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B cells and the stressed brain: 
emerging evidence of 
neuroimmune interactions in the 
context of psychosocial stress 
and major depression
Elizabeth Engler-Chiurazzi *

Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain 
Institute, Tulane University School of Medicine, New Orleans, LA, United States

The immune system has emerged as a key regulator of central nervous system 
(CNS) function in health and in disease. Importantly, improved understanding 
of immune contributions to mood disorders has provided novel opportunities 
for the treatment of debilitating stress-related mental health conditions such 
as major depressive disorder (MDD). Yet, the impact to, and involvement 
of, B lymphocytes in the response to stress is not well-understood, leaving 
a fundamental gap in our knowledge underlying the immune theory of 
depression. Several emerging clinical and preclinical findings highlight 
pronounced consequences for B cells in stress and MDD and may indicate key 
roles for B cells in modulating mood. This review will describe the clinical and 
foundational observations implicating B cell-psychological stress interactions, 
discuss potential mechanisms by which B cells may impact brain function in the 
context of stress and mood disorders, describe research tools that support the 
investigation of their neurobiological impacts, and highlight remaining research 
questions. The goal here is for this discussion to illuminate both the scope and 
limitations of our current understanding regarding the role of B cells, stress, 
mood, and depression.
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1 Introduction

As appreciation for the complexity of neuroimmune interactions continues to grow, there 
is increasing evidence that B lymphocytes may play important roles in central nervous system 
(CNS) structure and function across the lifespan (Dwyer et al., 2022). Indeed, pathogenic as 
well as protective effects of B cells have been reported in the context of neurological and spinal 
cord injuries (Engler-Chiurazzi et al., 2020; Plantone et al., 2022; Maheshwari et al., 2023; 
Malone et  al., 2023), autoimmune diseases (Jain and Yong, 2022), and brain aging, 
neurodegeneration, and dementia (Plantone et  al., 2022), to name just a few examples. 
Neuroinflammation is a shared feature of many of the neurological diseases in which B cells 
are implicated (Bersano et al., 2023). And yet, while systemic and neuroinflammation is being 
increasingly linked to the response to psychosocial stress and the manifestation of chronic 
stress-related conditions (Maes, 2011; Wohleb et  al., 2016; Herkenham and Kigar, 2017; 
Dantzer, 2018), the role of the B cell in this context is not well understood.

OPEN ACCESS

EDITED BY

Olga Rojas,  
University Health Network (UHN), Canada

REVIEWED BY

Ruxandra F. Sirbulescu,  
Massachusetts General Hospital and Harvard 
Medical School, United States
Kenji Hashimoto,  
Chiba University, Japan

*CORRESPONDENCE

Elizabeth Engler-Chiurazzi  
 eenglerchiurazzi@tulane.edu

RECEIVED 22 December 2023
ACCEPTED 25 March 2024
PUBLISHED 08 April 2024

CITATION

Engler-Chiurazzi E (2024) B cells and the 
stressed brain: emerging evidence of 
neuroimmune interactions in the context of 
psychosocial stress and major depression.
Front. Cell. Neurosci. 18:1360242.
doi: 10.3389/fncel.2024.1360242

COPYRIGHT

© 2024 Engler-Chiurazzi. This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Review
PUBLISHED 08 April 2024
DOI 10.3389/fncel.2024.1360242

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2024.1360242&domain=pdf&date_stamp=2024-04-08
https://www.frontiersin.org/articles/10.3389/fncel.2024.1360242/full
https://www.frontiersin.org/articles/10.3389/fncel.2024.1360242/full
https://www.frontiersin.org/articles/10.3389/fncel.2024.1360242/full
https://www.frontiersin.org/articles/10.3389/fncel.2024.1360242/full
https://www.frontiersin.org/articles/10.3389/fncel.2024.1360242/full
mailto:eenglerchiurazzi@tulane.edu
https://doi.org/10.3389/fncel.2024.1360242
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2024.1360242


Engler-Chiurazzi 10.3389/fncel.2024.1360242

Frontiers in Cellular Neuroscience 02 frontiersin.org

This discussion will focus on B cells in the context of psychosocial 
stress and the impacts these cells may have on stress disorders, 
including major depression (MDD). The sections below will reiterate 
the clinical significance posed by stress-related disorders, review B cell 
functional roles within the immune system, describe clinical and 
foundational observations implicating B cell-psychological stress 
interactions, discuss potential mechanisms by which B cells may 
impact brain function in the context of stress and mood disorders, 
describe research tools that support the investigation of their 
neurobiological impacts, and highlight remaining research questions. 
The goal here is that this discussion will illuminate both the scope and 
limitations of our current understanding regarding the role of B cells, 
stress, mood, and depression.

