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Peripheral nerve injuries lead to significant morbidity and adversely affect 
quality of life. The peripheral nervous system harbors the unique trait of 
autonomous regeneration; however, achieving successful regeneration 
remains uncertain. Research continues to augment and expedite successful 
peripheral nerve recovery, offering promising strategies for promoting 
peripheral nerve regeneration (PNR). These include leveraging extracellular 
vesicle (EV) communication and harnessing cellular activation through electrical 
and mechanical stimulation. Small extracellular vesicles (sEVs), 30–150  nm in 
diameter, play a pivotal role in regulating intercellular communication within 
the regenerative cascade, specifically among nerve cells, Schwann cells, 
macrophages, and fibroblasts. Furthermore, the utilization of exogenous 
stimuli, including electrical stimulation (ES), ultrasound stimulation (US), and 
extracorporeal shock wave therapy (ESWT), offers remarkable advantages in 
accelerating and augmenting PNR. Moreover, the application of mechanical 
and electrical stimuli can potentially affect the biogenesis and secretion of sEVs, 
consequently leading to potential improvements in PNR. In this review article, 
we  comprehensively delve into the intricacies of cell-to-cell communication 
facilitated by sEVs and the key regulatory signaling pathways governing PNR. 
Additionally, we  investigated the broad-ranging impacts of ES, US, and ESWT 
on PNR.
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1 Introduction

Peripheral nerve injury (PNI) is a prevalent clinical concern, presenting in approximately 
5% of patients with trauma associated with nerve root and brachial plexus injuries (Noble 
et al., 1998; Robinson, 2022). Although the peripheral nervous system (PNS) is capable of 
autonomous healing through peripheral nerve regeneration (PNR), the likelihood of complete 
nerve regrowth following an injury depends, in part, on the injury grade and gap size between 
the proximal and distal ends of the injured nerve (Lundborg et al., 1982; Menorca et al., 2013). 
Unfortunately, the achievement of successful nerve regeneration and subsequent functional 
recovery are not always assured. This inherent uncertainty underscores the pressing need to 
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advance current therapeutic approaches aiming to accelerate and 
augment PNR. To this end, a meticulous exploration of the 
participating intercellular pathways is hypothesized to identify the 
pivotal molecular and cellular mechanisms that can potentially 
enhance regeneration.

PNR constitutes a multistep process driven by a cascade of 
intercellular communications that occurs in three stages, namely, 
Wallerian degeneration, axonal elongation, and nerve remyelination. 
The process of Wallerian degeneration is responsible for clearing 
cellular and myelin debris following a nerve injury, thus establishing 
a clear pathway for axonal regeneration within the peripheral nerve 
microenvironment. Axonal regeneration is determined by the 
formation of a growth cone at the proximal end of an injured nerve, 
which drives the endogenous regeneration and outgrowth of an axon. 
The pace of axonal elongation is dictated by the nature of an injury; 
for instance, a crush injury prompts a more rapid rate of elongation, 
approximately 3–4 mm/day. In contrast, a transection injury leads to 
a slower rate of elongation, averaging approximately 2.5 mm/day 
(Romero-Ortega, 2014; Jobe et al., 2020). The timeline of the axonal 
elongation process varies, spanning from weeks to months, depending 
upon the severity and nature of injury. In the final stage of 
regeneration, remyelination concludes with the establishment of 
properly regenerated nerve fibers and reinnervation of the 
target tissue.

Recent studies have revealed the important role of small 
extracellular vesicles (sEVs) in intercellular communication, which is 

crucial for PNR. The sEVs associated with the PNS actively participate 
in the regenerative cascade by facilitating communication through 
their molecular cargos, including proteins, lipids, and micro-RNAs 
(miRNAs), among cells (Hercher et al., 2022). Although not yet fully 
elucidated, this mediation is indispensable in cellular communication 
during regeneration, most notably among nerve cells, Schwann cells 
(SCs), macrophages, and fibroblasts. Moreover, non-invasive 
therapeutic treatments, such as electrical stimulation (ES), ultrasound 
(US), and extracorporeal shock wave therapy (ESWT), are reported 
to enhance PNR along with sEV secretion. Notably, ES treatment has 
been observed to enhance axonal growth through increased secretion 
and uptake of sEVs (Hu et al., 2019). Conversely, mechanotherapies 
like US and ESWT are associated with enhanced and altered sEVs 
secretion (Zeng et al., 2019; Gollmann-Tepekoylu et al., 2020; Ye et al., 
2023). Further investigation into this phenomenon could provide 
deeper insights into the mechanisms driving associated regeneration.

Several review articles focus on the molecular and physiological 
aspects of peripheral nerve regeneration, as well as the state-of-the-art 
PNI treatment (Webber and Zochodne, 2010; Jessen and Mirsky, 2019; 
Hussain et al., 2020; Li et al., 2020; Nagappan et al., 2020; Zuo et al., 
2020; Gurung et al., 2021) and, the role of extracellular vesicles (EVs) 
in PNR (Ching and Kingham, 2015; Budnik et al., 2016; Qing et al., 
2018; Bischoff et al., 2022; Hercher et al., 2022). However, certain 
knowledge gaps still exist concerning the impact of exogenous stimuli 
on molecular mechanisms and sEV secretion during PNR. In this 
review, we  highlight the vital molecular mechanisms governing 
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PNR. We also provide a comprehensive review of the role of sEVs in 
intercellular communication within the regenerative cascade, along 
with the notable therapeutic potential of sEVs in enhancing 
PNR. Finally, we delve into the potential of external stimuli, namely 
ES, US and ESWT, on sEV secretion and associated molecular 
mechanisms during PNR. The aim of this review is to shed light on 
possible future directions that may address the challenges associated 
with peripheral nerve repair.

2 Player cells and intracellular 
signaling pathways in peripheral nerve 
regeneration

The PNS consists of three distinct cell types: neuronal, stromal, and 
glial cells. Neuronal cells consist of efferent (motor) neurons that 
directly receive signals from the central nervous system (CNS), as well 
as sensory neurons, such as the dorsal root ganglion (DRG), which 
translate signals into fine sensations (Jobe et al., 2020). Stromal cells, 
such as fibroblasts, constitute the non-neural connective tissue in 
nerves (Menorca et  al., 2013). Fibroblasts generate proteins and 
extracellular matrix (ECM) components, such as collagen (I and II) and 
laminin, which provide structural support and protection to nerves. 
Within the PNS, glial cells are categorized into three main types: enteric 
cells, satellite cells, and SCs. Enteric cells maintain sensory homeostasis 
in the gastrointestinal tract. In contrast, satellite cells provide exclusive 
nutritional and structural support to neurons within the PNS. Satellite 
cells aid axonal elongation after peripheral nerve injury by enhancing 
proliferation, regeneration-associated gene expression, and macrophage 
recruitment (Krishnan et al., 2018; Avraham et al., 2020). Avraham 
et  al. (2020) identified the regulatory role of satellite cells in the 
activation of peroxisome proliferator-activated receptor-α (PPARα) 
signaling in nerve cells to promote axonal regeneration. However, 
understanding the biology of satellite cells remains an ongoing 
challenge, resulting in a limited knowledge of their molecular role in 
PNR (Krishnan et al., 2018; Jager et al., 2020). SCs play a vital role in 
nerve development, myelination, and protection. They align themselves 
along the axons, enveloping them in a protective myelin sheath that 
improves conduction velocity, reduces axonal membrane capacitance, 
and increases axonal resistance to ion flux across the plasma membrane 
(Menorca et al., 2013; Rasband, 2016). Additionally, they contribute to 
axonal regrowth by forming longitudinally aligned tubular structures 
called Bands of Büngner, which provide structural support and 
guidance to regrowing axons (Panzer et  al., 2020). Besides these 
resident cells, the PNS comprises immune cells and macrophages that 
are actively involved in nerve protection and pain modulation (Gaudet 
et al., 2011; Defrancesco-Lisowitz et al., 2015).

Communication among cells within the regenerative cascade 
plays a crucial role in intracellular signaling, which, in turn, regulates 
myelin clearance, SC reprogramming, axonal outgrowth, and nerve 
remyelination. Notable intracellular signaling pathways that 
orchestrate regeneration are activated by mitogen-activated protein 
kinases (MAPKs), tyrosine kinase receptors (Trk), non-receptor 
tyrosine kinase (NRTK), cytokine receptors, and p75 neurotrophin 
receptor (p75NTR). The MAPK family comprises three subfamilies of 
protein kinases: extracellular signal-regulated kinase (ERK), stress-
activated Jun proto-oncogene (c-Jun) N-terminal kinase (JNK), and 
stress-activated p38 kinase. Following nerve injury, the accumulation 

of MAPK activates both the JNK/c-Jun and ERK pathways in nerve 
cells, concurrently sealing the injured axonal membrane and initiating 
Wallerian degeneration (Agthong et al., 2006; Gao et al., 2013). Given 
the complexity of the regenerative process, the intracellular signaling 
pathways establish an interrelationship among various cell types to 
facilitate nerve regrowth. In this section, we highlight the prominent 
regulatory signaling pathways governing each stage of the regenerative 
cascade. Focusing on the regulatory role of the p75 neurotrophin and 
Trk receptors, Figure  1 presents a simplified overview of the key 
signaling pathways operating within nerve cells and SCs during PNR.

2.1 Schwann cell reprogramming

Following peripheral nerve injury, elevated calcium levels surge 
through both the axoplasm and surrounding SCs. This initiates an 
elongated depolarization wave along the axonal membrane, inducing 
the upregulation of injury-related genes in the nerve cells. The calcium 
influx triggers calcium-dependent ion channels to initiate axonal 
membrane sealing in preparation for growth cone formation (Ziv and 
Spira, 1995, 1997; Chierzi et al., 2005; Bradke et al., 2012; Nagappan 
et al., 2020; Rigoni and Negro, 2020). Subsequently, within the first 
48 h, SCs undergo Wallerian degeneration, adopting a non-myelinating 
phenotype (reprogramming). This reprogramming involves the 
downregulation of myelin-associated factors, including transcription 
factor early growth response protein-2 (EGR2), also known as Krox20, 
cholesterol synthesis enzymes, structural protein zero (P0), myelin 
basic protein (MBP), and membrane-associated glycoproteins (MAG; 
Chen et  al., 2007; Jessen and Mirsky, 2008, 2016). In addition, 
non-myelinating SCs migrate from the distal nerve stump to the area 
of injury, which are reported to assist in myelin clearance and guide 
axonal elongation through growth factor secretion (Chen et al., 2007; 
Jessen and Mirsky, 2019; Min et al., 2021).

