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Neural systems have evolved to process sensory stimuli in a way that allows for 
efficient and adaptive behavior in a complex environment. Recent technological 
advances enable us to investigate sensory processing in animal models by 
simultaneously recording the activity of large populations of neurons with single-
cell resolution, yielding high-dimensional datasets. In this review, we  discuss 
concepts and approaches for assessing the population-level representation of 
sensory stimuli in the form of a representational map. In such a map, not only 
are the identities of stimuli distinctly represented, but their relational similarity is 
also mapped onto the space of neuronal activity. We highlight example studies 
in which the structure of representational maps in the brain are estimated from 
recordings in humans as well as animals and compare their methodological 
approaches. Finally, we integrate these aspects and provide an outlook for how 
the concept of representational maps could be applied to various fields in basic 
and clinical neuroscience.
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What is a representational map?

From single cells to maps

Electrophysiological recordings of single neurons have been extremely influential in our 
understanding of how neural activity is modulated by sensory stimuli and their physical 
properties, such as pure tone frequency or drifting grating orientation (Galambos and Davis, 
1943; Hubel and Wiesel, 1962). However, compared to the sensory epithelium and early 
processing stations in the brainstem, neurons in higher-order areas in the cortex reconstruct 
stimulus identity from an increasingly cognitive, rather than purely physical, point of view. 
Single neuron representations become more selective to complex features (Bizley et al., 2007; 
Bizley and Walker, 2009; Sieben et al., 2013), and tolerant to identity-preserving variations in 
scale, position or intensity (Rust and DiCarlo, 2012). Further, sensory responses in higher 
order areas can be influenced by learning and behavioral states (McGinley et al., 2015; Vinck 
et al., 2015). While these findings were traditionally based on recordings of limited numbers 
of single neurons, a qualitative change in analyzing sensory responses was introduced through 
the emergence of techniques to measure the activity of large neuronal populations, particularly 
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in the cortex (Saxena and Cunningham, 2019; Steinmetz et al., 2021; 
Grienberger et al., 2022). This technical development has created the 
possibility of new modes of interpretation, beyond the single-neuron 
tuning curve, to capture the self-organizing dynamics that underlie 
the representations of sensory input at the population level (Brette, 
2018; Ebitz and Hayden, 2021; Panzeri et al., 2022). The analysis of 
population dynamics enables us to understand how the brain maps 
relevant information onto an internalized space to inform perception 
and behavior.

Representational maps in the brain

To navigate efficiently through the external world with its ever-
changing demands and challenges, our brains continuously store and 
process information. This information is represented in neural activity 
that informs and underlies behaviorally relevant computations (Marr, 
1982). The structure of these internal neural representations reflects 
the relationships between their real-world counterparts, optimizing 
the inferences drawn from them (Buckner and Carroll, 2007; Behrens 
et al., 2018; Barron et al., 2020; Park et al., 2020).

In this review, we  focus on the structured representation of 
informational entities in the brain, or the brain’s representational map, 
as a fundamental mode of organization across different cognitive 
domains (Behrens et al., 2018; Kriegeskorte and Wei, 2021). Although 
the term ‘map’ typically refers to a two-dimensional representation of 
relationships in physical space, it is used here in a much broader 
sense (Brette, 2018). In a traditional topographic map of a town, for 
example, the physical distance of items like buildings and streets 
corresponds to their mapped distance. In specific cases, some 
properties of the neural representational map are similarly mapped 
in physical space, e.g., the cortical surface, leading to topographically 
organized sensory representations such as auditory tonotopy or 
retinotopic organization in visual cortex (Dräger, 1975; Guo et al., 
2012). However, in a more general sense, neural representational 
maps depict cognitive relationships as similarities of population 
activity in an abstracted neural activity space (Shepard and Chipman, 
1970; Edelman, 1998; Kriegeskorte et  al., 2008a). Thus, a high 
similarity in activity patterns would correspond to a close relationship 
between two items (Connolly et  al., 2012). Importantly, the 
intentionally loose term “relationship” can describe various 
properties, allowing the simultaneous generation of multiple, 
complementary representational maps in the brain.

For our review, we define the concept of a representational map 
in the brain as follows:

 1. A representational map exists in a space that is defined by 
neuronal activity.

 2. Relevant representational entities must be distinguishable from 
each other in this map, i.e., associated with distinct 
activity patterns.

 3. The map depicts relationships between representational entities 
in a way that informs neural computations.

 4. These relationships are encoded as similarity or dissimilarity of 
activity patterns.

The useful properties of a representational map are clear when 
contrasted with hypothetical patterns of brain activity in which each 

representational entity is associated with a unique activity pattern that 
is equally distinct from all other entities. Despite its efficient coding, 
such a representation would be limited in its ability to guide decisions 
and behavior (Brette, 2018). In contrast to a map, this scenario is 
comparable to a randomized list of items, which provides no 
information on their relational structure. A representational map, 
however, not only enables the identification of representational entities 
and their relationships to each other, but also enables inferences about 
novel stimuli (Behrens et al., 2018; Pashkovski et al., 2020), since the 
activity pattern evoked by a novel stimulus will correspond to a 
particular position on the representational map, providing implicit 
relational information to other stimuli.

As representational maps exist in an abstract space defined by 
the activity of the neuronal population, the dimensionality of this 
space is – in principle – as large as the number of neurons in that 
population. As the number of neurons accessing sensory input 
typically increases from the sensory epithelium to higher cortical 
areas, the dimensionality of representation, in theory, could grow 
massively. In practice, however, the relevant neural activity space is 
constrained by many variables including metabolic, biophysical, and 
anatomical factors, as well as by the constraints of real-world 
contexts and associations. Many neurons in a recorded population 
have highly correlated activity (Pillow et al., 2008; van den Brink 
et al., 2019; Gava et al., 2021), or contribute relatively few spikes to 
the overall activity during the investigated event or time period 
(Willmore et al., 2011). Representational maps thus tend to occupy 
a lower-dimensional topological subspace (Santhanam et al., 2009; 
Sadtler et al., 2014; Luczak et al., 2015). The structure of neuronal 
activity within a high-dimensional space is often described by 
manifolds (Jazayeri and Ostojic, 2021), which relate to the concept 
of a representational map (Gallego et al., 2017; Mitchell-Heggs et al., 
2023). However, a representational map puts particular emphasis on 
the relational structure of the represented entities. As such, a 
manifold can be  rather used to describe the general geometry a 
representational map occupies in neuronal activity space, where the 
structure of the map itself highlights the relational information of 
the represented items.