2 Brief background of B cell 
development and activation

The process underlying B cell development, activation, maturation, 
and effector functions is complex and has been extensively reviewed 
elsewhere (Meinl et al., 2006; Jain and Yong, 2022). In brief here, the 
majority of B cell development begins in the bone marrow. There, 
hematopoietic stem cells differentiate into pro- and then pre-B cells, 
proceeding through several key developmental stages of random 
recombination of the B cell receptor heavy and light chains to generate 
lymphocytes with responsivity to a huge diversity of immunogens. Self-
reactivity, determined by at least three checkpoints (immature, 
transitional, and activated naïve B cell stages) must be  lacking for 
survival and migration to secondary immune organs as naïve B cells. 
Naïve B1 B cells have limited B cell receptor diversity and are 
predominantly found in the peritoneal and pleural cavities. B2 
follicular naïve B cells comprise the majority of B cells in lymphoid 
organs, namely the spleen. Following encounters with their antigen, a 
subset of activated B cells migrate to germinal centers (GCs) to undergo 
somatic hypermutation and class switch recombination to support 
affinity maturation. From there, maturing B cells become memory B 
cells or antibody secreting cells. A separate subset of antigen activated 
B cells will mature into short-lived plasmablasts outside of lymphoid 
structures while others become long-lived plasma cells (PC). Of note, 
following encounter with an antigen, activation can take place in T 
cell-dependent or -independent cascades depending on the B cell 
subset. Once activated, the functions of various B cell subsets can 
be classified into several domains: (1) producers of antibodies that, 
once created and bound to antigen, promote complement signaling as 
well as antigen neutralization, antigen opsonization (coating with 
antibodies), and ultimately destruction by other immune cells, (2) 
antigen presenters, and (3) cytokine and trophic factor secretors, (4) 
immune response regulators, and (5) memory cells that enable a more 
rapid and specific threat response in future encounters with that 
specific antigen (Figure 1). However, it is noteworthy that there is 
significant overlap and redundancy among the subset populations with 
regards to functional roles in response to immunogenic stimuli.

3 Clinical significance of stress-related 
disorders

Mood disorders, including MDD, are a significant global health 
issue. Lifetime prevalence of mood disorders has been reported to 

be nearly 10% (Steel et al., 2014; World Health Organization, 2017) 
and it was recently estimated that more than 320 million people 
currently are affected by MDD worldwide (Ferrari et  al., 2013). 
Problematically, the burden of mood disorders appears to 
be increasing. Indeed, between 2005 and 2018 in the United States 
alone, the number of adults with MDD increased from 15.5 to 17.5 
million patients; the annual costs associated with this condition 
(including direct, suicide-related, and workplace costs) are estimated 
at $326 billion (Greenberg et al., 2021), a nearly 38% increase from 
previous cost estimates (Greenberg et  al., 2015). While treatment 
interventions including antidepressant drugs are available, there is 
significant heterogeneity with regards to latency to symptom 
amelioration and in their response efficacy profiles (Trivedi et al., 
2006; Al-Harbi, 2012). These factors have coalesced to make MDD a 
leading cause of disability worldwide (Friedrich, 2017) and a 
significant source of human suffering. There is, therefore, an urgent 
need to improve understanding of its pathogenic mechanisms and 
develop novel, more effective treatment interventions.

4 Evidence supporting a role for the B 
cell in stress and depression

Although once considered “immune privileged,” a compelling 
body of literature indicates that the CNS and the peripheral immune 
systems engage in bidirectional communication, profoundly 
influencing one another during homeostasis and in pathological/
diseased neurological states (Pavlov et  al., 2018), including those 
associated with chronic stress and MDD. Indeed, it is now accepted 
that inflammatory cascades mediated by brain resident microglia as 
well as peripheral innate inflammatory and adaptive T cell-mediated 
arms of the immune system significantly contribute to MDD, at least 
in some patient subsets (Maes, 2011; Wohleb et al., 2016; Herkenham 
and Kigar, 2017; Dantzer, 2018). Is there evidence also implicating 
B cells?

4.1 Observations among clinical 
populations

Interest in interrogating immune underpinnings of mood began 
in the late-1980s/early 1990s, when initial pioneering studies revealed 
distinct patterns of peripheral immune cell profiles among patients 
with MDD and mentally healthy controls (Maes, 2011; Wohleb et al., 
2016). Indeed, Maes et al. (1990) noted that MDD patients displayed 
elevated levels of cluster of differentiation (CD)-4+ T cells, higher 
circulating soluble interleukin (IL)-2 receptor levels, and higher 
percentages of cells expressing CD25 (IL-2 receptor). As well, elevated 
levels of circulating cytokines, principally tumor necrosis factor 
(TNF)-α, IL-1β and IL-6, have been consistently reported among 
some subsets of depressed populations (Dowlati et al., 2010; Köhler-
Forsberg et al., 2017). Depression-associated profiles of some immune 
cell populations and proinflammatory cytokines also normalized 
among patients responsive to pharmacological therapeutic 
intervention (Roumestan et al., 2007; Arteaga-Henríquez et al., 2019). 
Antidepressant treatment with co-administration of anti-
inflammatory agents, such as non-steroidal anti-inflammatory drugs, 
statins, or cytokine inhibitors, improved depressive symptoms and 
MDD remission rates (Köhler‐Forsberg et al., 2019). However, high 

https://doi.org/10.3389/fncel.2024.1360242
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Engler-Chiurazzi 10.3389/fncel.2024.1360242

Frontiers in Cellular Neuroscience 03 frontiersin.org

levels of inflammatory biomarkers are also often associated with poor 
responsiveness to serotonin (5-HT) targeting interventions (Arteaga-
Henríquez et al., 2019), possibly accounting for the large heterogeneity 
in antidepressant efficacy for symptom remission in this population 
(Trivedi et  al., 2006; Al-Harbi, 2012; Akil et  al., 2018). Finally, 
observations that autoimmune patients prescribed inflammatory 
interventions developed rapid and profound depressed mood 
provided strong empirical support for immune-MDD associations 
(Pryce and Fontana, 2017).