One key effector in the modulation of the myelinating state of SCs 
is the inhibition of the GTPase protein RhoA. RhoA reorganizes the 
actin cytoskeleton in myelinating SCs through interactions with actin-
binding proteins Cofilin1 and myosin-II, contributing to SC 
reprogramming (Wen et al., 2018; Liu et al., 2023). Moreover, RhoA 
indirectly activates the JNK/c-Jun pathway, regulating the 
transcription of myelin-related genes in SCs during the 
reprogramming. The JNK/c-Jun pathway is typically activated by the 
growth factor NGF, which binds to Trk and p75NTR receptors, as 
shown in Figure 1 (Majdan et al., 2001; Sofroniew et al., 2001; Agthong 
et al., 2006; Li et al., 2020). NGF also regulates SCs’ reprogramming 
by rapidly activating the RAS/ERK pathway (Cervellini et al., 2018; 
Wen et  al., 2022), which plays a role in both myelinating and 
non-myelinating SC phenotypes (Castelnovo et al., 2017). According 
to Cervellini et al., the dual functionality of this pathway relies on 
transient activation of phosphorylated ERK to regulate the myelination 
properties of SCs and enhance successful regeneration (Agthong et al., 
2006; Cervellini et al., 2018).

The crosstalk between axons and SCs is also regulated by 
cholinergic receptors, these receptors respond to neurotransmitters 
such as Acetylcholine (ACh), Glutamate, γ-aminobutyric acid 
(GABA), and Adenosine/ATP. In particular, the M2 muscarinic 
receptors and the α7 nicotinic acetylcholine receptors (α7 nAChRs) 
influence SC plasticity and function in PNR (Piovesana et al., 2022). 
Activation of these α7 nAChRs is facilitated by neurotransmitter ACh, 
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which is expressed and released by motor and sensory nerves, further 
suggesting its involvement in the SC-axon crosstalk. Intriago et al. 
reported an increase in α7 nAChRs expression in SCs 24 h following 
PNI, which reduced the expression of proinflammatory IL-6 cytokine, 
hence, regulating the inflammatory response. Furthermore, the 
increase in α7 nAChRs expression correlates with a decrease in c-Jun 
expression, which is a transcription factor known to mediate SC 
plasticity (Salazar Intriago et al., 2021; Piovesana et al., 2022).

The reprogramming of SCs is also regulated through the 
activation of focal adhesion kinase (FAK) and proto-oncogene 
tyrosine-protein kinase (Src; Grove et al., 2007; Melfi et al., 2017). 
FAK, a non-receptor tyrosine kinase, promotes cell motility and 

actomyosin contractility to prevent premature SC differentiation and 
impaired nerve myelination (Grove et al., 2007; Grove and Brophy, 
2014; Melfi et al., 2017). In contrast, Src is a non-receptor kinase 
involved in regulating various regulatory signaling pathways, 
including the JNK, ERK, and PI3K/Akt/mTOR pathways (Melfi et al., 
2017). Zhao et al. reported that the significantly increased Src levels 
in SCs after injury promote axonal elongation through a crosstalk 
between regenerating axons and SCs (Zhao et al., 2003; Melfi et al., 
2017). The activation of FAK/Src in SCs involves GABA-A-dependent 
mechanisms, as the binding of the neuroactive steroid 
Allopregnanolone (ALLO) to the GABA-A receptors expressed by SCs 
leads to a series of downstream intracellular signaling pathway 

FIGURE 1

Overview of the pivotal signaling cascades in peripheral nerve regeneration (PNR). The intracellular regulation of Schwann cells (SCs) is facilitated by 
the JNK/c-Jun, PI3K/Akt/mTOR, and RAS/ERK signaling pathways with main activators being growth factors BDNF, NGF, and NT3. As for nerve cells, 
intracellular regulation is facilitated by the RhoA/ROCK, PI3K/Akt/mTOR, and RAS/ERK signaling pathways with main activators being growth factors 
NGF, GDNF, and BDNF. These intracellular pathways regulate axonal outgrowth, SCs reprogramming, nerve myelination and survival. For a more 
detailed schematic, please refer to Li et al. (2020). NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; GDNF, glial cell line-derived 
neurotrophic factor; NT3, neurotrophin-3; Trk, tropomyosin receptor kinase A; p75 NTR, p75 neurotrophin receptor; FRS-2, fibroblast growth factor 
(FGF) receptor substrate 2; GRB-2, growth factor receptor-bound protein 2; SOS, son of sevenless; Gab1, GRB2-associated binding protein 1; MEK, 
mitogen-activated protein kinase kinase; MEKK4/7, mitogen-activated protein kinase kinase kinase 4/7; MKK4/7, mitogen-activated protein kinase 
kinase 4/7; ERK, extracellular signal-regulated kinase; RTK, receptor tyrosine kinase; c-Jun, Jun proto-oncogene; JNK, c-Jun N-terminal kinase; ROCK, 
Rho-associated protein kinase; LIMK, LIM domain-containing kinase; mTOR, mammalian target of rapamycin; GSK3β, glycogen synthase kinase-3β; 
RhoA, Ras homolog family member A; PI3K, phosphoinositide 3-kinase; AKT, Protein kinase B; RAS, rat sarcoma; RAF, rapidly accelerated fibrosarcoma.
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activation, one of which is FAK/Src, as illustrated in Figure  2Ai 
(Colciago et al., 2020; Piovesana et al., 2022). ALLO is additionally 
found to upregulate SC proliferation in vitro following the binding of 
GABA-A and the modulation of excitatory amino acid transporter 1 
(EAAC1). The modulatory role of ALLO is demonstrated through the 
GABA-A-mediated activation of protein kinase C (PK-C), leading to 
rapid upregulation of EAAC1 and Src levels in SCs, followed by 
increased EAAC1 exocytosis and modification of SC morphology 
(Perego et al., 2012; Piovesana et al., 2022). This increase in Src levels 
results in an increase of p-FAK signaling, which drives SC 
proliferation. As shown in Figure  2Ai, the GABA-A dependent 
activation mechanism of Src drives FAK phosphorylation and thereby 
influences actin cytoskeletal organization, migration, and proliferation 
of SCs (Melfi et al., 2017; Serrano-Regal et al., 2020). The FAK-Src 
pathway simultaneously regulates SC proliferation and 
reprogramming, responding to intricate biochemical signaling arising 
from nerve injury.

Biomechanical cues, driven by stress, strain, or changes in ECM 
stiffness, induce changes in the F-actin cytoskeleton of SCs, thereby 
influencing myelin gene transcription during their reprogramming 
(Fernando et al., 2016; Poitelon et al., 2016; Deng et al., 2017; Jeanette 
et  al., 2021). External mechanical stimuli transduce into internal 
biochemical signals through the transcription factor Yes-associated 
protein (YAP) and the transcriptional co-activator with a PDZ-binding 
motif (TAZ), as shown in Figure 2Bi. Subsequently, YAP and TAZ 
regulate SC proliferation and myelin-associated gene expression via 
the mechanotransducive Hippo pathway (Meng et al., 2016; Deng 
et al., 2017; Jeanette et al., 2021). These coactivators exert distinct 
effects on the regenerative cascade; while TAZ levels increase following 
nerve injury, YAP levels remain unaffected (Mindos et  al., 2017; 
Jeanette et al., 2021). This implies that YAP alone does not significantly 
affect regeneration and is not a crucial factor in SC reprogramming 
(Grove et al., 2020; Jeanette et al., 2021). In contrast, TAZ initiates SC 
reprogramming by downregulating EGR2, which inversely upregulates 

FIGURE 2

Overview of regulatory signaling pathways activating Schwann cells (SCs) response in peripheral nerve regeneration (PNR). (Ai) The FAK-Src pathway 
regulates SC proliferation and reprogramming through the binding of ALLO to the GABA-A receptor. (ii) The JAK/STAT signaling pathway enhances 
axonal outgrowth in PNR by upregulating growth factor secretion. Activated by growth factors CNTF and BDNF, this pathway enhances SC 
redifferentiation through the transcription of differentiation-driving genes. (B) The mechanotransducive signaling pathway regulates SC proliferation, 
reprogramming, and myelin expression. (i) SC proliferation is regulated by the inhibition of the protein Gnas. (ii) Mechanical stimuli activate G-protein 
coupling receptors and Piezo1 in SCs, regulating YAP/TAZ and promoting SC reprogramming by regulating the transcription of myelin genes. (iii) For 
SC redifferentiation, YAP/TAZ, along with effectors TEAD and SOX10, promote the transcription of myelin genes, driving the switch to the pro-
myelinating phenotype. ALLO, Allopregnanolone; NT3, neurotrophin-3; BDNF, brain-derived neurotrophic factor; JAK, Janus Kinase; Src, proto-
oncogene tyrosine-protein kinase; YAP, Yes-associated protein; TAZ, transcriptional co-activator with a PDZ-binding motif; TEAD, TEA domain family 
member; Gnas, guanine nucleotide-binding protein; Gαs, Gs alpha guanine nucleotide-binding signal transduction protein; SOX10, SRY-box 
transcription factor 10.
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c-Jun expression, ensuring myelin breakdown (Parkinson et al., 2008; 
Jeanette et al., 2021). Interestingly, the YAP/TAZ pathway similarly 
regulates the remyelination phenotype of SCs (Mindos et al., 2017; 
Grove et al., 2020; Jeanette et al., 2021).