Representational maps of sensory features: 
topography and beyond

As mentioned above, classical examples of low dimensional 
representational maps – namely, sensory topographic maps where 
functional properties follow an anatomical organization – can 
be constructed from the activity of neurons whose feature tuning 
varies according to their positions on the two-dimensional cortical 
surface. Reflecting the organization of projections from the sensory 
epithelium, topographically organized maps of stimulus features are a 
hallmark of sensory systems (Dräger, 1975; Merzenich et al., 1975; 
Kaas, 1997; Li et al., 2023). In the primary visual cortex (V1), neurons 
are arranged in a topographic manner that corresponds to the position 
of stimuli in the visual field (Allman and Kaas, 1971). V1 neurons 
respond to stimuli in a specific location, with adjacent neurons 
responding to adjacent locations in the visual field. Studies in the 
somatosensory cortex (S1) have similarly demonstrated 
representational maps for different sensory areas of the body (Nelson 
et al., 1980). In the auditory cortex, local neural tuning to pure tone 
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frequency progresses systematically along the cortical surface 
(Merzenich et al., 1975). Classical sensory cortical topography fulfills 
the representational map criteria laid out previously: pure tone 
frequency is mapped onto a low-dimensional space, where the 
distance between frequency regions corresponds to the similarity of 
the stimuli, albeit the degree of organization can vary across species 
(Kaschube, 2014). Furthermore, a topographical organization of 
functional dimensions, that reach beyond simple physical properties 
have been described in the language processing system (Huth et al., 
2012, 2016).

However, topographically mapped sensory properties are not 
the only features critical for identifying and analyzing relevant 
stimuli. There are complex features that researchers were unable to 
find a topographical organizing principle. For example, it is known 
that auditory cortical neurons are sensitive to diverse stimulus 
properties, from physical variables such as intensity, to perceptual 
variables such as pitch (Bendor and Wang, 2005). Most of these 
features are not inherited in a topographically organized ‘labeled 
line’ structure from peripheral projections. Further, some relevant 
stimulus attributes, particularly those that are complex and 
multidimensional, may only be  represented distinctly at higher 
levels of the processing chain.

The emergence of higher-order perceptual representations may 
partly be due to an increasing convergence in network connectivity 
(Singer, 2021). Convergence enables two processes that aid the 
formation of cognitive categories and the ability to judge perceptual 
similarity beyond a simple analysis of physical attributes: First, each 
individual neuron in a cortical area has access to more of the sensory 
environment than lower-level neurons due to the expansion of the 
number and diversity of inputs (Felleman and Van Essen, 1991; 
Guillery and Sherman, 2002; Babadi and Sompolinsky, 2014). Second, 
network activity encoding low-dimensional stimulus relationships 
(e.g., intensity or frequency differences) can be broadcast to a large 
population, generating diverse combinatorial codes, and distributing 
information about these relationships over a higher-dimensional 
space (Fusi et  al., 2016; Rossi-Pool et  al., 2021). This higher-
dimensional structure, with both hierarchical and recurrent network 
elements, is remarkably robust at generating useful cognitive 
constructs that allow for the analysis and interpretation of external 
events, whether familiar or novel, despite the fact that only few feature 
dimensions map on the cortical surface. With this, the concept of a 
representational map goes beyond classical topographically organized 
maps. Hence, topographical maps can be understood as a subset of the 
more general definition of representational maps in the space of 
neuronal activity, as described above.

Sensory items are represented on multiple representational maps 
across a processing hierarchy simultaneously. The structure of these 
maps will differ, however. Here, analogous to single cell receptive 
fields, representations of physical properties will be  increasingly 
replaced by perceptual properties and the similarity of activity patterns 
will rather reflect perceptual similarity (Op de Beeck et  al., 2008; 
Carlson et al., 2014). Importantly, this can lead to the phenomenon 
that stimuli that are represented distinctly on low-level representational 
maps, could be mapped together on high-level representational maps, 
reflecting the formation of perceptual categories (Connolly 
et al., 2012).

Representational maps can also be found at further stages of a 
sensory-motor transformation, such as the hippocampus (Park et al., 

2020; Nieh et  al., 2021), cortical association (Carota et  al., 2017; 
Whittington et  al., 2022; Nelli et  al., 2023) and motor areas 
(Santhanam et al., 2009; Churchland et al., 2012; Gallego et al., 2017; 
Keller and Mrsic-Flogel, 2018). Multiple activity patterns each 
confined to lower processing complexity, could be interlinked with 
each other in larger circuits to form higher-order, potentially 
multisensory and complex representational maps (Popham et al., 
2021). Moreover, such parallel representational maps interconnected 
by feedforward, but also feedback connections can help to interpret 
mixed neuronal activity patterns in response to similar stimuli in 
changing context (Rigotti et al., 2013; Deniz et al., 2023; Kira et al., 
2023): Based on the specific context, a certain stimulus might 
be represented on different representational maps, which are selected 
to optimize behavioral inferences drawn from the map in this 
situation. Thus, the neuronal representation of stimuli by mixed-
selectivity neurons allows their embedding on different 
representational maps and therefore enables flexible interpretations 
based on different contextual information.

Although the representational map approach offers a unified 
perspective to extract relevant features of neuronal activity at both 
high and low levels of the processing chain, in this review we will focus 
on sensory representational maps.