At least initially, available evidence suggested that B lymphocytes 
were not consistently impacted by MDD. For instance, studies have 
reported both an increase or a decrease in B lymphocyte counts 
among students experiencing exam stress (Maes et al., 1999; McGregor 
et al., 2008). Some studies found no difference in B cell counts between 
MDD patients and controls (Darko et al., 1988) while others reported 
increased total or subset B cell counts (Maes et al., 1992) and still 
others showed reduced numbers (Pavón et  al., 2006). Later, 
Ahmetspahic et al. (2018) identified that while numbers of total B cells 
were not altered among MDD patients relative to healthy controls, 
there were reduced counts of IgD+CD27− naïve, CD1d+CD5+ 
regulatory-like, and CD24+CD38hi B cell populations. However, these 
early studies were limited by a number of factors, including a highly 

heterogenous patient population, small sample sizes, and a focus on 
circulating immune cell profiles identified with lineage markers and 
immune cell phenotyping tools available at the time. Interestingly, a 
recent meta-analysis revealed elevated B cell counts in MDD patients 
(Foley et al., 2023). These findings are summarized in Table 1.

4.2 Preclinical associations between B 
lymphocytes and the response to stress: 
focus on glucocorticoid signaling through 
the hypothalamic–pituitary–adrenal axis

4.2.1 Shifts in B cell number and functional 
profiles with pharmacological and behavioral 
stress exposure

The response to psychological stress is generally considered to 
be  mediated by engagement of the hormones involved in the 
hypothalamic–pituitary–adrenal axis (HPA; namely glucocorticoids), 
the sympathetic nervous system via catecholamines (discussed below), 
and more recently cytokines and immune cells. While glucocorticoids 
were historically considered immunosuppressive, collective evidence 
now indicates that stress-immune interactions, including those 

FIGURE 1

Domains of B lymphocyte function in the immune system. The process governing development, activation, and maturation of B lymphocytes is 
multifaceted and complex. Once activated by their cognate pathogenic signal, B cell subset functions within the broader immune response include (1) 
antigen presentation via major histocompatibility complexes (MHC) to effector immune cells, namely CD4+ or CD8+ T cells, (2) antibody production, 
and (3) pro- or anti-inflammatory cytokine secretion. These functions coordinate and potentially amplify, restrain, or resolve the broader immune 
response (Engler-Chiurazzi et al., 2020), and also serve as the foundation for immune memory to a given immunogen (Plantone et al., 2022). IL, 
Interleukin; TCR, T Cell Receptor; TGF, Transforming Growth Factor; TNF, Tumor Necrosis Factor. Figure created with BioRender.com.
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pertaining to B cells, are dynamic and complex (Kovacs, 2014). 
Indeed, like T cells, B cells of virtually all developmental stages express 
the cellular machinery [namely glucocorticoid (GR) and 
mineralocorticoid (MR) receptors] to respond to stress signals 
(Gruver-Yates et al., 2014) and studies have evaluated the effects of 
stress exposure on the number and function of B cells in key immune- 
and stress-related tissues. For instance, findings from several in vitro 
studies indicate that B cells, and particularly immature B cells, are 
susceptible to apoptotic consequences with exposure to high levels of 
corticosteroids (Garvy and Fraker, 1991; Lill-Elghanian et al., 2002; 
Igarashi et al., 2005). Further, in long-term cultured B lymphoblastoids 
collected from MDD patients or healthy controls, basal GR expression 
was elevated in depressed patients but showed a larger expression 
reduction when exposed hydrocortisone stimulation (Henning et al., 
2005). In vivo, circulating B lymphocyte counts are reduced with 
administration of exogenous corticosterone (Dhabhar et al., 2012; 
Gruver-Yates et  al., 2014) and tablet implant-based elevations in 
corticosterone levels in young adult male mice resulted in profound 
loss of bone marrow B cell subsets (Garvy and Fraker, 1991).

Behaviorally-induced glucocorticoid signaling has been shown to 
have a profound impact on B cells. For example, in adult male 
Sprague–Dawley rats, circulating B cell numbers initially increased in 
the minutes following a single acute restraint stress exposure; numbers 
then decreased over 2 h to below baseline levels, which the authors 
considered indicative of lymphocyte trafficking into tissues (Dhabhar 
et al., 2012). Stefanski and Engler (1998) noted reduced circulating B 
cell numbers with exposure to 2 h of social defeat stress in Long Evans 
rats, suggesting similar lymphocyte consequences in other stress 