Other tangential regulators of the mechanotransducive signaling 
pathways are the mechanosensitive ion channels Piezo1 and Piezo2 
which are expressed in SCs and are activated upon membrane 
stretching and deformation, as reported by Acheta et al. (2022). In 
response to injury, the mechanically gated Piezo1-2 ion channels 
respond to calcium bursts, regulating transient calcium levels in SCs 
and subsequently influencing myelin gene expression (Pathak et al., 
2014; Cobbaut et al., 2020; Acheta et al., 2022). The activation of these 
Piezo1-2 channels may be associated with SC reprogramming, as they 
also mediate the YAP/TAZ regulatory pathway. Notably, Piezo1 
modulates TAZ activity and expression, thereby influencing SC 
myelination (Acheta et  al., 2022). Piezo1 is believed to inhibit 
myelination, whereas Piezo2 contributes to myelination, indicating a 
potentially epistatic relationship (Taberner et al., 2019; Acheta et al., 
2022). However, limited knowledge exists about the molecular 
mechanisms involving Piezo2  in YAP/TAZ activation during 
regeneration. In contrast, inhibiting Piezo 1 has been shown to 
increase the activity of both ERK and AKT, which upregulate the 
PI3K/AKT and RAS/ERK pathways and effectively promote SC 
myelination, as illustrated in Figure 2Bii (Acheta et al., 2022). Thus, 
the Piezo1-2 channels are not only associated with the initial stages of 
regeneration and SC reprogramming but also play a role in shaping 
the remyelinating phenotype of SCs during axonal elongation 
and remyelination.

2.2 Myelin clearance

Reprogrammed SCs facilitate myelin clearance through autophagy 
of myelin segments (Gomez-Sanchez et al., 2015; Jessen and Mirsky, 
2016). The myelin sheath structure consists of adjoining myelin 
segments connected to SCs through the Schmidt-Lanterman incisures. 
These incisures are hydrolyzed and broken down by a set of enzymes, 
mainly phospholipase-A2 (PLA2), which is rapidly expressed in nerve 
cells in response to peripheral nerve injury (Jung et al., 2011). PLA2 
activates actin polymerization, leading to the separation of myelin 
segments from reprogrammed SCs for clearance (Jung et al., 2011; 
Jessen and Mirsky, 2016; Tricaud and Park, 2017). These 
reprogrammed SCs recruit both resident and hematogenous bone-
marrow-derived macrophages to assist in myelin clearance by 
upregulating PLA2 and cytokines such as tumor necrosis factor-alpha 
(TNFα), interleukin-1α (IL-1α), IL-1β, IL-6, leukemia inhibitory 
factor (LIF), and monocyte chemotactic protein 1 (MCP-1; De et al., 
2003; Chen et al., 2007; Martini et al., 2008; Rotshenker, 2011; Hur and 
Saijilafu, 2012; Mokarram et  al., 2012; Defrancesco-Lisowitz 
et al., 2015).

Following axonal debris clearance, M1 macrophages upregulate 
the expression of the multifunctional surface protein galectin-3/
MAC-2. Collaborating with apolipoprotein-E, galectin-3/MAC-2 
mediates the polarization of macrophages into the M2 phenotype, 
which is considered predominant in myelin phagocytosis (Martini 
et al., 2008). This phenotypic transformation is associated with the 
downregulation of inflammatory agents TNFα and IL-1β, as well as 
the upregulation of anti-inflammatory cytokines IL-10 and IL-6 

(Rotshenker, 2011). As degraded myelin is substantially cleared, 
galectin-3/MAC-2 expression is downregulated. Simultaneously, the 
production of anti-inflammatory cytokines and PLA2 decreases, 
signaling the transition from Wallerian degeneration to the axonal 
regeneration stage and reaching its lowest production rate 
approximately 2–3 weeks post-injury (De et  al., 2003; 
Rotshenker, 2011).

2.3 Growth cone outgrowth and axonal 
elongation

Growth cone formation and axonal elongation have been 
associated with the PI3K/pAkt/mTOR signaling pathway (Agthong 
et al., 2006; Hur and Saijilafu, 2012; Menorca et al., 2013; Poitras and 
Zochodne, 2022). To initiate this pathway, neurotrophic molecules 
bind to Trk receptors, transducing signals through the cellular 
membrane. This pathway is controlled by the mTOR effector, which 
facilitates PNR. Downstream activation of mTOR complex-1 
(mTORC1), a mediator of growth factor signaling, occurs via 
Akt-mediated phosphorylation to ensure cell survival and neuronal 
growth, as shown in Figure 1 (Aoki and Fujishita, 2017; Abe et al., 
2021; Poitras and Zochodne, 2022). The PI3K/Akt/mTOR pathway 
must be tightly regulated, as its overactivation can lead to uncontrolled 
cellular proliferation and tumor formation instead of regulated 
regeneration (Liu et al., 2014; Aoki and Fujishita, 2017; Poitras and 
Zochodne, 2022).

The RhoA/ROCK pathway acts as a negative regulator of growth 
cone outgrowth and axonal elongation, as its activation leads to 
growth cone collapse. During axonal elongation, growth factors, 
including nerve growth factor (NGF) and glial cell line-derived 
neurotrophic factor (GDNF), are recruited to inhibit the RhoA/ROCK 
pathway, as illustrated in Figure 1 (Yoong and Too, 2007; Li et al., 
2020). Additionally, blocking ROCK activity both in vivo and in vitro 
has shown enhanced axonal sprouting, which presents a plausible 
clinical therapeutic application (Huelsenbeck et al., 2012; Rohrbeck 
et  al., 2015; Li et  al., 2020). For instance, the local application of 
Clostridium botulinum C3 exoenzyme (C3), a RhoA inhibitor, in a rat 
model resulted in increased axonal sprouting, higher myelination, and 
enhanced axonal maturation and functionality, further hinting at the 
negative regulation of the RhoA/Rock pathway in PNR (Huelsenbeck 
et al., 2012; Penna et al., 2012; Rohrbeck et al., 2015). ROCK inhibitors 
are considered promising treatment options for corneal wound 
healing and endothelial regeneration (Okumura et al., 2011, 2012). 
Given their ability to expedite and enhance axonal sprouting, the 
applications of ROCK inhibitors can be extended to PNR.

To promote axonal growth, intracellular molecular mechanisms, 
such as regeneration-associated gene expression and growth cone 
protein synthesis, are upregulated. Post-transcriptional mechanisms 
related to regeneration-associated gene promote and accelerate axonal 
elongation through the activation of the RAS/ERK pathway (Avruch, 
2007; Hausott and Klimaschewski, 2019). As shown in Figure 1, the 
RAS/ERK pathway activates the transcription of neuronal genes and 
the synthesis of growth-associated proteins, mainly growth-associated 
protein-43 (GAP43), cytoskeleton-associated protein-23 (Cap23), 
arginase-1 (Arg1), and small proline-rich repeat protein-1A (Sprr1a). 
These growth-associated proteins initiate the polymerization of actin 
filaments and microtubules, driving axonal outgrowth extension 
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(Frey et al., 2000; Bomze et al., 2001; Bonilla et al., 2002; Cai et al., 
2002). The structure of a growth cone is highly dependent on actin 
filaments and microtubules for its integrity. Inhibition of ERK has 
been associated with growth cone collapse, resulting in axonal 
outgrowth impairment (Bonilla et  al., 2002; Goold and Gordon-
Weeks, 2005; Zhou and Snider, 2006). Moreover, in a non-regenerative 
state, sprouty homolog-2 (SPRY-2), a protein expressed in the PNS, 
binds to growth factor receptor-bound protein 2 (GRB2) and inhibits 
ERK activation. Following peripheral nerve injury, SPRY-2 expression 
is downregulated and promotes axonal regeneration both in vivo and 
in vitro, highlighting the regulatory role of the RAS/ERK pathway. 
The activation of ERK and the downregulation of SPRY-2 are 
associated with improved growth cone structure and axonal 
outgrowth and can contribute to neuronal survival and axonal 
recovery (Marvaldi et  al., 2015; Huang et  al., 2017; Hausott and 
Klimaschewski, 2019).

Concurrently, both non-myelinating and myelinating SCs 
differentiate into repair phenotypes to promote axonal elongation. 
This differentiation process involves the upregulation of c-Jun 
expression, illustrated in Figure 1, leading to repair SCs adopting a 
narrow and flattened morphology, essential for the formation of the 
bands of the Büngner, a longitudinal guidance track (Arthur-Farraj 
et al., 2012; Jessen and Mirsky, 2016). Arthur-Farraj et al. reported 
abnormal bands of Büngner structures in c-Jun mutant mouse models, 
further emphasizing the substantial role of c-Jun in PNR (Arthur-
Farraj et al., 2012; Jessen and Mirsky, 2016, 2021). This guidance track, 
with the help of fibroblasts and the ECM structure, ensures cohesive 
axonal elongation and the successful integration of regenerated nerves 
with the target organ tissue.

While the role of fibroblasts in axonal elongation is vital, it has 
received little attention in the past. He et al. (2022) recently examined 
the genetic expression in nerve fibroblasts, revealing their influence 
on axonal outgrowth and directional guidance. These fibroblasts 
express brain-derived neurotrophic factor (BDNF), which upregulates 
the expression of β-actin and F-actin through the RAS/ERK and PI3K/
pAkt pathways, thereby promoting axonal outgrowth and neural 
survival, as shown in Figure 1 (Garraway and Huie, 2016; Weiss et al., 
2016; Moradi et al., 2017; He et al., 2022). In addition to supporting 
axonal outgrowth, fibroblasts play a vital role in recruiting repair SCs, 
contributing to the formation of the supportive Bands of Büngner. The 
migration of recruited SCs is regulated by several factors, mainly 
neuregulin-1b1 and tenascin-C (TNC; Dreesmann et al., 2009; van 
Neerven et al., 2013; He et al., 2022; Li et al., 2022). TNC induces SC 
migration through the β-1 integrin-dependent signaling pathway 
(Dreesmann et al., 2009; Zhang et al., 2016; He et al., 2022; Li et al., 
2022). The binding of TNC to the β-1 integrin on the surface of SCs 
activates Rac1, a regulator of the RAS/ERK pathway, which, in turn, 
promotes SC migration and enhances the structural stability of the 
regenerative microenvironment (Zhang et al., 2016).