To experimentally estimate the structure of a representational 
map in the brain, a sufficiently large and representative number of 
neurons need to be  sampled and analyzed (Shepard, 1980). 
Although the relevant structure can be  captured in fewer 
dimensions than the number of recorded neurons, it is typically 
larger than two or three (Haxby et al., 2011; Stringer et al., 2019), 
complicating visualization. To overcome this problem, two or three 
dimensions that explain the most variability in neuronal activity are 
often selected for visualization using one of various dimensionality 
reduction techniques (Yu et al., 2009; Ganguli and Sompolinsky, 
2012; Cunningham and Yu, 2014). Figure  1 schematizes a 
representational map of a sensory scene in the brain and the 
experimental estimation of its structure in a dimension-reduced 
form (Figure 1A). An equivalent process can be applied to various 
hierarchical levels of information processing in the brain 
(Figures 1B,C), ranging from basic sensory stimulus representations 
in a perceptual context (Figure 1C, left), to abstract representations 
of environments and cognitive schemes (Figure 1C, right) (Tolman, 
1948; O'Keefe and Nadel, 1978; Schuck et al., 2016; Rubin et al., 
2019; Park et  al., 2020). In this schematic, feedforward sensory 
processing across hierarchical brain structures is emphasized, but 
it should be noted that feedback from higher-order brain structures 
likely impacts a representational map. Importantly, multiple 
representational maps at different processing levels are not 
exclusive, but rather complement each other (Jacobs and Schenk, 
2003), and should be read out simultaneously in order to optimize 
behavior (Semedo et al., 2019).

In the following sections, we  first highlight examples of how 
representational maps can be estimated from neural activity across 
different model systems, including human studies. We  provide a 
conceptual template for estimating representational maps from 
neuronal population data in a given model organism, and consider the 
conditions under which a representational map can arise. Finally, 
we discuss the benefits and limitations of the representational map 
approach and present an outlook for how it can be  applied to 
clinical neuroscience.
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Example studies from the literature

Representational maps in primates 
including humans

A widely used approach in the cognitive sciences to estimate the 
structure of a representational map is a Representational Similarity 

Analysis (RSA, Kriegeskorte et  al., 2008a). RSA is grounded in 
psychological studies to match similarities among input (e.g., 
stimulus) properties and similarities among the internal 
representations (Shepard and Chipman, 1970) as well as the analysis 
of single-unit recordings using population vectors (Georgopoulos 
et  al., 1986; Dimsdale-Zucker and Ranganath, 2018). RSA was 
specifically formulated by Edelman (1998) and first applied to human 

FIGURE 1

Representational maps in the brain. (A) Schematic illustrating the formation of a representational map in the brain and the experimental estimation of 
its structure: A set of informational entities, e.g., different physical stimuli, are perceived by sensory organs and transformed into neural representations 
in a high-dimensional space of neuronal activities in the brain. The structure of the representational map can be estimated by neural measurements 
(e.g., fMRI, electrophysiological recordings, calcium imaging, etc.) and are typically displayed and interpreted after a reduction of dimensionality. 
(B) Exemplary sensory input scene that comprises various informational entities, such as water, water lilies and leaves. (C) Illustration of multiple, 
complementing representational maps in the brain. In primary sensory regions, representational entities are predominantly mapped according to their 
physical properties like color, shape and orientation (left panel). In hierarchically higher brain areas, representational entities organize according to 
perceptional categories (mid panel), or even abstract categories (right panel).
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fMRI data (Edelman et al., 1998). RSA is a technique that positions 
representative entities relative to each other by computing a 
two-dimensional matrix, where each element corresponds to a 
dissimilarity score for a given pair of vectors describing the population 
activity evoked by the presentation of a given sensory stimulus 
(Kriegeskorte et al., 2008a; Kriegeskorte and Kievit, 2013).

The influential work by Kriegeskorte and coworkers highlighted 
the versatility and robustness of RSA by applying the methodology to 
two different data types (fMRI and single-unit recording) from two 
different species, human and monkey. Experimenters presented 
subjects with a wide range of images of animate and inanimate objects 
while measuring activity in the inferior temporal cortex (Figures 2A,B; 
Kiani et al., 2007; Kriegeskorte et al., 2008b). Representational maps 
were estimated by analyzing representational dissimilarity matrices 
(RDM) constructed from multi-voxel and population activity patterns 
(Figure 2C). Interestingly, the estimated representational maps showed 
a clear structure reflecting a categorical grouping of objects according 
to various features. Furthermore, they observed a striking similarity 
in the organization of the representational maps, despite independent 
data acquisition with different recording methods (Figures 2C,D). 
Most importantly, the high correspondence in structure of the maps 
across different species, suggested that the semantic mapping of the 
various visual objects shared a large degree of similarity.

Up to date, analysis of representational maps has been used in the 
form of RSA for neural recordings from different experimental 
techniques such as EEG/MEG (Su et  al., 2012; Cichy et  al., 2014; 
Kaneshiro et al., 2015; Wang et al., 2020) and PET (Kao et al., 2021), 
covering different sensory modalities like vision (Cohen et al., 2014; 

Kaneshiro et  al., 2015; Cichy et  al., 2016; Guntupalli et  al., 2016; 
Wardle et al., 2016; Groen et al., 2018; Xu and Vaziri-Pashkam, 2021; 
Luo and Collins, 2023), audition (Perez-Bellido et  al., 2018; 
Berezutskaya et al., 2020; Mattioni et al., 2020; Bodin et al., 2021), 
somatosensation (Lee Masson et al., 2018; Liu et al., 2021; Ariani et al., 
2022; Kryklywy et al., 2023), olfaction (Fournel et al., 2016; Iravani 
et al., 2021; Kato et al., 2022) and motor planning (Ariani et al., 2022).

Representational maps in rodents

In contrast to most human studies, where neuronal activity is 
typically recorded with limited spatial resolution using functional 
magnetic resonance imaging, animal studies allow recordings of 
neuronal activity with single-cell resolution. In the last decade, 
through technological advances in genetics, in vivo microscopy, and 
electrophysiological methods, large datasets of neuronal activity have 
been acquired, particularly in rodent models. In these experimental 
settings, the utility of traditional single-cell tuning curves starts to 
diminish and the need for less biased methods to describe the complex 
structure of the neuronal population data emerges.