conditions. B cell changes have also been reported in the context of 
chronic stress paradigms in a tissue-dependent manner. Although 
splenic and bone marrow B cell counts remained steady, 14 days of 
restraint for 2, 3, or 5 h/day significantly reduced B cell numbers in 
blood and thymus (Domínguez-Gerpe and Rey-Méndez, 2001). 
Leveraging a nine-week chronic variable stress paradigm, Gurfein and 
colleagues noted that stress exposure increased the frequency of 
immature and marginal zone, but decreased the frequency of follicular, 
B cells; interestingly total B cell counts were not altered (Gurfein et al., 
2014, 2017). Notably, many of these effects are altered by 
environmental enrichment, an intervention known to attenuate the 
negative effects of stress paradigms (Fox et al., 2006). Corticotrophin 
releasing hormone (CRH)-transgenic mice, a well-established genetic 
model of stress in which persistent activation of the HPA axis is 
associated with increased corticosterone production and avoidance 
behaviors seen in chronically stressed organisms (Stenzel-Poore et al., 
1992, 1994), display fewer total splenic, circulating, and bone marrow 
B cell counts (Murray et al., 2001). More specifically, B cell profiles 
tended to be  skewed, with transgenic animals having higher 
proportions of immature cells within the tissues assayed. Finally, 
functional capacity of B cells may be affected by stress as chronic 
restraint also impaired GC responses including immunoglobulin (Ig)
G1 antibody production, an effect which was prevented by GR 
blockade (Sun et al., 2019).

Appreciation for the importance of brain-spleen interactions in 
CNS health and disease is growing (Wei et  al., 2022). Splenic 
changes associated with stress/inflammatory exposure include 
altered gross morphology, shifts in profiles of distinct immune cells, 

TABLE 1 Summary of clinical data regarding B cell changes in stress and depression.

Domain Study population Impact to circulating B cells profiles Citation

Psychological 

stress

University students (N = 38) weeks before, immediately prior to, 

and weeks after examination periods; classified as stress reactors 

or non-reactors based on Perceived Stress Scale scores

In stress reactive students, CD19+ B cells were 

increased relative to their baseline counts

Maes et al. (1999)

Doctoral trainees 3 days following qualifying exams and 

matched community controls (N = 10/group)

Mean CD19+ lymphocyte percentage was reduced McGregor et al. (2008)

MDD Patients with MDD and age-, sex-, and race-matched controls 

(N = 11/group)

B cells not changed Darko et al. (1988)

Minor (N = 14), simple major (N = 12), and melancholic (N = 12) 

depressed patients (N = 38) and normal controls (N = 10)

Pan (CD19+) B cells increased in melancholic patients Maes et al. (1992)

MDD outpatients (N = 33) and non-depressed controls (N = 33) 

matched for age, ethnicity, and demographic characteristics

CD3−CD19+ B cells were reduced Pavón et al. (2006)

MDD patients (N = 37) before and 6 weeks after mood-

modulating intervention (antidepressants, benzodiazepines, 

mood stabilizers, and/or antipsychotics) and healthy donors 

(N = 27)

Prior to treatment, frequencies of B cells (CD19+) were 

not altered compared to controls but IgD+CD27− B cell 

proportions were reduced

CD24+CD38hi immature transitional B cells were 

reduced

CD38hiIgD+ Bm2 B cells were reduced

CD1d+CD5+ B cells were reduced

CD5 expression increased on B cells in treatment 

responsive patients

Ahmetspahic et al. (2018)

Depressed patients before (N = 31) and after (N = 10) 52 weeks of 

antidepressant treatment (various selective serotonin reuptake 

inhibitors), and healthy controls (N = 22)

No differences in B cells prior to treatment between 

patients and controls

B cell counts increased with treatment relative to their 

own baseline values and those of healthy controls

Kolan et al. (2019)
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and changes in cytokine secretion patterns (Wei et al., 2022). For 
instance, repeated social defeat stress increases spleen weights, 
promotes hematopoietic stem cell progenitor release from bone 
marrow and recruitment to spleen, and induces splenomegaly with 
significant increases in CD11b+, natural killer, and granulocyte cell 
populations observed among stress-susceptible mice (McKim et al., 
2018; Zhang et al., 2021). Similarly, systemic inflammation, like that 
induced by the bacterial infection mimic and well-established 
model of sickness behavior, lipopolysaccharide (LPS) (Dantzer, 
2018), can profoundly alter splenic morphology and levels of 
circulating proinflammatory cytokines (Zhang et al., 2020). Stress 
exposure prior to LPS administration primes inflammatory 
responses in systemic and central macrophages (Johnson et  al., 
2002; Frank et  al., 2007). It is noteworthy that stress and 
inflammation influences on splenic immune populations can vary 
by cell type and even cell subtype (Gurfein et  al., 2014, 2017). 
Moreover, LPS is associated with inducing sickness and depressive-
like behaviors and these behaviors appear to be  mediated by 
activation of indoleamine 2,3-dioxygenase and other components 
of the kynurenine pathway (Bluthé et al., 1992; O'Connor et al., 
2009; Remus and Dantzer, 2016).