Another pathway contributing to neuronal plasticity, axonal 
guidance, and regeneration is the JAK/STAT, as shown in Figure 2Aii. 
Unlike many regulatory pathways, JAK/STAT is not activated by 
neurotrophic Trk receptors, but rather by a G-protein-coupled 
receptor that binds neurotrophic factors, such as ciliary neurotrophic 
factor (CNTF), NT3, and BDNF, to initiate the signaling cascade 
(Sheu et  al., 2000; Qiu et  al., 2005; Kiryu-Seo and Kiyama, 2011; 
Poitras and Zochodne, 2022). These neurotrophic factors upregulate 
STAT3 in SCs, which subsequently enhances growth factor secretion 

and neurite sprouting (Aoki and Fujishita, 2017; Poitras and 
Zochodne, 2022).

In addition, the local release of ACh at the site of injury serves as 
a direct trigger for growth cone outgrowth. For instance, when 
introducing ACh-loaded biodegradable polymers to facilitate the 
release of ACh at the site of injury, increased nerve sprouting and 
elongation was observed, further hinting at the role of the cholinergic 
system in aiding PNR (Gumera and Wang, 2007; Magnaghi et al., 
2009). Thus, in addition to the PI3K/pAkt/mTOR, RhoA/ROCK, 
RAS/ERK, and JAK/STAT signaling pathways, the cholinergic system 
orchestrates nerve outgrowth and elongation.

2.4 Newly generated nerve myelination and 
integration

To conclude the regenerative cascade, both repair and 
non-myelinating SCs undergo redifferentiation to myelinate the newly 
regenerated nerve. This redifferentiation process is associated with the 
upregulation of myelin transcription factors, specifically neuregulin 1 
(NRG1), and the downregulation of repair-related genes such as 
oligodendrocyte transcription factor 1 (Olig1), Sonic Hedgehog (Shh), 
GDNF, and c-Jun (Piirsoo et  al., 2010; Arthur-Farraj et  al., 2012; 
Benito et al., 2017; Bosch-Queralt et al., 2023). As mentioned earlier, 
the YAP/TAZ regulatory mechanism contributes to this 
redifferentiation (Figure  2Biii). YAP/TAZ activation upregulates 
EGR2 levels, leading to a decrease in c-Jun levels and an increase in 
myelinating gene expression (Jeanette et al., 2021). Upon activation, 
YAP and TAZ form multiple complexes with DNA-binding proteins, 
including TEAD1, which is associated with SC redifferentiation, and 
TEAD4, which represses SC myelination. During redifferentiation, the 
expression of myelin-related genes is regulated by TEAD1, driving SC 
remyelination (Lopez-Anido et al., 2016; Deng et al., 2017; Grove 
et al., 2017; He et al., 2018; Jeanette et al., 2021).

Simultaneously, as shown in Figure 2Aii, the JAK/STAT pathway 
regulates SC redifferentiation and migration alongside the elongated 
axon. To activate this pathway, neurotrophic factors such as CNTF, 
IL-6, and LIF bind to their receptors, which depends on their specific 
subunit composition, leading to STAT3 activation (Martini et  al., 
2008). Consequently, the JAK/STAT pathway activates the 
transcription of differentiation-driving genes (stemness-related genes) 
to initiate the redifferentiation of SCs (Birchmeier and Bennett, 2016; 
Jessen and Arthur-Farraj, 2019; Li et al., 2020; Jessen and Mirsky, 
2021). Alongside the JAK/STAT pathway, the NRG1-ErbB signaling 
pathway promotes SC proliferation, myelination, and migration along 
the axon tract. More specifically, type I NRG1 and type III NRG1, 
found in SCs and nerve cells respectively, activate the ErbB2/3 protein-
ligand interaction, promoting SCs differentiation and remyelination 
(Atanasoski et  al., 2006; Fricker and Bennett, 2011; Fricker et  al., 
2013). Following the disruption of the SC-axon contact, NRG1 type 
I  expression in SCs is upregulated, activating the NRG1-ErbB 
signaling pathway and instigating the remyelination of axons by 
regulating myelin gene transcription (Fricker and Bennett, 2011; 
Stassart et al., 2013). In addition, the activation of the NRG1 through 
the ErbB2/3 receptors propagates to promote FAK phosphorylation, 
leading to FAK/Src activation and subsequently, SC migration along 
the elongated axon (Chang et al., 2013). In essence, the myelination 
process is vital to ensure the successful integration of a regenerated 
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nerve with muscle fibers at neuromuscular junctions for effective 
signal transduction (Aguayo et  al., 1973; Tam and Gordon, 2009; 
Menorca et al., 2013).

In summary, the regenerative cascade involves a complex interplay 
of various regulatory pathways that facilitate interactions between 
nerve cells and other contributing cells. These pathways collectively 
support the survival, growth, protection, guidance, and regeneration 
of nerve cells. Specifically, the JNK/c-Jun, RhoA/ROCK, and JAK/
STAT are key intracellular regulatory pathways involved in 
regeneration. Additionally, cellular communication plays a crucial role 
in directing the regenerative cascade, primarily by activating repair-
associated gene transcription via the FAK-Src, PI3K/pAkt/mTOR, 
RAS/ERK, and YAP/TAZ pathways (Poitelon et  al., 2016). The 
functions of these intracellular pathways are summarized in Table 1, 
highlighting their regulatory roles and the associated proteins.

3 Extracellular vesicles and their role 
in peripheral nerve regeneration

In addition to signaling pathways, it is important to explore 
intercellular communication via EVs, specifically sEVs, and their role 
in regulating communication within the regenerative cascade. EVs are 
membrane-bound vesicles containing proteins, lipids, nucleic acids, 
and metabolites that mediate intercellular communication. EVs are 
classified based on several factors, such as biogenesis, size, and cargos, 
which help identify their originating source and type (Zernecke et al., 
2009; Kosaka et al., 2010; Vickers et al., 2011; Jin et al., 2016; Kodam 
and Ullah, 2021). These classifications include exomeres (<50 nm 

diameter), exosomes (30–150 nm diameter), ectosomes or 
microvesicles (MVs; 100–1,000 nm diameter), migrasomes (500–
3,000 nm diameter), apoptotic bodies (1000–5,000 nm diameter), and 
large oncosomes (1000–10,000 nm diameter; Fonseka et al., 2021). 
Exosomes are sEVs formed by the inward budding of endosomal 
membranes to form intraluminal vesicles (ILVs) encapsulating 
cytosolic components (Kodam and Ullah, 2021). In contrast, 
ectosomes, apoptotic bodies, and large oncosomes are medium to 
large-sized EVs formed through direct budding from cellular 
membranes (Akers et al., 2013; Raposo and Stoorvogel, 2013; Hercher 
et al., 2022).

3.1 Biogenesis of extracellular vesicles

sEV biogenesis involves ILVs coming together to form 
multivesicular bodies (MVBs), which can either be  degraded by 
lysosomes or released from the cell as sEVs through the endosomal 
sorting complex required for transport (ESCRT) regulatory system 
(Qing et  al., 2018; Fonseka et  al., 2021; Gurung et  al., 2021). The 
secretion of sEVs is regulated by four ESCRT protein complexes: 
ESCRT-0, I, II, and III. The ESCRT-0 complex aids in identifying and 
trafficking cargo within the endosomal membrane. In contrast, 
ESCRT-I and -II control cargo sorting and vesicle bud formation, 
while ESCRT-III functions as a membrane scission machine to cleave 
buds and form ILVs (Wollert et al., 2009; Hurley and Hanson, 2010; 
Colombo et al., 2013; Hessvik and Llorente, 2018).

ESCRT protein complexes are associated with regulatory proteins 
that contribute to ILV sorting, such as hepatocyte growth 

TABLE 1 Summary of the regulatory signaling pathways within the regenerative cascade.

Signaling 
pathways

Involved cells
Associated 
regulators

Regulatory role References

JNK/c-Jun Schwann Cells RhoA, NGF, c-Jun Promote cell reprogramming Melfi et al. (2017) and Wen et al. (2018)

RhoA/ROCK Nerve Cells RhoA, BDNF, GDNF Inhibits axonal elongation
Yoong and Too (2007), Huelsenbeck et al. (2012), 

Penna et al. (2012), and Rohrbeck et al. (2015)

RAS/ERK Nerve and Schwann Cells NGF, BDNF

Regulates myelination and 

promotes growth cone 

outgrowth

Obata et al. (2003), Agthong et al. (2006), Marvaldi 

et al. (2015); Huang et al. (2017), and Cervellini 

et al. (2018)

JAK/STAT Nerve and Schwann Cells CNTF, IL-6, LIF
Promotes axonal elongation and 

SC remyelination

Sheu et al. (2000), Qiu et al. (2005), and 

Birchmeier and Bennett (2016)

NRG1-ErbB Nerve and Schwann Cells Type I NRG1, Type III NRG1

Promotes SC proliferation, 

myelination, and migration 

along the axon tract

Atanasoski et al. (2006), Fricker and Bennett 

(2011), Chang et al. (2013), and Stassart et al. 

(2013)

FAK-Src Schwann Cells Neuroactive Steroid ALLO Promotes SC reprogramming
Grove et al. (2007), Grove and Brophy (2014), and 

Melfi et al. (2017)

PI3K/pAkt/mTOR Nerve and Schwann Cells NGF, BDNF, NT3

Promotes growth cone 

outgrowth Promotes SC 

myelination.