Using in vivo calcium imaging of populations of neurons in the 
mouse piriform cortex, as well as the synaptic terminals of projection 
neurons stemming from the olfactory bulb, Pashkovski et al. (2020) 
showed that odor representations in the olfactory cortex, and its 
inputs from the olfactory bulb, are structured and organized by odor 
similarity. They simultaneously acquired response vectors of several 
hundred neurons after the presentation of a large odor set from 

FIGURE 2

Examples of representational maps in the human and primate brain for a common set of visual stimuli. (A) The image set from different categories 
presented to monkeys and humans. Reproduced, with permission, from Kriegeskorte et al. (2008b). (B) Measurement of brain activity in human and 
monkey inferior temporal cortex (IT). In human IT, neuronal activity was measured with high-resolution blood oxygen-level-dependent fMRI. In 
monkey IT, single unit activity was recorded extracellularly with tungsten electrodes. (C) Representational Dissimilarity Matrices (RDM) for monkey and 
human IT. The dissimilarity of the two response patterns to a given pair of stimuli was calculated and displayed as color-coded RDM. The Dissimilarity 
measure was computed as 1 – r (Pearson correlation). (D) Stimulus arrangements reflecting response pattern similarity in IT for monkey and human. 
Multidimensional scaling was applied to reduce the dimensionality of the RDM from C. In the resulting representational map, images close to each 
other evoked similar response patterns.
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different chemical categories. A correlation analysis showed that 
groups of neurons systematically represented the chemical 
relationships among the set of odors. By comparing different odors on 
a representational map estimated by UMAP (uniform manifold 
approximation and projection) embeddings, they could show that 
these relationships were conserved across different mice (Figure 3A). 
This representation could change with experience, demonstrating the 
flexibility of the olfactory cortex in updating odor representations.

Similarly, Deitch et al. probed neuronal population activity in 
visual areas of the mouse brain (Deitch et al., 2021) to show how 
representations change over time. They utilized two publicly available 
datasets of in vivo recordings (de Vries et al., 2020; Siegle et al., 2021) 
obtained from different recording techniques, namely Neuropixels 
probes (Jun et  al., 2017), which are used for extracellular 
electrophysiological recordings, and calcium imaging of tens of 
thousands of neurons in six different brain areas of the mouse visual 
system. During the recordings, the mice were presented with an 

identical set of stimuli (short sequences of naturalistic movies). This 
dual approach has the advantage of compensating for potential biases 
introduced by the specific recording technique or by synthetic stimuli 
such as moving gratings, which are classically used in studies of the 
visual system. The authors showed that the stimulus representations 
in the visual cortex undergoes “representational drift,” meaning that 
the patterns of activity change over time in response to the visual 
stimulation (Chambers and Rumpel, 2017; Rule et al., 2019). These 
changes in representation can be  influenced by experience and 
modulated by behavioral and attentional processes (Figure 3B).

The study of learning-induced changes of neural representations 
and their relation to the ongoing dynamics of sensory representations 
provide insight into the mechanisms underlying learning and 
adaptation, or attention and task engagement (Xin et al., 2019). In the 
auditory modality, Aschauer et al. used in vivo calcium imaging to 
study the long-term sensory representations of a large set of sound 
stimuli in the auditory cortex (Aschauer et al., 2022). The authors 

FIGURE 3

Representational maps in rodent neuroscience research. (A) Pashkovski et al. performed in vivo calcium imaging in piriform cortex and recorded the 
activity of local populations of neurons in response to a large set of odors, which could be chemically categorized into six different categories. UMAP 
embedding of neuronal response patterns shows a representational map reflecting the different odor categories. (B) Deitch et al. used a published 
dataset of Neuropixel recordings in the visual cortex during repeated presentation of short movie scenes. Individual neurons show selective firing to 
specific frames in the movie. tSNE mapping of population responses illustrate the temporal stimulus sequence as a representational map. (C) Aschauer 
et al. recorded neuronal activity in the auditory cortex using in vivo calcium imaging during the presentation of a large set of sounds, including pure 
tones and complex sounds. By combining the recordings from many individual mice, the authors established a global measure of representational 
similarity, which can be visualized with principal component analysis as a representational map.
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demonstrated that by combining the data from individual mice, it was 
possible to create a global representational map of stimulus similarity, 
which accounts for the perceptual behavior of individual mice 
(Figure 3C). The global similarity between activity patterns evoked by 
auditory stimuli predicted the level of stimulus generalization after 
fear learning, i.e., the ability of an individual to respond to an 
unconditioned stimulus in a similar way as to the conditioned 
stimulus. Behavioral generalization is considered not to reflect the 
limits of perception, but rather as a valid strategy in learning, given 
that the exact same stimulus is rarely encountered twice in real life. 
Using the same dataset, another study showed that despite the large 
drift in single neuron responsiveness, the tonotopic map – the classical 
functional organization of many auditory areas in the brain – is stably 
maintained (Chambers et al., 2022).

These exemplary studies highlight how the concept of 
representational maps has been successfully translated from human 
and non-human primate research to the rodent, a widely used model 
of choice in systems neuroscience.

Experimental estimation of a 
representational map

The assessment of representational maps from large-scale neural 
data offers a general approach to estimate neural representations and 
their relationships to each other. In the following section, we will 
discuss practical considerations when estimating a representational 
map from neural recordings.

Conceptualization

As a first step, the neural representations to be assessed should 
be clearly conceptualized and circumscribed with respect to sensory 
stimuli used and their ethological significance, the brain area and 
context of recorded activity. Different representations probed in an 
experiment do not, though, need to be unimodal. For example, one 
can present visual and auditory stimuli while recording neural activity 
in an auditory brain region to estimate a multisensory representational 
map. However, combining estimates of irrelevant or conflicting 
representations could make it difficult to interpret the resulting 
representational map.

