labeled nAChRs have a 
half-life of 6–8 days, which is considerably shorter (~2 days) in 
developing or denervated muscle (Berg and Hall, 1975; Pumplin 
and Fambrough, 1982; Salpeter and Harris, 1983). This motivates 
continued study of the pattern and lifetime of viral expression in 
adult cochleas.

Viral constructs utilized to date employ a strong generic 
promoter. While useful for the present experiments, such robust 
expression may not be the best therapeutic strategy. A previous 
study on the neuronal gain-of-function nAChRs described 
excitotoxicity due to increased calcium loads (Drenan and Lester, 
2012). While this does not happen to hair cells in the knockin 
mouse lines where expression is under native promoter control, 
it is conceivable that expression under the strong viral promoter 
could be  disadvantageous. Even in the α9L9’T-knockin mice, 
there were some unexpected changes. Efferent terminals on 
OHCs of the α9L9’T mice had reduced quantum content 
(compensated by increased facilitation ratios) compared to 
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wild-type synapses (Wedemeyer et  al., 2018). This could be  a 
beneficial homeostatic adaptation, but other viral constructs, and 
more extensive studies, including discriminative hearing tasks, 
are needed to further the ultimate goal of therapeutic translation. 
For example, OHC-targeted gene therapy with cell-specific 
promoters could limit off-target effects or overexpression. 
Additional promise is offered by epigenetic modulation to 
increase viral transduction (Layman et  al., 2015; Chen et  al., 
2016; Deng et al., 2019).
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