Agthong et al. (2006), Huang et al. (2017), and 

Acheta et al. (2022)

YAP/TAZ Schwann Cells TEAD, Piezo1, Piezo2 Promotes cell reprogramming
Grove et al. (2020), Jeanette et al. (2021), and 

Acheta et al. (2022)

JNK, c-Jun N-terminal kinase; c-Jun, Jun proto-oncogene; RhoA, Ras homolog family member A; ROCK, Rho-associated protein kinase; RAS, rat sarcoma; ERK, extracellular signal-regulated 
kinase; JAK, Janus Kinase; STAT, signal transducer and activator of transcription; FAK, focal adhesion kinase; Src, proto-oncogene tyrosine-protein kinase; PI3K, phosphoinositide 3-kinase; 
AKT, Protein kinase B; mTOR, mammalian target of rapamycin; YAP, Yes-associated protein; TAZ, transcriptional co-activator with a PDZ-binding motif; BDNF, brain-derived neurotrophic 
factor; NGF, nerve growth factor; GDNF, glial cell line-derived neurotrophic factor; CTNF, ciliary neurotrophic factor; IL-6, interleukin-6; LIF, leukemia inhibitory factor; NRG1, Neuregulin 
1; ALLO, Allopregnanolone; NT3, neurotrophin-3; TEAD, TEA domain family member; SC, Schwann cell.
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factor-regulated tyrosine kinase substrate (HRS), tumor susceptibility 
gene 101 (TSG101), and ALG-2 interacting protein X (ALIX; 
Colombo et al., 2013). ALIX has been recently identified to be directly 
involved in ILV budding, sEV biogenesis, and cargo sorting (Baietti 
et al., 2012; Colombo et al., 2013; Gurung et al., 2021). Moreover, sEVs 
contain tetraspanins, a family of proteins with transmembrane 
domains associated with cellular functions, such as adhesion and 
cellular signaling. Tetraspanins are also involved in the ESCRT-
independent mechanism of sEV biogenesis (Termini and Gillette, 
2017; Gurung et al., 2021; Bischoff et al., 2022). Some tetraspanins, 
such as CD9, CD63, and CD81 are used as specific markers to identify 
sEVs (Chairoungdua et al., 2010; Urbanelli et al., 2013). Additionally, 
sEVs encapsulate noncoding RNAs, such as miRNAs, which play roles 
in regulating gene expression, intracellular signaling, and protein 
expression (Lewis et al., 2005; Ching and Kingham, 2015; Budnik 
et al., 2016; van Niel et al., 2018; Borger et al., 2022).

3.2 Role of small extracellular vesicles in 
intercellular communication

Cell-to-cell communication via sEVs may occur through three 
distinct mechanisms, one of which is receptor-ligand signaling, where 
membrane-bound proteins of sEVs act as ligands for surface receptors 
on recipient cells. Another communication mechanism involves the 
release of the sEV cargo into the extracellular space (Gurung et al., 
2021), facilitating indirect communication between cells, as the 
released proteins bind to recipient cell surface receptors to induce an 
internal regulatory response. Alternatively, sEVs can be internalized 
by recipient cells, resulting in nonselective cargo release, which 
activates internal signaling pathways, including gene transcription 
(Urbanelli et al., 2013).

Besides facilitating intercellular communication, sEVs encapsulate 
proteins involved in internal regulatory pathways, such as the Wnt/β-
catenin pathway, known for its role in tissue regeneration (Mac 
Donald et al., 2009; Urbanelli et al., 2013; Budnik et al., 2016). Wnt 
proteins embedded within sEV membranes activate the Wnt signaling 
pathway by binding to the seven-pass transmembrane fizzled receptors 
(FZ) on the surface of target cells (Mac Donald et al., 2009; Urbanelli 
et al., 2013). In principle, this regulatory process activates Wnt gene 
expression and regulates sEV-mediated transport of Wnt via a 
feedback mechanism (Mac Donald et al., 2009; Chairoungdua et al., 
2010; Urbanelli et  al., 2013). While these findings elucidate the 
relationship between sEVs and Wnt signaling, the extent to which the 
peripheral nerve regenerative cascade activates Wnt signaling via sEV 
communication remains underexplored.

3.3 Small extracellular vesicles in peripheral 
nerve regeneration

sEVs derived from most PNS-associated cells have been 
reported to exert regenerative effects (Dong et al., 2019; Bischoff 
et  al., 2022; Hercher et  al., 2022). However, the intricate 
communication mechanisms influencing sEV secretion within the 
regenerative cascade remain poorly understood. Cellular stress 
conditions, such as oxidative stress, enhance sEV secretion (Faure 
et al., 2006; Yu et al., 2006; Urbanelli et al., 2013; Qiu et al., 2019). 

Following peripheral nerve injury, the stress-responsive protein 
p53 regulates sEV secretion through the transcription of sEV 
secretion-related genes such as TSAP6 (Zhou et al., 2005; Yu et al., 
2006; Pegtel et al., 2014). According to Simeoli et al., nerve cell-
derived sEVs are phagocytosed by macrophages after nerve injury, 
as illustrated in Figure  3A, initiating miR-21-5p upregulation 
(Simeoli et al., 2017; Qing et al., 2018; Liu et al., 2019; Bischoff 
et  al., 2022). Upregulation of miR-21-5p induces the uptake of 
inducible nitric oxide synthase (iNOS), a pro-inflammatory M1 
marker, also known as Nos2, thereby promoting the activation of 
pro-inflammatory M1 macrophages. Simultaneously, to promote 
the M1 phenotype, sEVs secreted by injured nerves downregulate 
CD206 mRNA expression, leading to a decrease in the expression 
of anti-inflammatory M2 markers (Simeoli et  al., 2017). This 
sEV-mediated nerve–macrophage communication serves as a 
regulator of macrophage response and axonal outgrowth. Along the 
regenerative cascade, sEVs derived from pro-inflammatory 
macrophages mediate the PI3K/Akt signaling pathway, as they 
promote nerve outgrowth by encapsulating active NADPH oxidase 
2 (NOX2), as illustrated in Figure 3B (Hervera et al., 2018; Bischoff 
et al., 2022).

Conversely, sEVs secreted by SCs play a crucial role in intercellular 
communication between nerve cells and SCs following nerve injury. 
Wei et al. (2019) reported that SC-derived sEVs, regardless of the SC 
phenotype, typically express sEV markers CD9, CD63, and ALIX, but 
not TSG10 (). These markers facilitate the accurate identification of 
sEVs’ cellular origins and an understanding of their role in intercellular 
communication within the regenerative cascade. Notably, different 
SCs phenotypes—myelinating, non-myelinating, and repair SCs—
release sEVs with distinct cargo profiles, illustrated in Figure  3B 
(Lopez-Verrilli et al., 2013; Sohn et al., 2020; Bischoff et al., 2022). For 
instance, sEVs derived from non-myelinating SCs encapsulate the 
protein P75NTR, which inhibits RhoA and promotes growth cone 
outgrowth (Budnik et  al., 2016; Lopez-Leal and Court, 2016). In 
contrast, sEVs derived from myelinating SCs express high levels of 
miR92a-3p, which modulates the Akt signaling pathway and 
upregulates neurite outgrowth (Sohn et al., 2020). Additionally, sEVs 
secreted from repair SCs encapsulate high levels of miRNA-21, which 
promotes axonal outgrowth (Ching and Kingham, 2015; Lopez-Leal 
et al., 2020). Regardless of their source—myelinating, non-myelinating, 
or repair SCs—sEVs have a significant impact on axonal elongation, 
attributed to distinct proteins and miRNAs associated with 
each phenotype.

Previously, fibroblast-derived sEVs were believed to have no effect 
on the peripheral nerve regenerative cascade; however, recent findings 
indicate the presence of an sEV-mediated crosstalk between fibroblasts 
and SCs, as illustrated in Figure 3C (Bischoff et al., 2022). Zhao et al. 
(2022) reported that fibroblast-derived sEVs carry miR-673-5p, which 
targets the Tsc2 gene, which encodes tuberin, a protein contributing 
to cellular growth and proliferation. This gene has been found to 
activate the mTORC1 growth factor mediator in SCs, thereby 
activating the PI3K/Akt/mTOR pathway to promote myelin gene 
expression (Zhao et al., 2022). Moreover, fibroblast-derived sEVs 
stimulate cholesterol and lipid synthesis in SCs, both of which 
promote myelin formation, as illustrated in Figure 3C (Zhao et al., 
2022). These fibroblast-derived sEVs can be characterized by the sEV 
markers ALIX, CD9, CD81, and Flotillin-1 and, more specifically, by 
the surface proteins CD63 and CD44 (Mead and Tomarev, 2017; van 
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FIGURE 3

Overview of the three-stage peripheral nerve regeneration (PNR). (A) Wallerian degeneration orchestrates the clearance of cellular and myelin debris, 
facilitated by the recruitment of macrophages and Schwann cells (SCs). SCs inhibit myelin production and reprogram into non-myelinating SCs to 
eliminate remnants of the injured nerve, while M1 macrophages scavenge cellular debris and regulate inflammation. (B) The proximal part of the 
injured nerve forms a growth cone, inducing axonal outgrowth. Fibroblast recruitment provides structural support to regenerated axons, facilitating SC 
differentiation into the repair phenotype and the formation of Bands of Büngner as a guidance track. Macrophage-and SC-derived small extracellular 
vesicles (sEVs) promote axonal outgrowth through intercellular communication within the regeneration cascade. (C) Assisted by fibroblast-derived 
sEVs, SCs redifferentiate into the myelinating phenotype to remyelinate the nerve, ensuring successful regeneration.
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de Vlekkert et al., 2019, 2020; Yan et al., 2020). Table 2 summarizes the 
roles of sEVs in regulating intercellular communication during PNR.

Intercellular communication through sEVs has garnered 
significant attention owing to its wide-ranging therapeutic and 
diagnostic potential in the context of PNR. Ongoing research on the 
therapeutic potential of sEVs in PNI extends beyond studies focused 
solely on sEVs derived from PNS-associated cells. For instance, sEVs 
secreted from diverse sources of mesenchymal stem cells (MSCs), 

such as bone marrow, umbilical cord, adipose tissue, and dental pulp, 
have shown the capacity to enhance neural growth (Qing et al., 2018). 
Notably, the uptake of MSC-derived sEVs by SCs, both in vivo and in 
vitro, has been reported to enhance SC migration and proliferation, 
macrophage activation, and axonal outgrowth (Triolo et al., 2006; Ti 
et al., 2015; Bucan et al., 2019; Dong et al., 2019; Mao et al., 2019; 
Bischoff et al., 2022). Collectively, MSC-derived sEVs have been found 
to activate the PI3K/Akt regulatory pathway, as well as the ERK and 

TABLE 2 Summary of the small extracellular vesicle communication involved in the regenerative response.