Size of the neural measurement

The neural measurement used to assess a representational map 
should have an adequate size. First, a sufficient number of 
representational elements (e.g., different sensory stimuli) should 
be probed experimentally. A wide range of stimuli presented in an 
experiment [e.g., at least several tens as in Kriegeskorte et al. (2008b) 
and Freiwald and Tsao (2010)] sets the basis for a reliable and precise 
representational map.

Besides the number of assessed representations, the number of 
recorded neural units (e.g., neurons, local fields, or fMRI voxels) 
should also be  sufficiently high, as they determine the maximal 
dimensionality of a representational map and consequently the 
precision of the relations between mapped elements. Here, by way of 

example, representative studies have estimated representational maps 
based on population sizes in the range of hundreds (see, e.g., 
Kriegeskorte et al., 2008b) up to several tens of thousands of neuronal 
units (see, e.g., Aschauer et al., 2022). Subsampling the dataset offers 
a practical approach to assess the robustness of the map estimate. 
Ideally enough data can be obtained from a single individual to obtain 
a sufficiently representative sampling of neuronal population activity. 
Technical limitations, however, often require pooling data from 
multiple individuals, leading to an estimate of a representational map 
that shows common features. Datasets from two pooled, but 
independent datasets should converge on a comparable structure, 
when the sample size is representative enough.

Types of data and algorithms to create the 
representational map

The basis for assessing a representational map is set by the 
underlying measure of neural activity. This measure is influenced by 
the method of probing activity (e.g., calcium imaging, 
electrophysiological recordings, or fMRI), and the metric of activity 
(e.g., continuous ΔF/F0 traces or binarized activity). The activity 
patterns of all recorded units over all presented sensory stimuli then 
constitute an estimation of their neural representations. The estimates 
of representational maps can be generated either from the activity 
patterns of the neurons themselves, measured in units such as action 
potentials or calcium events, or from the structure of the correlations 
between activity patterns. The latter case may be useful in cases where 
signal strength varies across measured units due to experimental 
factors rather than real variations in the underlying activity. RSA, for 
example, relies on a correlation analysis that normalizes the 
information of each neural unit, hence disregarding the overall 
magnitude of activity. In this way, fMRI voxels that may vary in their 
maximal signal strength can still be  used reliably to assess a 
representational map. Furthermore, correlation-based approaches 
were successfully applied to represent aspects of stimulus 
discrimination (Kriegeskorte et al., 2008b; Hiramatsu et al., 2011; 
Bathellier et  al., 2012; Connolly et  al., 2012; Groen et  al., 2012; 
Aschauer et al., 2022).

Recordings of neural activity that provide a larger degree of 
homogeneity between neural units (e.g., calcium imaging with single-
cell resolution) can be directly used to estimate a representational map 
by reducing its dimensionality without prior construction of a 
similarity matrix. For this direct estimation of a representational map 
multiple approaches, such as principal component analysis, are 
available. Covariance-based estimations of representational maps can 
maintain information about response magnitudes and hence include 
aspects of stimulus salience (Treue, 2003; Ceballo et al., 2019).

Accordingly, the distance metrics used for estimating a 
representational map should also be chosen based on a hypothesis of 
the main feature in neural population activity that reflects stimulus 
relationships. Commonly used distance metrics are dissimilarity 
1-linear or rank-based correlation coefficient (Kriegeskorte et  al., 
2008a), the Euclidean distance between population activity vectors or 
the absolute activity difference (Kriegeskorte et al., 2008a; Walther 
et  al., 2016). Additionally, if the distributional distance between 
representational entities is of interest, the Mahalanobis distance can 
be used (Kriegeskorte et al., 2006; Kriegeskorte and Kievit, 2013). Since 

https://doi.org/10.3389/fncel.2024.1366200
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Noda et al. 10.3389/fncel.2024.1366200

Frontiers in Cellular Neuroscience 08 frontiersin.org

RSA is based on the assumption that there is a categorical structure in 
a dataset of neural activity, clustering methods can be helpful to reveal 
such categorical divisions. While unsupervised, hierarchical clustering 
(Laakso and Cottrell, 2000; Kriegeskorte et al., 2008b; Nili et al., 2014; 
Kaneshiro et  al., 2015) has been frequently applied, a supervised 
approach could improve and emphasize behaviorally relevant 
categorization (Khaligh-Razavi and Kriegeskorte, 2014).

Measures of trial-to-trial variability

In many cases, the similarity matrices used in a RSA are 
constructed from trial-averaged population activity vectors 
(Kriegeskorte et al., 2008a), hence neglecting inter-trial variability in 
neuronal activity. However, the correlation in trial-to-trial variability 
of single neural units, or noise correlation, carries relevant information 
for population codes (Averbeck et al., 2006; Kohn et al., 2016; Panzeri 
et  al., 2022). To capture this information, an alternative way of 
constructing representational similarity matrices utilizes crosswise 
correlations of single trial estimates of representations (Bathellier 
et al., 2012; Aschauer et al., 2022; Filipchuk et al., 2022). Here, the 
correlation across combinations of single trials is averaged for each 
pair of probed representations, yielding a representational similarity 
matrix in which the diagonal (self-correlation) does not equal 1 by 
construction. This approach has the advantage of providing an 
additional measure of trial-to-trial reliability for each assessment of a 
representation, reflected by its mean self-correlations.

Brain states and behavioral context

Neural computations can be affected by global brain states (Zagha 
and McCormick, 2014; McGinley et al., 2015; Li et al., 2019; Bradley 
et al., 2022) that likely also affect the estimate of representational maps 
(Cauda et al., 2012; Filipchuk et al., 2022). In this respect, different 
brain states could, for instance, suppress elements on a representational 
map or change their position. Therefore, experiments should 
be controlled for such state-dependency, either by standardizing the 
conditions of an experiment, leading to more comparable brain states, 
or by measuring brain state explicitly (e.g., with pupillometry or 
measurement of large-scale brain oscillations) to clarify the specific 
effects of different brain states on representational maps.