Yet, while brain-spleen innervation patterns have been known 
for some time, and include some notable stress-related regions (e.g., 
locus coeruleus, central amygdala, and hypothalamic nuclei) (Cano 
et al., 2001), until recently very few studies have investigated the 
convergence of stress exposure, splenic B cells and the brain. In an 
elegant series of experiments, Zhang et al. (2020) found that CRH 
expressing neurons in the central amygdala and paraventricular 
nucleus (PVN) of the hypothalamus signal though the splenic nerve 
to impact B cell maturation. Activation of these neurons when mice 
were exposed to a chronic regimen of daily brief elevated platform 
stress increased numbers of splenic PCs, a finding that was later 
replicated by Lynall et al. (2021) using a chronic social defeat stress 
paradigm. PVN CRH-expressing neurons were also found to 
control acute restraint stress-induced shifts in peripheral 
lymphocyte pools (Poller et al., 2022). Indeed, stress exposure was 
associated with transiently reduced circulating splenic, and lymph 
node, B cells that homed to bone marrow. Excitingly, these findings 
demonstrate top-down brain control of peripheral adaptive 
immunity in response to certain types of psychosocial stress and lay 
mechanistic foundations for the continued exploration of 
these associations.

In addition to glucocorticoids, mineralocorticoids impact the 
stress response and MDD (de Kloet et al., 2016). Although aldosterone 
(a key MR ligand) has been reported to increase B cell activation and 
recruitment, the consequences of MR expression and binding on B cell 
function, especially in the context of stress, has been largely 
unexplored (Bene et al., 2014; Ferreira et al., 2021). Emerging data 
suggests that activation of MRs may play critical roles in modulating 
stress response resolution and promoting resilience (ter Heegde et al., 
2015). Thus, future interrogation of the interplay between B cell and 
MR signaling will be  key to discerning the full scope of stress-B 
cell interactions.

4.2.2 Genetic modification of immune function 
alters stress responsivity

Further support for a role for lymphocytes in the response to 
stress comes from findings leveraging mouse models genetically 

modified to capture specific immune phenotypes. Studies in 
lymphocyte-deficient mice (nude, scid, or Rag −/− mice) have noted 
deficits in adaptability to stress; reconstitution of various lymphocyte 
populations in these mice generally implicated the absence of T cells 
in mediating these deficits (Cohen et al., 2006; Beurel et al., 2013; 
Rattazzi et  al., 2013; Clark et  al., 2014; Brachman et  al., 2015). 
Importantly, (primarily T) lymphocytes from stress-exposed mice can 
modify the behavioral response to stress when adoptively transferred 
into lymphocyte deficient subjects (Brachman et al., 2015; Scheinert 
et al., 2016).

However, some evidence may support an association between the 
absence in B cells and pro-stress susceptible phenotype. Along with 
CD38, CD157, also known as bone marrow stromal cell antigen-1 
(aka bone marrow stromal cell antigen-1), plays an important role in 
nicotinamide adenine dinucleotide metabolism and cell signaling 
cascades (Lopatina et al., 2020). CD157 is expressed on a number of 
cell types, including central and peripheral immune cells but also 
many nestin-positive neural cells (Higashida et al., 2017). Interestingly, 
CD157−/− mice displayed pronounced maladaptive responses to 
forced swim stress, leading authors to conclude that CD157 may play 
an important role in anxiety and social avoidance (Lopatina et al., 
2014). Notably, B cell development in these mice is impaired as is the 
B cell-driven antibody response to infection (Itoh et al., 1998). This 
suggests that B cell deficiency may be at least partially involved with 
maladaptive stress responses and social interactions.

4.3 Evidence for B cell presence in CNS 
sites in stress and depression

The presence of peripheral immune cells in healthy brain 
parenchyma is rare (Korin et al., 2017) though robust immune cell 
recruitment to CNS can take place in times of neuroinflammatory 
challenge (Londoño and Mora, 2018), such as stress and MDD 
(Medina-Rodriguez et al., 2023). The neurobiology of stress and MDD 
is complex, and potentially injurious changes to brain structure and 
function have been reported when the stress response becomes 
dysregulated. Indeed, while these cascades have been extensively 
discussed elsewhere (McEwen, 2017; Godoy et al., 2018; McEwen and 
Karatsoreos, 2020), some stress-related consequences include 
reductions in brain volume (Koolschijn et al., 2009), region-specific 
changes in neuronal excitability leading to hypertrophy or atrophy 
(Chaudhury et al., 2015), tract-specific white matter disruptions and 
demyelination (Breit et  al., 2023), blood–brain barrier (BBB) 
disruption and increased permeability (Medina-Rodriguez et  al., 
2023), and impaired hippocampal neurogenesis (Schoenfeld and 
Cameron, 2015). These highlight just a few examples of the numerous 
CNS impacts reported in both acute and chronic stress conditions 
among human and preclinical populations. A key question to address 
here is Do B cells accumulate in brain or brain-adjacent tissues during 
stress or depression, and if so, what role do they play? Do they 
promote chronic stress cascades, support resilience to the negative 
consequences of stress, or both?

Much of our understanding of B cell accumulation in CNS comes 
from neurological aging, injury or disease models such as stroke, or 
autoimmunity. Indeed, in multiple sclerosis (MS), gut origin IgA+ PCs 
that mediate mucosal immunity represent at least some of the B cell 
subsets that are recruited to CNS border sites and accumulate at 
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lesions (Fitzpatrick et  al., 2020; Pröbstel et  al., 2020). 
Immunosenescence is associated with a profound shift in the B cell 
compartment and the emergence of innate-like age-associated B cells 
that accumulate in meninges (Brioschi et al., 2021). During stroke, B 
cells traffic to brain and accumulate both in the infarcted tissue and 
also at sites distal to stroke damage (Ortega et al., 2020). The functional 
significance of this accumulation is still being interrogated given that 
several reports note neuroprotective and neurorestorative actions of 
B cells (Ren et al., 2011; Ortega et al., 2020) while others suggest that 
autoreactive B cells may promote long-term poststroke cognitive 
deficits (Doyle et al., 2015).