Target cell Cell of origin
Signaling pathways 
involved

Regenerative role References

Nerve Cell

Myelinating Schwann Cell PI3K/Akt signaling pathway Enhances neurite outgrowth Sohn et al. (2020)

Non-myelinating Schwann Cell RhoA GTPase inhibition Regulates growth cone formation Lopez-Verrilli et al. (2013)

Repair Schwann Cell Upregulation of miRNA-21 transcription Enhances neurite outgrowth Lopez-Leal et al. (2020)

M1 Macrophage Cell PI3K/Akt signaling pathway Promote nerve outgrowth Hervera et al. (2018)

M1 Macrophage Cell Nerve Cell Upregulation of miR-21-5p transcription
Promotes a proinflammatory 

phenotype
Simeoli et al. (2017)

Schwann Cell Fibroblast Cell Activation of mTORC1 Promotes nerve remyelination Zhao et al. (2022)

PI3K, phosphoinositide 3-kinase; AKT, Protein kinase B; RhoA, Ras homolog family member A; mTORC1, mammalian target of rapamycin complex 1.

TABLE 3 Role of miRNAs in regulating the regenerative response.

Cell of 
origin

Micro-RNA Biological function Signaling pathway
EVs 
involved

References

Schwann Cell

miR-340
Regulates debris removal and axonal 

outgrowth
Inhibiting TPA protein expression Unreported Li et al. (2017)

miR-221/222
Promotes Schwann Cell migration and 

proliferation
PI3K/Akt/mTOR sEVs Yu et al. (2012)

miR363

Suppresses Schwann Cell migration
RAS/ERK signaling pathway

sEVs Sohn et al. (2020)miR22-3p

miR29a-3p Wnt signaling pathway

miR-21 Accelerates axonal outgrowth Akt signaling pathway sEVs Liu et al. (2022)

Nerve Cell

miRNA-132 Promotes nerve growth.
cAMP signaling pathway

sEVs Qian et al. (2017)
ERK-dependent CREB signaling cascade

miR-21-5p
Shift macrophage phenotype toward 

M1 pro-inflammatory
Unreported sEVs Simeoli et al. (2017)

miRNA-21
Promotes Schwann Cell proliferation 

and nerve regeneration

Regulating TGFβI, TIMP3 and EPHA4 

target genes
sEVs

Lopez-Leal et al. (2020) 

and Ning et al. (2020)

miRNA Let-7
Regulates Schwann Cell proliferation 

and migration

NGF-independent pathway
Unreported Li et al. (2015)

Inflammatory cytokines (IL-6 and IL-10)

M2 Macrophage miR-223
Promotes Schwann Cell migration, 

proliferation, and axonal outgrowth
Upregulating NGF and laminin expression MVs Zhan et al. (2015)

Fibroblast miR-673-5p
Regulates Schwann Cell myelination 

state

Activating the mTORC1 growth factor 

mediator by the Tsc2 gene
sEVs Zhao et al. (2022)

Mesenchymal 

Stem Cells

miRNA-17-92 Enhances axonal outgrowth PI3K/PTEN/mTOR sEVs Zhang Y. et al. (2017)

miRNA let-7b
Controls the switch in macrophage 

phenotype
TLR4/NF-κB/ STAT3/AKT sEVs Ti et al. (2015)

TPA, tissue-type plasminogen activator; PI3K, phosphoinositide 3-kinase; AKT, Protein kinase B; RhoA, Ras homolog family member A; mTOR, mammalian target of rapamycin; mTORC1, 
mammalian target of rapamycin complex 1; TLR4, Toll-like receptor 4; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; STAT3, signal transducer and activator of 
transcription 3; PTEN, Phosphatase and TENsin homolog deleted on chromosome 10; Tsc2, Tuberin; NGF, nerve growth factor; ERK, extracellular signal-regulated kinase; IL-6/10, 
interleukin-6/10; cAMP, cyclic adenosine monophosphate; CREB, cAMP response element-binding protein; TGFßI, transforming growth factor beta induced; TIMP3, TIMP Metallopeptidase 
Inhibitor 3; EPHA4, ephrin type-A receptor 4.
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FIGURE 4

Overview of the molecular signaling pathways affected by electrical 
stimulation (ES) of peripheral nerves. ES activates the Trk and Ca2+ 
receptors, initiating the cAMP signaling pathway, which, in turn, 
upregulates the transcription of growth factors and cytoskeletal 
proteins to promote axonal outgrowth. The PI3K/Akt and RAS/ERK 
signaling pathways further contribute by activating the transcription 
factor CREB, which subsequently leads to an increase in the 
secretion of growth factors.

STAT3 signaling pathways, thereby enhancing the secretion of growth 
factors that contribute to axonal regeneration and outgrowth (Shabbir 
et al., 2015; Qing et al., 2018; Dong et al., 2019).

Similar to sEVs, MVs have shown a promising role in enhancing 
PNR by facilitating the transport of cytoskeletal proteins and RNAs 
between cells. Treatment of peripheral nerve injury in vivo with 
MSC-derived MVs has been found to enhance axonal growth by 
regulating the PTEN/PI3K/Akt signaling pathway (Ye et al., 2021). 
Additionally, M2 macrophage-derived MVs upregulate the expression 
of miR-233, which increases laminin expression and NGF secretion, 
resulting in enhanced nerve regeneration (Zhan et  al., 2015). In 
contrast, the role of M1-derived MVs in PNR has not been extensively 
explored; however, they have been investigated as a therapeutic 
strategy for cardiovascular diseases and an inhibitory factor for tumor 
progression in colon cancer (Huis In Veld et al., 2022; Xia et al., 2022). 
Despite these findings, there remains a lack of understanding 
regarding the molecular mechanisms of intercellular communication 
through MVs, which creates a gap in our ability to fully assess the 
efficacy of MVs in promoting PNR (Zhan et  al., 2015; Hercher 
et al., 2022).

The transportation of miRNAs through sEVs and MVs is pivotal 
for regulating cellular communication within nerve cells, SCs, 
macrophages, fibroblasts, and MSCs. Table 3 provides an overview of 
the roles of miRNAs in regulating biological functions, including 
axonal growth, cell migration, and cell proliferation, within the PNS.

4 Electrical stimulation in peripheral 
nerve regeneration

The application of ES within the PNS has a profound influence on 
cell migration, proliferation, and tissue regeneration (Du et al., 2018). 
ES promotes regeneration within the PNS by specifically targeting 
nerve cells, SCs, and macrophages. Hu et al. (2019) examined the 
effect of direct electric current stimulation on DRG nerve cells in an 
electrotactic cell culture chamber. When comparing the cellular 
condition following electric fields of 100 and 200 mV/mm it was 
observed that, cell viability, proliferation, and density were higher at 
100 mV/mm than at 200 mV/mm (Hu et  al., 2019). Further 
investigation into the impact of 100 mV/mm stimulation for varying 
durations, ranging from half an hour to 2 h, indicated that a half-hour 
stimulation had no significant effect on cells, while a 2-h stimulation 
led to decreased viability. This reduction can be  attributed to the 
prolonged alteration of the cell membrane depolarization and 
repolarization states, which ultimately affects the integrity of the 
membrane structure. Thus, the reported optimal parameters for ES are 
an intensity of 100 mV/mm ES and a duration of 1 h (Hu et al., 2019). 
Concerning SC stimulation, Koppes et  al. found that electrically 
stimulating SCs at a frequency of 20 Hz (with pulses of 100 μs at 3 V) 
in an electrotaxis setup led to the overexpression of growth-associated 
protein (GAP)-43, ɑ1-tubulin, and TrkB, all of which contribute to 
axonal outgrowth and nerve regeneration (English et  al., 2007; 
Geremia et al., 2007; Koppes et al., 2014; Li et al., 2023).

Various ES parameters have been reported for in vivo peripheral 
nerve injury models (Jin et al., 2023). For instance, applying ES for 1 h 
at 20 Hz (with pulses of 100 μs, 3–5 V) in a rat model showed rapid 
nerve regeneration, reducing the axonal outgrowth timeline from to 
2–3 months to 3 weeks (Al-Majed et al., 2000; Brushart et al., 2005). 

Furthermore, McLean and Verge (2016) modeled peripheral nerve 
injury in rats by creating focal demyelination lesions in the sciatic 
nerve with an injection of 1% Lysophosphatidylcholine (LPC), which 
disrupts the myelin structure. Five days following injection, direct 
pulsed ES was performed for 1 h (with pulses of 100 ms at 3 V) and 
revealed expedited myelin debris clearance and enhanced regeneration 
by upregulating the anti-inflammatory response in macrophages 
(McLean and Verge, 2016). In addition, ES promotes higher specificity 
in directional axonal outgrowth and reduces axonal crossover, thereby 
improving regeneration (Brushart et al., 2002, 2005). Roh et al. (2022) 
used 0.5 mA stimulations at 16 Hz in a rat model to examine the 
interchangeable effects of treatment duration on axonal outgrowth. 
The group found that a short-term (14 days) application of 10-min ES 
increased axonal growth. However, a long-term (52 days) 10-min ES 
did not yield an enhanced regenerative effect (Roh et al., 2022; Jin 
et al., 2023). This finding raised the question of whether a shorter 
duration of ES is sufficient to enhance axonal growth. Calvey et al. 
(2015) demonstrated that ES at 1 mA and 20 Hz in rats, whether 
applied for 10 and 60 min, exhibited the same increase in nerve 
regeneration after 12 weeks of stimulation. These findings suggest a 
potentially safer approach to facilitate enhanced nerve regeneration 
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and functional recovery (Calvey et al., 2015; Jin et al., 2023). As for the 
choice of the ideal ES frequency setting to augment regeneration, Lu 
et al. (2008) investigated the effect of different ES frequency settings 
on regeneration. When comparing the application of 1 mA 
percutaneous ES at 1, 2, 20, and 200 Hz frequencies in a rat model for 
15 min, stimulation at a frequency of 2 Hz presented to be  most 
successful in augmenting regeneration (Lu et al., 2008). Peripheral 
nerves treated with ES at 2 Hz expressed higher myelination, higher 
axon density, and a higher ratio of blood vessel to total nerve area (Lu 
et al., 2008). On the other hand, stimulation at a frequency of 200 Hz 
led to reduced PNR in comparison to lower frequencies, further 
highlighting the efficiency of low-frequency ES for regeneration. 
Overall, the gold standard for in vivo studies appears to be an ES of 
20 Hz for 1 h, with voltage ranging from 0.5 to 5 V (Zuo et al., 2020; Ni 
et al., 2023). However, the detailed molecular mechanisms underlying 
the observed regenerative effects of these specific parameters remain 
largely unknown (Geremia et al., 2007; Gordon et al., 2007; Gordon, 
2016). For comprehensive review articles that extensively explore 
various in vivo ES protocols for PNR, please refer to Pullar (2011), 
Gordon (2016), Willand et al. (2016), and Zuo et al. (2020).