Behavioral context, e.g., involving a subject performing a task 
versus measuring responses to the same stimuli in a passive setting 
can also have substantial effects on neuronal activities (Otazu et al., 
2009) and therefore also affects the estimates of representational maps 
derived from them. This may apply particularly for representational 
maps in hierarchically higher brain areas increasingly incorporating 
contextual information on sensory stimuli that is largely determined 
by the task setting. However, the application of sensory stimuli in a 
defined task setting may also give rise to specific expectations in an 
individual that can impact on population responses in sensory early 
areas (Keller and Mrsic-Flogel, 2018).

Validation of a representational map

To ensure that the relationships of the elements on a 
representational map are meaningful in respect to neural 

computation, they need to be validated. This can be accomplished by 
comparing the relational structure of a representational map with the 
structure of the stimulus set used to probe the mapped 
representations. Here, stimuli can be  related to each other with 
respect to their physical properties (e.g., tone frequency and intensity) 
or experimental conditions (e.g., paired presentation in an 
experiment), allowing a priori hypotheses about a map estimated 
from these representations.

In addition, a quantitative validation can be  achieved by 
correlating the distances between the probed elements on a 
representational map with a readout of behaviors, psychophysics and 
other exophenotypes related to the respective represented entities. 
Here, multiple studies have demonstrated a link between 
representational maps and behaviorally relevant categorization of 
represented entities (Battaglia et  al., 2004; Bathellier et  al., 2012; 
Maurer et al., 2014; Aschauer et al., 2022). Technical developments in 
the future may enable the manipulation of neural activity in order to 
shift elements on a representational map and affect associated 
behavior. Such manipulation experiments require a detailed 
understanding of representational maps and the underlying neural 
codes, but are critical for the assertion that a representational map 
reflects meaningful information and causally determines behavior.

Collective statistics of the tuning of 
individual neurons determine the 
structure of a representational map

Understanding the link between the activity of individual 
neurons that collectively form a representational map can provide 
interesting constraints and insights on the activity patterns emerging 
in neuronal circuits. Before the advent of large-scale, single cell 
recording techniques, neuroscientists typically described sensory-
evoked neuronal activity in the form of tuning curves, often obtained 
from a comparably small number of neurons. In this section, 
we tasked ourselves with assembling a large-scale dataset by picking 
individual tuning curves that together would form the basis of a well-
structured representational map. Would our choices really matter, or 
would any assembly of tuning curves result in some form of 
representational map?

As mentioned at the beginning of this review, if all representational 
entities were associated with activity patterns that are equally 
dissimilar from each other, no meaningful representational map could 
emerge. At the level of individual cells, this hypothetical scenario 
could correspond to a situation in which only one specific neuron 
would fire for each representational entity on the map. This extreme 
example shows that not all combinations of tuning curves can serve 
as a basis for a representational map and some redundancy in tuning 
of individual neurons appears to be  essential. Then, what are the 
statistics of tuning curves in the brain that collectively can form the 
basis of a meaningful representational map?

We considered a previously published dataset from various 
subfields of the mouse auditory cortex consisting of responses to a 
diverse set of 34 different sound stimuli (Figure 4A) recorded in 
21,506 neurons (Aschauer et al., 2022). When sorting the response 
of the neurons according to their maximal response, a diverse range 
of tuning curves tile the space defined by the set of sound stimuli. 
The tuning of individual neurons is relatively narrow and typically 
only a few of the 34 stimuli evoke a significant response in a given 
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responsive neuron (Figure 4B, second from right). To understand 
the impact of tuning curve diversity on the formation of a 
representational map, we created artificial datasets in which (i) all 
neurons were assigned the same tuning as one of the experimental 
cells (Figure 4B, left), or (ii) all population response vectors were 
assigned the same response pattern for all stimuli (Figure  4B, 
second from left), respectively. In both artificial conditions, uniform 
noise was added to the response patterns. While the former artificial 
dataset has extreme redundancy in tuning across cells, the latter 
dataset is diverse in tuning, but extremely redundant in population 
response vectors across stimuli.

In order to create an artificial dataset in which the redundancy 
of tuning curves across neurons and the redundancy across 
population response vectors for different stimuli is much less than 
for the experimental data, we shuffled the response matrix vertically 
and horizontally, randomly distributing the 34 response patterns 
over neurons (Figure 4B, right). This artificial dataset represents a 
decorrelation of neuronal responses at a much higher level than 
experimentally observed and thereby would allow a decoding of 
stimuli that is even more effective compared to the 
original recordings.

We constructed representational similarity matrices from the four 
datasets in which the Pearson correlation was calculated as a measure 
of similarity for all pairwise population responses (Figure 4C). As an 
illustration of the structure of the resulting similarity matrix, 
we  performed a principal component analysis and plotted the 
individual stimuli along the first two principal components of the 
similarity matrix (Figure 4D). When considering the off-diagonal 
entries of the similarity matrix from the original dataset, distinct 
patterns of higher and lower pairwise correlations were found across 
subsets of stimuli, that characterize the structure of the representational 
map (Figures  4C,D, second from right). In contrast, the 
representational similarity matrices of the population responses with 
extremely high levels of redundancy in tuning (Figure 4C, first and 
from left), show very little structure in the pairwise correlations across 
activity patterns, either on an overall low level (Figure 4C, first from 
left) or high level (Figure 4C, second from left). When comparing the 
similarity matrix obtained from the original data with the matrix 
constructed from shuffled data representing an extremely diversified 
tuning of individual neurons, we also observed a loss of structure in 
the pairwise correlations across activity patterns (Figure 4C, second 
from right).