There is limited but emerging support for brain-B cell interactions 
in the context of stress and MDD. For instance, in a few small cohort 
studies evaluating post-mortem brain tissues of schizophrenic, mood 
disorder, MDD, or bipolar disorder patients, a subset of subjects from 
each diagnosis condition displayed elevated brain lymphocyte profiles 
(Bogerts et al., 2017; Schlaaff et al., 2020). More specifically, in mood 
disorders, T and B cells were elevated relative to non-psychiatric 
patient controls. Interestingly, B cells appeared to accumulate in 
hippocampus/parahippocampal region, pre/peri/postcentral gyrus 
area, central white matter, and entorhinal and inferior temporal 
regions. Finally, B cells accumulated in hippocampi of mice exposed 
to a prolonged (but not acute) foot shock-induced learned helplessness 
or chronic restraint relative to non-stress exposed mice (Beurel et al., 
2018). Surprisingly, chronic restraint stress did not result in similar T 
cell elevations, suggesting that stressor type may influence immune 
cell type recruitment patterns.

In addition to blood or organ-derived B cells, recent data 
identifying local CNS/CNS-adjacent originating B cells could suggest 
an additional mechanism by which B cells respond to 
neuroinflammatory states. Indeed, Brioschi et al. (2021) identified that 
B cells represent approximately 30% of CD45+ cells in the meninges. 
In addition, they identified a population of CNS antigen educated B 
cells that are derived from a bone marrow niche in the skull and reach 
meninges through vascular channels from the calvaria. Schafflick et al. 
further identified the dura as a site of progenitor B cell residence 
(Schafflick et  al., 2021). Interestingly, while chronic learned 
helplessness increased hippocampal B cell numbers, splenic total B cell 
counts were not affected (Beurel et al., 2018). This observation, while 
considering that meningeal B cells were reduced in mice exposed to 
chronic social defeat (Lynall et al., 2021), may implicate meningeal or 
other local CNS-adjacent lymphocyte pools as the source of these 
parenchymal infiltrating cells.

In addition to trafficking to secondary lymphoid organs, 
leukocytes including B cells influence the local immune response by 
migrating to inflamed non-lymphoid tissues and forming ectopic or 
tertiary lymphoid structures (ELS) (Londoño and Mora, 2018; Harrer 
et al., 2022). ELSs in the CNS were first discovered in meninges close 
to inflammatory lesions in the context of MS (Negron et al., 2020), 
where the trafficking of B cells via key chemokine ligand-receptor 
interactions (discussed below) was shown to potentiate disease 
progression (Magliozzi et al., 2007). Additional studies have since 
identified B cell aggregating ELS in neuropsychiatric lupus (Stock 
et al., 2019), stroke (Doyle et al., 2015), and acute or chronic spinal 
cord damage (Cohen et  al., 2021), to name a few examples. 
Importantly, research regarding development of local CNS ELS is in 
its infancy. Whether such structures form in response to the 
neuroinflammatory state produced by stress and MDD is not yet 

known though one study in a mouse model of lupus, a model in which 
depressive-like phenotypes have been well-established (Gao et al., 
2009), found evidence for ELS in choroid plexus (Stock et al., 2019).

5 Mechanisms by which B cells 
migrate to, access, and remain at sites 
of inflammation

To address the role of B cells in the stressed brain, it is important 
to determine the extent to which B cell recruitment, trafficking, and 
survival signals are engaged during the experience of stressful life 
events, and to discern whether these signals become dysregulated in 
chronic stress.

5.1 B cell recruitment and trafficking 
signals

Central to an effective immune response to challenge is the tightly 
regulated movement of immune cells within lymphoid organs and to 
sites of inflammation. This process is governed by chemokines (Stein 
and Nombela-Arrieta, 2005; Chen et al., 2018). Several chemokines 
are implicated in the recruitment of B cells to key organs and sites, 
including C-X-C motif ligand (CXCL)12 (and cognate receptors 
CXCR4/7), CXCL13 (CXCR5), CC chemokine ligand (CCL)19 
(CCR7), and CCL21 (CCR7) (Irani, 2016; Harrer et al., 2022; Jain and 
Yong, 2022). These chemokines can be homeostatic (e.g., CXCL13, 
CCL21), regulating cellular trafficking during immune surveillance or 
inflammation-induced (e.g., CXCL9, CXCL10). They can support 
development (e.g., CXCL12), and can modulate migration through 
primary (CXCL12) and secondary lymphoid organs (e.g., CXCL13, 
CCL19, CCL21). Some chemokines (CXCL12, CCL19, CCL21) are 
considered to have key brain homing functions. Importantly, some 
chemokines regulate the movement of several immune cell subtypes, 
including T cells (e.g., CCL19, CCL21, CXCL10).