4.1 Electrical stimulation to regulate 
intracellular signaling mechanisms

Exposure to ES activates the neuronal cyclic adenosine 
monophosphate (cAMP) pathway, a key regulatory process that 
contributes to enhanced axonal growth guidance and nerve outgrowth 
upon ES of nerve cells in vitro. More specifically, as shown in Figure 4, 
this activation is triggered by BDNF binding to the Trk receptor and 
an ensuing increase in intracellular calcium levels within nerve cells 
in response to ES (Al-Majed et al., 2000; Geremia et al., 2007, 2010). 
The cAMP pathway, in turn, upregulates the expression of growth 
factors BDNF, GDNF, and NGF, and enhances regeneration by 
upregulating the expression of neurotrophins and cytoskeletal 
proteins, such as GAP-43, tubulin, and actin (Willand et al., 2016; Ni 
et al., 2023). Additionally, ES activates the PI3K/Akt pathway in nerve 
cells by downregulating the expression of the growth inhibitor PTEN, 
which, in turn, upregulates the secretion of growth factors, such as 
BDNF, leading to enhanced axonal elongation (Singh et al., 2015).

4.2 Electrical stimulation and small 
extracellular vesicles

The physiological benefits of ES in PNR have been attributed to 
an increased secretion and uptake of sEVs (Hu et al., 2019; Debbi 
et al., 2022). Hu et al. (2019)demonstrated that ES at an intensity of 
100 mV/mm for 1 h promotes the secretion of glutamate, an excitatory 
neurotransmitter in the nervous system, which is associated with an 
increase in sEV secretion in nerve cells. Glutamate binds to calcium-
permeable ionotropic glutamate receptors on the surface of SCs, 
leading to a calcium influx. This sequential increase in the intracellular 
calcium levels stimulates the release of sEVs (Reddy et al., 2001; Savina 
et al., 2003). While research on the regenerative effects of ES has been 
gaining momentum, with numerous studies unveiling a stimulatory 
effect of ES on cells and sEV secretion (Brushart et al., 2002, 2005; 
Geremia et al., 2007; Koppes et al., 2014; Calvey et al., 2015; McLean 

and Verge, 2016; Hu et al., 2019; Fukuta et al., 2020; Roh et al., 2022; 
Li et al., 2023), the regulatory processes underlying these findings 
remain somewhat unexplored. Overall, ES enhances PNR across 
multiple domains, making it a noteworthy therapeutic approach.

5 Mechanotherapy and peripheral 
nerve regeneration

The implementation of non-invasive mechanotherapy has led to 
a significant enhancement in promoting PNR. Mechanotherapy, 
specifically through techniques, such as US and extracorporeal shock 
waves, facilitates cell regeneration by enhancing intercellular 
communication. The subsequent sections delve into the latest findings 
concerning the therapeutic utilization of US and extracorporeal shock 
waves for PNR, along with an exploration of the associated 
signaling pathways.

5.1 Ultrasound

US is known for its noninvasive and safe application in the 
medical field, serving both diagnostic and therapeutic purposes. US 
waves generate mechanical energy that stimulates tissue regeneration. 
Currently, the utilization of US spans a spectrum of intensities, 
including both high and low intensities, depending on its application. 
High-intensity US, characterized by an energy level exceeding 3 W/
cm2, generates heat energy through molecular vibrations, mainly 
applied for localized tumor ablation in the treatment of prostate, liver, 
breast, and kidney cancers (Wu et  al., 2004; Klingler et  al., 2008; 
Crouzet et al., 2014; Peek and Wu, 2018). In contrast, low-intensity 
US, operating at energy levels below 1 W/cm2, does not generate 
thermal energy-associated tissue damage, making it more suitable for 
tissue regeneration (Acheta et al., 2021). With a depth of penetration 
of 3–5 cm at a frequency of 1 MHz and 1–2.5 cm at a frequency of 
3 MHz, low-intensity US offers valuable potential for therapeutic 
applications (Draper et  al., 1995; Hayes et  al., 2004). They can 
be  delivered in two different waveforms: continuous and pulsed. 
Among these, low-intensity pulsed ultrasound (LIPUS) is considered 
safer compared to high-intensity pulsed ultrasound, because it 
involves the delivery of low-intensity mechanical waves in a pulsatile 
manner, minimizing heat generation within the tissue while still 
promoting regeneration (Acheta et  al., 2021; Grogan and 
Mount, 2023).

5.1.1 Ultrasound stimulation to regulate 
intracellular signaling mechanisms

LIPUS-treated nerve cells exhibit a substantial increase in neurite 
outgrowth through the activation of the Netrin-1/DCC signaling 
pathway (Weng et al., 2018; Acheta et al., 2021). Netrin-1, a crucial 
guidance factor, plays a key role in neuronal development and 
contributes to peripheral nerve regrowth after injury (Dun and 
Parkinson, 2017). Despite the observed increase in Netrin-1 due to 
LIPUS, the precise molecular mechanism underlying the promotion 
of axonal elongation remains unclear (Yue et al., 2016; Ito et al., 2020; 
Acheta et al., 2021). LIPUS treatment also activates mechanoresponsive 
receptors in SCs and fibroblasts, leading to the activation of the PI3K/
AKT signaling pathway. The mechanical force induces fibroblasts to 
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enhance collagen production, thereby providing structural support for 
axonal repair (Bohari et al., 2012; Yue et al., 2016; Acheta et al., 2021; 
Hormozi-Moghaddam et  al., 2021). Similarly, LIPUS-treated SCs 
show enhanced proliferation and expression of neurotrophic factors, 
especially GDNF, BDNF, and NGF, which drive axonal outgrowth. 
LIPUS enhances the redifferentiation of SCs into a myelinating state 
by upregulating the expression of myelinating factors, such as ERG2, 
NRG1, and MBP (Yue et al., 2016; Peng et al., 2020; Acheta et al., 
2021). Notably, LIPUS-treated SCs exhibit increased expression of 
Cyclin D1, a protein that regulates cell proliferation. Elevated Cyclin 
D1 levels are associated with the inhibition of the Wnt/β-catenin 
signaling pathway, which in turn promotes nerve remyelination 
(Makoukji et al., 2012; Ren et al., 2018; Weng et al., 2018; Ito et al., 
2020). Interestingly, LIPUS has been found to decrease the 
pro-inflammatory response of SCs by inhibiting inflammatory 
markers such as TNFα and IL-6. The pro-inflammatory response of 
SCs occurs during the early Wallerian degeneration phase of 
regeneration to regulate cellular debris clearance; however, if 
prolonged, it can impede axonal elongation. This finding suggests the 
potential application of US as an early intervention mechanism to 
accelerate axonal regeneration (Ito et al., 2020; Acheta et al., 2021).

5.1.2 Low-intensity pulsed ultrasound stimulation 
and small extracellular vesicles

Intercellular communication through sEVs is another domain 
through which LIPUS can influence PNR. As previously discussed, 
sEVs play a crucial role in the regenerative cascade, relating their 
increased secretion to the regenerative outcome. Recently, Zeng et al. 
(2019) demonstrated that the treatment of lung cancer cells with US 
intensities ranging from 0.6 to 3.4 W/cm2 promoted sEV secretion. 
Furthermore, LIPUS stimulation of SCs led to the upregulation of the 
expression of myelin-related miRNAs, such as let-7c-5p and 
miR-34a-5p, in SC-derived sEVs. This variation in the miRNA profile 
of sEVs enhances their efficacy in PNR (Ye et  al., 2023). sEVs 
containing elevated levels of let-7c-5p miRNA have been shown to 
induce increased NGF expression in nerve cells, subsequently 
activating the PI3K/AKT signaling pathway, leading to increased 
axonal outgrowth (Li et al., 2015; Ye et al., 2023). Although LIPUS 
enhances sEVs secretion and alters miRNA expression, the molecular 
mechanisms underlying these effects are poorly understood.

5.2 Extracorporeal shock wave

An extracorporeal shock wave (ESW) is an acoustic mechanical 
stimulation similar to an US wave, but it applies approximately 1,000 
times the mechanical pressure (Romeo et al., 2014; Guo et al., 2022). 
ESW propagate a mechanical stimulus in the treated tissue, offering a 
therapeutic application for various conditions, including peripheral 
nerve injury. There are two types of ESW generators: focused and 
radial (Zwerver et al., 2016; Guo et al., 2022). A focused ESW (fESW) 
is commonly used for deep treatment areas, reaching depths of up to 
12 cm from the surface (Dymarek et al., 2020). In contrast, a radially 
defocused waveform propagates through the tissue in spherical waves, 
reaching a depth of only 3–4 cm (Dymarek et al., 2020). A defocused 
waveform is more applicable for superficial treatments such as tibial 
bone fractures (Kertzman et al., 2017). Although focused waveforms 
are used for some PNR applications (Vahdatpour et al., 2016; Guo 

et al., 2022), defocused waveforms are considered more suitable for 
augmenting PNR (Hausner and Nogradi, 2013; d’Agostino et al., 2015; 
Zwerver et al., 2016). Regardless of its wave shape and form, ESWT 
generates a mechanical stimulus that provokes two physical effects: 
mechanotransduction and cavitation.