Taken together, these simulations of highly redundant or highly 
diverse sets of neural responses present two extremes that set the 
boundaries in which the brain organizes its activity. The shape and 
width of individual tuning curves and the redundancy in neurons with 
similar tuning may not reflect the maximal possible decorrelation of 
response patterns to various sensory stimuli that could 
be implemented in brain circuits, but instead are essential properties 
that mediate the encoding of relationships between representational 
entities and thereby determine the structure of representational maps 
(Stringer et al., 2019). The encoding of similarity by correlated tuning 
curves also explains why representational maps must occupy only a 
lower-dimensional subspace within the full space of theoretically 
available neuronal activities. Furthermore, we  hypothesize that 
network mechanisms are likely operating to safeguard an optimal 
balance between the decorrelation and correlation of sensory evoked 
activity patterns and allow a representational map to emerge.

Maintenance of representational maps 
and their adaptive and maladaptive 
plasticity

Representational maps reflect how the brain encodes and 
represents different representational entities in a relational context, 
and are thought to underlie computational processes carried out with 
the represented information. Here, a well-balanced interplay of 
stability on the one side and plasticity on the other ensures that a 
representational map can be  adjusted to changing environmental 
conditions, while at the same time maintaining essential relational 
properties. Thus, new information can be embedded into preexisting 
knowledge without corrupting previously stored information. In the 
following section, we elaborate on aspects of the plasticity and stability 
of representational maps, and demonstrate how they can be linked to 
clinical conditions.

Maintaining and adjusting representational 
maps

It has been shown that large scale topographic maps in the brain 
– special forms of representational maps, e.g., the tonotopic map of 
sound frequency – can be reliably obtained from recordings of cortical 
activity over time (Guo et  al., 2012), indicating a general level of 
stability. However, during altered environmental conditions or in the 
context of learning, neural representations have been shown to change 
and reorganize substantially, affecting their neural code and mapping 
(Merzenich et al., 1984; Clark et al., 1988; Pons et al., 1991; Kilgard 
and Merzenich, 1998). By way of example, sensory deprivation leads 
to a remodeling of functional cortical maps, where deprived cortical 
areas are taken over by other sensory systems that are used for 
compensation (Pons et  al., 1991; Finney et  al., 2001; Elbert and 
Rockstroh, 2004; Weiss et al., 2004). This illustrates that the intrinsic 
plasticity of representational maps in the brain reflects the changes in 
stimulus statistics by rearranging, expanding or adding represented 
elements (Amedi et al., 2003; Hamilton et al., 2004; Thaler et al., 2011; 
Behrens et al., 2018; Freund et al., 2021).

The apparent stability of a representational map under stable 
sensory and environmental conditions, however, arises from a 
dynamic equilibrium of the individual neuronal responses that 
collectively encode the map at a global level. It has been shown that 
sensory responses in individual neurons can exhibit substantial 
intrinsic volatility over the time course of few days, even under basal 
conditions without reinforced environmental cues or other learning 
tasks (Driscoll et al., 2017; Rule et al., 2020; Schoonover et al., 2021; 
Aschauer et al., 2022). This raises the central question: How can a 
representational map maintain stable relations between the 
representational entities if the functional properties of the neurons 
encoding these elements are intrinsically volatile? Several solutions to 
this problem have been discussed, including the following two 
proposals: First, drift could occur in a coordinated manner for the 
various representational entities on a map in such a way that the 
elements changing their location on the map would preserve their 
distance and relation to each other (Xia et al., 2021). Second, intrinsic 
drift could affect only a subpopulation of the neurons that form a 
representational map which do not strongly affect relations of mapped 
elements. From this perspective, representational drift could affect 
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FIGURE 4

The collective statistics of the tuning curves of individual neurons shapes the structure of a representational map. (A) A set of sounds (19 pure tones 
ranging between 2 and 45 kHz and 15 complex sounds) presented in the previous study (Figure 3C, Aschauer et al., 2022). The relational structure 
between these sounds is investigated in neuronal activity space. (B) Sound-evoked tuning curves across different sound stimuli in individual single 
neurons, adapted from Aschauer et al. (2022). Second from right: original experimental data. Left: Artificial population of neurons with extreme 
redundancy in tuning curves across neurons, simulated by replicating a tuning curve of a single neuron from the experimental data and adding noise. 
Second from left: Artificial population of neurons with extreme redundancy across population responses for different stimuli, simulated by replicating 
one specific population response vector for a stimulus from the experimental data and adding noise. Right: Artificial population of neurons with highly 
diversified tuning curves constructed by randomly shuffling the real dataset across cells and stimuli. The matrix was sorted by maximal stimulus 
response for each neuron. The colormap represents normalized evoked neuronal activity in arbitrary units. (C) Representational similarity matrices 
constructed from the datasets in A. The Pearson correlation of the two population response vectors to a given pair of sound stimuli was calculated as 
metric of similarity. The colormap represents Pearson correlation coefficients of population response vectors evoked by the set of 34 stimuli. 
(D) Dimension-reduced display of the representational map. Principal component analysis was applied to the representational similarity matrices in C 
and the first two principal component scores of each correlation pattern to each sound stimuli were mapped onto the corresponding eigenvectors. 
The color of each dot represents stimulus identity as in A, B and C.
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neurons to a variable degree (Chambers and Rumpel, 2017; Pettit 
et al., 2022), primarily affecting those neural populations that encode 
information which is redundant or orthogonal to the space of a 
representational map. Here, recent experimental evidence indicates 
that the neurons forming a representational map consist of a drifting 
subpopulation serving the generation of a local topographically 
organized sensory response, in a balanced manner over time and 
space (Chambers et al., 2022). Thus, the overall structure of the map 
can be  preserved, as long as the collective statistics of the tuning 
curves in the subpopulation of responsive neurons are maintained.

Together, these considerations underline the role of tuning width 
and redundancy in tuning curves in the neural code defining a map. 
By regulating these parameters, different neural mechanisms can 
regulate the plasticity and stability of a representational map in order 
to create a computational readout that is largely flexible, but also 
maintains prior knowledge in the form of relational distances between 
representational entities.