B cell trafficking chemokines play diverse roles in the 
CNS. CXCL12, CCL19, and CCL21 are constitutively expressed in 
CNS at low levels namely by neurons, glial cells, and vascular 
endothelial cells (Li and Ransohoff, 2008; Lalor and Segal, 2010; 
Milenkovic et  al., 2019) while these in addition to CXCL13 may 
be inducible in neural cell types in a disease state-dependent fashion 
(Krumbholz et al., 2007; Irani, 2016). Indeed, spinal cord neurons 
produce CXCL13 in a preclinical ligation model of neuropathic pain 
(Jiang et al., 2016) but not in viral encephalomyelitis where microglia 
show upregulated Cxcl13 gene expression (Esen et al., 2014). Various 
CNS cell populations are responsive to chemokine signals but regional 
distribution of chemokine receptors is varied and suggests distinct 
functional roles for each ligand-receptor system (Turbic et al., 2011). 
For example, CXCR4, and CXCR7 to a lesser extent, is expressed on a 
wide variety of CNS cell types (such as astrocytes, microglia, and 
neurons and neural progenitor cells) in the hippocampus and 
subventricular zone. Thus, it is perhaps unsurprising that the CXCL12-
CXCR4/7 system facilitates proliferation and migration of neural 
progenitor cells during development and adulthood (Schönemeier 
et al., 2008; Sánchez-Alcañiz et al., 2011). CXCL12 can also act directly 
on cells as it has been shown to induce GABAergic activity in diverse 
neuronal populations (Guyon, 2014). CXCR5 expression is not well 
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represented regionally in CNS tissues though other findings suggest 
that this receptor is expressed by most CNS cell types (Turbic et al., 
2011; Stuart et  al., 2015). CXCL13 expression was upregulated in 
neurospheres exposed to inflammatory cytokine challenge (Turbic 
et al., 2011) and other cellular sources of CXCL13 produced during 
inflammatory conditions include microglia (Irani, 2016; Londoño and 
Mora, 2018) and astrocytes (Szpakowski et  al., 2022). Several 
investigations regarding CXCL13 and the brain center on its 
contributions to autoimmunity, with converging findings suggests that 
CXCL13-mediated recruitment of B cells is associated with disease 
severity, progression, and poor prognosis (Londoño and Mora, 2018). 
CXCL13 neutralization in systemic lupus prone mice improved object 
recognition cognitive function and attenuated forced swim depressive-
like behavior (Huang et al., 2021). However, in stroke, CXCL13 levels 
support trafficking of B cells to brain where they may mediate 
neuroprotective effects (Monson et  al., 2014; Ortega et  al., 2020). 
Increased CXCL13 and CXCR5 in anterior cingulate cortex facilitated 
conditioned place aversion in a rodent model of neuropathic pain, 
suggesting that these cascades, and possibly B cells themselves may 
benefit aversive learning and memory under physical stress conditions 
on the water maze (Wu et al., 2019). However, B cell deficiency did not 
impact memory performance (Wolf et al., 2009). CXCR5−/− knockout 
mice displayed enhanced adult dentate gyrus neurogenesis and 
possible anxiolytic effects as indicated by increased movement in 
general and in the inner zone of the open field (Stuart et al., 2015). 
CCL21 may also impact adult neuronal differentiation given the high 
expression of CCR7 in the subventricular zone and on astrocytes, 
microglia, and neurons (Turbic et al., 2011; Noor and Wilson, 2012). 
This position adjacent to the CSF-filled lateral ventricle may also poise 
this chemokine-receptor system to engage in T and B immune cell 
recruitment. Indeed, CCL21 is expressed on the surface of choroid 
plexus epithelium and on endothelial venules only during 
inflammation and may mediate T or other CXCR7 expressing cell 
transit through brain-CSF and BBB routes (Alt et al., 2002; Kivisäkk 
et al., 2004).

Levels of chemokines have been investigated in the context of 
stress and MDD (Milenkovic et  al., 2019). The majority of the 
published clinical studies reveal consistent circulating or CSF 
expression elevations in CCL2 and CXCL8 chemokines in depressed 
patients (Eyre et al., 2016). Of note, in vitro evidence suggests that 
these chemokines along with CCL20 may also support B cell 
trafficking and possible entry into CNS (Alter et al., 2003; Jain and 
Yong, 2022). Some clinical studies noted higher CXCL12 in depressed 
men and women in comparison with controls (Ogłodek et al., 2014; 
Romero-Sanchiz et al., 2020). Similarly, one study in rats exposed to 
prenatal stress (dam received gestational bright light exposure) 
revealed that CXCL12 was upregulated in the hippocampus and 
prefrontal cortex (Ślusarczyk et  al., 2015) and microglial CXCR4 
expression was reduced with prenatal stress (Ślusarczyk et al., 2015). 
Stress exposure may also modulate expression of recruitment signal 
receptors on B cells. Poller et  al. (2022) demonstrated that bone 
marrow homing restraint stress-exposed B and T cells unregulated 
expression of CXCR4. Further, Lynall et  al. (2021) noted that 
meningeal B cells from chronic social defeat exposed mice showed 
trends toward increased expression of CXCL13 genes. Other 
generalized immune cell recruitment signals may support B cell 
trafficking to CNS. Indeed, pathogen challenge increased brain 
chemokine expression and facilitated B cell recruitment in a 

CXCL9- and − 10-dependent manner (Lokensgard et al., 2016); these 
chemokines have been found to be elevated in patients with high levels 
of anxiety and MDD (Leighton et  al., 2018). Finally, a thorough 
investigation of B cell recruitment signaling in CSF is still outstanding 
but may warrant further direct interrogation given that under normal 
conditions, levels of chemokines in CSF are low but increase manifold 
with inflammatory challenge (Pilz et al., 2020; DiSano et al., 2021).