Mechanotransduction plays a significant role in PNR because the 
mechanical stimuli exerted by the surrounding regenerative 
microenvironment affect myelin gene regulation, SC differentiation, 
and axonal regeneration (Ingber, 2006). ESWT induces a 
mechanotransduction response through applied shear and pressure 
forces that impact cell membrane polarization, differentiation, 
proliferation, and intracellular regulatory processes (d’Agostino et al., 
2015; Moya et al., 2018; Guo et al., 2022). For instance, the Piezo1 and 
Piezo2 channels, which are abundant in SCs, exhibit enhanced 
activation following ESW stimulation (Guo et al., 2022). In contrast, 
cavitation refers to the rapid implosion of air bubbles formed as a 
result of the negative pressure associated with ESWT. It generates a 
tensile force within the extracellular space that induces an indirect 
mechanical force on the surrounding cellular membrane, thereby 
promoting the secretion of intracellular growth factors (Lopez-Marin 
et  al., 2018; Guo et  al., 2022). ESWT often requires both 
mechanotransduction and cavitation to effectively regulate PNR.

5.2.1 Extracorporeal shock wave therapy to 
regulate intracellular signaling mechanisms

Low-intensity ESWT (Li-ESWT) is associated with enhanced 
nerve regeneration, specifically, axonal outgrowth. Murata et  al. 
demonstrated that in vivo Li-ESWT treatment involving 2,000 pulses 
at 0.08 mJ/mm2 and 4 Hz stimulated the expression of transcription 
factor ATF3 and enhanced axonal outgrowth in injured rat models 
(Murata et al., 2006; Wang et al., 2017). However, this treatment also 
caused injury to the sensory nerve fibers, indicating a potentially 
harmful effect of Li-ESWT. Alternatively, Li ESWT treatment using 
300 pulses at an energy density of 0.06 mJ/mm2 and 3 Hz in rat models 
enhanced BDNF expression without causing nerve damage (Wang 
et al., 2017). Additionally, Hausner et al. (2012) reported improved 
directional specificity for axonal growth and enhanced nerve 
conduction velocity in rat models treated with 300 pulses of 0.1 mJ/
mm2 Li-ESWT at 3 Hz. The substantial disparity in Li-ESWT 
stimulation parameters reflects the lack of a standardized approach for 
its application in PNR.

Treatment of neural stem cells with Li-ESWT has been shown to 
increase the activity of the PI3K/AKT and Wnt/β-catenin signaling 
pathways, both of which regulate axonal outgrowth (Xu et al., 2012; 
Weihs et al., 2014; Zhang J. et al., 2017; Lopez-Marin et al., 2018). 
Additionally, Wang et al. (2017) reported an increased activation of 
the PERK/ATF4 signaling pathway in DRG neurons following 
Li-ESWT treatment. Enhanced axonal elongation following Li-ESWT 
treatment is primarily attributed to the upregulation of the growth 
factor BDNF via the PERK/ATF4 and PI3K/AKT signaling pathways. 
In SCs, Li-ESWT activates the phosphorylation of PERK and the 
translation of the ATF4 gene, which is associated with growth factor 
overexpression (Schuh et al., 2016; Wang et al., 2017). Li-ESWT is also 
believed to mediate macrophage inflammatory responses during 
PNR. Stimulation of macrophage cell cultures with Li-ESWT 
involving 400 pulses and energy density of 0.03–0.1 mJ/mm2 at a 
frequency of 3.5 Hz promoted the expression of the anti-inflammatory 
cytokine IL-10 and M2 marker genes ALOX15, MRC1, and CCL18, 
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associated with accelerated axonal outgrowth (Sukubo et al., 2015). In 
addition, Li-ESWT-treated macrophages showed reduced expression 
of the inflammatory marker IL-1β (Sukubo et al., 2015). These effects 
highlight the potential of Li-ESWT to regulate inflammatory 
responses during Wallerian degeneration, thereby expediting axonal 
elongation and nerve regeneration (Sukubo et  al., 2015; Guo 
et al., 2022).

5.2.2 Extracorporeal shock wave therapy and 
small extracellular vesicles

The effect of ESWT on sEV release to facilitate PNR remains 
relatively underexplored. Gollmann-Tepeköylü et al. examined the 
effect of ESWT on sEV release for ischemic heart disease improvement 
and reported that the mechanical stimulation resulting from ESWT 
drives an increase in sEV release (Gollmann-Tepekoylu et al., 2020). 
Although this study did not investigate the release of sEVs in the 
context of the PNS, it does highlight a probable correlation between 
Li-ESWT mechanical stimulation and sEV secretion. Moreover, 
ESWT has been found to modulate the Wnt/β-catenin pathway, a 
potential regulatory pathway for sEV-mediated intercellular 
communication. Further research is needed to explore the impact of 
Li-ESWT on sEV release as component of the peripheral nerve 
regenerative cascade.

5.3 A systematic comparison between 
mechanotherapy platforms

Considering the observed benefits of both LIPUS and ESWT, their 
application in vivo results in enhanced functional recovery following 
sciatic nerve injury. This improvement is attributed to accelerated axonal 
regeneration and early target-organ reinnervation. More specifically, US 
treatment is associated with increased nerve fiber density, larger axons, 
thicker myelin sheaths, and faster nerve conduction velocities, all of 
which offer expedited regeneration (Ito et al., 2020). In addition, US 
accelerates Wallerian degeneration, increases SCs proliferation, and 
promotes the secretion of the neurotrophic factor CNTF and growth 
factors BDNF and NGF (Daeschler et  al., 2018; Ito et  al., 2020). In 
contrast, ESWT contributes mainly to the secretion of the growth factor 
BDNF (Weihs et al., 2014; Schuh et al., 2016). Compared with US, ESWT 
elicits a more rapid inflammatory response, assisting in the initial phase 
of Wallerian degeneration (Daeschler et al., 2018; Ito et al., 2020). In vitro 
investigations of ESWT revealed increased proliferation of SCs, along 
with enhanced expression of regenerative markers GFAP and c-Jun 
(Wang et al., 2017; Daeschler et al., 2018). However, ESWT has been 
reported to be most effective in the Wallerian degeneration stage, with 
limited significant improvements thereafter (Hausner et al., 2012). Both 
therapeutic modalities share similarities in application and outcomes. 
However, a significant gap remains in understanding the molecular 
mechanisms governing both approaches in PNR.

6 Future outlook

Our comprehension of PNR has advanced steadily over time, yet 
significant prospects for improvement remain. The timeline of 
regeneration, especially concerning the cellular inflammatory responses 

during Wallerian degeneration, remains ambiguous. While the 
proinflammatory stage during PNR is crucial for facilitating axonal 
outgrowth, prolonged inflammation can impede regeneration. The 
overlapping stages of regeneration create a gap in our understanding of 
cellular communication within the regenerative cascade. With growing 
research on sEVs and their role in PNR, they hold promise as a tool for 
studying intercellular communication. However, further insight is needed 
into the uptake mechanisms of sEVs in the PNS.

A thorough characterization of sEV cargo profiles, including miRNAs 
and proteins, across all responder cells during regeneration, is essential. 
Proteomic and transcriptomic analysis can be utilized to identify and 
characterize the sEVs with regard to their cellular origin, as recent studies 
revealed SC-and Fibroblast-derived sEV differentially expressed genes (Wei 
et al., 2019; Zhou et al., 2024). However, more research is needed to fully 
understand the differential characterization of peripheral and central nerve-
derived sEVs, and their effect on PNR. Another limitation is the 
comparative analysis of sEV characterization between in vivo and in vitro 
models, as a deeper understanding of the disparities between in vivo and in 
vitro multi-cell culture models for sEV isolation is required. In addition, 
further research is required to characterize the distinct sEV cargo profiles 
associated with different SC phenotypes in the regenerative cascade. 
Moreover, there exists a limitation in replicating PNR in the realistic 3D 
biomimetic models, as it integrates a multi-cell culture to investigate sEV 
communication. Hence, mapping sEVs involvement in cellular 
communication at each stage of the regeneration cascade requires further 
investigation. Recent findings have proposed another EV subgroup, matrix-
bound vesicles (MBVs), tailored specifically to the ECM. Understanding 
the influence of MBVs on the regenerative cascade holds promise, 
addressing gaps in knowledge pertaining to ECM cellular communication. 
Similarly, it is necessary to understand the niches of all EV subgroups in the 
pathophysiology and treatment of peripheral nerve injury.

Future research into ES and mechanotherapy holds potential to 
advance clinical strategies for promoting PNR. However, an in-depth 
understanding of the molecular mechanisms underlying these 
modalities needs to be improved. The diverse parameters for US and 
ESWT stimulations, both in vivo and in vitro, present challenges in 
assessing their specific benefits in PNR, necessitating standardized 
protocols. As ESWT gains attraction in this field, a clear molecular 
understanding of its regenerative effects becomes necessary.

While ES offers notable benefits in PNR, our comprehension of the 
underlying molecular mechanisms is limited. To gain a deeper 
understanding, it is crucial to examine the effects of ES on the biogenesis 
and secretion of sEVs within the regenerative cascade. Furthermore, 
exploring the intersection of electrical and mechanical therapeutic 
stimulations and sEV communication in PNR also holds paramount 
importance. Applications such as biocompatible conductive hydrogels 
and piezoelectric nanofibers in an in vivo PNI model can help us study 
how mechanical and electrical stimulation affect sEV communication 
during PNR. This in turn can help us address the challenges associated 
with PNI and revolutionize regenerative treatment modalities.
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