Clinical implications

The interplay between stability and plasticity is fundamental for 
the functionality of representational maps as valid and operational 
models of an organism’s knowledge. In contrast to physiological 
conditions, where a representational map faithfully encodes 
relationships between different representational entities, thereby 
enabling valid inferences (Figure  5A), aberrant maintenance or 
plasticity of representational maps can lead to distorted perceptual 
experience. This constitutes a novel perspective on different 
psychopathologies and their symptoms. For example, the problem of 
maintaining functional representational maps in the face of a 
progressive drop-out of neural units is particularly relevant in 
neurodegenerative disorders. In these disorders, the loss of neurons 
encoding representational entities could dramatically affect and 
distort the structure of a representational map. However, patients with 
neurodegenerative disorders and pronounced loss of neurons typically 
show a significant period without any or at least with very mild 
cognitive impairments (Villemagne et al., 2013; Aisen et al., 2022), 
hinting that compensatory mechanisms safeguard the structure of a 
representational map (Ebrahimi et al., 2022). After this latent period, 
early clinical symptoms typically affect the cognitive ability of 
discriminating and recognizing different objects (termed agnosia), 
setting them in a meaningful context and extracting knowledge from 
them (Kocagoncu et al., 2021; Tran et al., 2021). Thus, the onset of 
clinical symptoms could be interpreted as the moment in which a 
representational map’s structure starts to deteriorate: While initial 
degeneration of neurons hardly affects a representational map’s 
structure, the broad loss of neurons reduces the dimensionality and 
hence the overall discriminability of representational entities, leading 
to agnosia (Figure 5B).

Furthermore, representational maps are thought to reflect the 
structure of perception and consecutive decision-making (Schuck et al., 
2016; Freund et  al., 2021). This implies that distortions of a 
representational map comprising perceptual entities can cause perceptual 
impairments such as delusions and hallucinations (Figure  5C). 
Compelling clinical examples for these perceptual deficits are found in 
psychotic disorders such as schizophrenia, which is typically associated 
with impaired cognitive abilities and sensory integration (Carter et al., 

2017). Strikingly, schizophrenic patients have been found to show altered 
and dysfunctional cognitive map architectures (Nour et al., 2021). These 
observations only recently gave rise to the hypothesis that distortions of 
representational maps arise from deficits in maintaining stable brain 
states that are necessary to form functional representational maps (Braun 
et al., 2021; Musa et al., 2022).

Distorted representational maps could also offer an explanation for 
maladaptive learning and dysfunctional associations, for instance in the 
context of addiction or anxiety disorders. Here, dysfunctional associations 
are thought to play a central role in maintaining and consolidating 
psychopathology (Luscher and Malenka, 2011; McKim and Boettiger, 
2015; Ball and Gunaydin, 2022), e.g., when a drug becomes associated 
with common environmental cues, leading to increased relapse 
probability, or when vastly innocuous actions, such as walking over a busy 
street, become linked with extensive fear leading to avoidance and social 
isolation. In these scenarios, representational maps could offer an 

FIGURE 5

Altered representational maps and their clinical implications. 
(A) Schematic higher-order representational map under healthy 
conditions, taken from the example in Figure 1. Each number reflects 
a given representational entity. In this example, the map allows a 
discrimination of entities according to a cluster of real objects vs. 
reflected objects. (B) Analogous schematic of a representational map 
under the condition of a drop-out of neural units, e.g., in 
neurodegeneration. Here, due to the loss of neural dimensions, the 
maximal distance between represented entities is reduced, impeding 
their discrimination and potentially leading to agnosia. (C) Analogous 
schematic of a representational map under the condition of aberrant 
neural activity patterns during psychosis, leading to distorted 
relations between represented entities. The distortions can lead to 
misattribution of some entities to a wrong category, potentially 
leading to symptoms like delusions.
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impartial estimation of individual burden, but also of treatment success 
during a therapy, indicated by loosening the dysfunctional pairing on the 
map (Beckers et al., 2023). Moreover, individual representational maps 
could be used as a complementary diagnostic tool, reflecting individually 
learned associations and concepts, which might predispose subjects to 
develop particular disorders.

Hence, one promising focus of future research lies in standardizing 
the conditions for assessing representational maps, in order to 
quantitatively compare healthy and mentally ill individuals. As the 
concept of representational maps implies that psychopathological 
conditions could be reversed if one could identify and correct the aberrant 
tuning patterns of neural units, different therapeutic interventions could 
be tested in order to restore physiological conditions of a representational 
map. Here, treatment approaches that show a broad effect on different 
cognitive levels seem promising: For instance, psychedelic substances 
have recently been shown to induce destabilized states in cognitive models 
(Ballentine et al., 2022), increase neuroplasticity (de Vos et al., 2021) and 
enhance cognitive flexibility (Doss et al., 2021; Mason et al., 2021). These 
substances are therefore interesting candidates to manipulate neural 
representations. In general, such treatments should aim to selectively 
destabilize a representational map and hence make it susceptible to 
learning-related remodeling [e.g., in the context of psychotherapy (Musa 
et al., 2022)] in order to restore physiological conditions.

Conclusion and outlook

In this review, we conceptualized representational maps, in which not 
only the identities of representational entities are encoded as 
distinguishable neuronal activity patterns, but also their relationships are 
encoded as similarity in a higher-dimensional space of neural activity. 
We highlighted several studies and their methodologies to experimentally 
assess the structure of representational maps and discussed how they can 
emerge from individual neurons with diverse tuning properties. 
Furthermore, we  showed how symptoms of brain diseases can 
be interpreted in the framework of representational maps. We believe that 
in the future this framework will enable versatile descriptions of the 
organization of neural representations in basic and clinical research, 
possibly guiding the development of methodologies allowing specific 
manipulations of these maps in an experimental and therapeutical 
context. Although we  have focused our review on the structure of 
representations in biological networks, the concept of representational 
maps appears to be  a more general principle that could be  also 
instrumental in gaining insight in the structure of artificial neuronal 
networks (Kriegeskorte, 2015; Dwivedi et al., 2021; Saxe et al., 2021).
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