5.2 Mechanisms modulating B cell access 
to brain

The mechanisms regulating immune cell migration across tissues, 
namely the BBB, are complex and has been extensively discussed 
elsewhere (Marchetti and Engelhardt, 2020; Jain and Yong, 2022). In 
brief here, several primary factors appear to regulate B cell movement 
across the BBB. First, activated leukocyte cell adhesion molecule 
(ALCAM) expressed on the surface of the activated proinflammatory 
B cells as well as on endothelial cells supports B cell diapedesis across 
the BBB (Michel et al., 2019). Leukocyte function-associated antigen-1 
(LFA-1) on the surface of B cells binds its ligand intracellular adhesion 
molecule-1 (ICAM1). Very late antigen-4 (VLA4) expressed on 
activated B cells has been well studied in autoimmune diseases. 
Further, in autoimmune models, B cells appear to be recruited to CNS 
in an antigen-independent manner (Tesfagiorgis et al., 2017) and do 
not take up residence in sites of inflammation. L-selectin (aka CD62L) 
and vascular cell adhesion molecule-1 do not appear to play a robust 
role in B cell movement across membranes (Alter et al., 2003). While 
mechanisms regulating immune cell trafficking across BBB were 
extensively reviewed, whether B cells engaged these mechanisms in 
times of immune surveillance was not discussed (Marchetti and 
Engelhardt, 2020).

Studies on the effects of stress exposure, and stress-associated 
hormonal signaling, on leukocyte adhesion mechanisms have yielded 
interesting observations (Ince et  al., 2018). Following 12 days of 
chronic unpredictable stress, RNAseq data in prefrontal cortex 
revealed increased gene expression of Alcam in non-neuronal cell 
clusters as well as several types of inhibitory and excitatory neuronal 
populations (Kwon et  al., 2022). Fifteen minutes of forced public 
speaking resulted in elevated LFA-1 on mixed lymphocytes, no impact 
to ICAM1 density, and a decrease in L-selectin on T cells (Goebel and 
Mills, 2000). Similarly, VLA-4, CD44, and LFA-1 expression in T cells 
was altered by a single 16–18 h restraint stress exposure (Tarcic et al., 
1995). With the exception of (Dhabhar et al., 2012), in which acute 
restraint stress reduced circulating B cell numbers and induced a 
biphasic decrease in L-selectin expression on B cells in the 2 h 
following stress cessation, the impact of stress exposure on adhesion 
mechanisms specifically in B cells were not measured in these studies. 
Interestingly, administration of norepinephrine (NE, aka 
noradrenaline), the receptors for which are expressed on B cells, 
decreased the number of L-selectin (CD62L) positive B cells but 
increased circulating B cells negative for this cell adhesion marker 
without impacting overall B cell L-selectin expression.

It is noteworthy that the BBB is not the only barrier impacted by 
stress. Several studies have found that intestinal barriers are leaky 
among patients with psychiatric disease (Wasiak and Gawlik-
Kotelnicka, 2023). Immune cells are critically involved in the extent of 
intestinal barrier integrity. Indeed, B cells support intestinal 
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homeostasis through production of IgA and IgM antibodies, immune 
regulatory functions, and cytokine secretion; whether they play a 
protective, pathogenic, or mixed role in intestinal inflammatory 
conditions is the subject of intense investigation (Zogorean and Wirtz, 
2023). Gut microbiota composition is closely related to intestinal 
permeability status, and shifts in microbiome taxa composition have 
been reported in MDD (Cheung et al., 2019). As appreciation for 
gut-brain-immune interactions in the context of stress and MDD 
continues to increase, novel interventions such as psychobiotics or 
fecal microbiome transfers may prove beneficial (Trzeciak and 
Herbet, 2021).

5.3 B cell survival and retention in CNS or 
CNS-adjacent sites

If cells are recruited to sites of inflammation, such as the stressed 
brain, another question remains: is there sufficient support for B cells 
to survive and remain there to enact their cellular functions?

5.3.1 BAFF and APRIL
Two principal B cell survival signals are well described in the 

immunology literature (Vincent et al., 2013). B cell activating factor 
(BAFF; aka B lymphocyte stimulator, TNFα APOL-related leukocyte 
expressed ligand, and CD257), is a cytokine belonging to the TNFα 
ligand family. It is expressed by a variety of immune cell types and acts 
to activate B cells as well as to induce their proliferation and 
differentiation. Receptors for BAFF include BAFF-R, BCMA, and 
TACI, in order of ligand affinity. BAFF-R is expressed on immature B 
cells, while TACI is principally expressed on innate like B1 cells. 
Inadequate BAFF fails to activate B cells to mature and go on to 
produce antibody or enact other effector functions; excessive BAFF 
levels limit B cell apoptosis and may cause overproduction of 
antibodies, potentially leading to autoimmunity.

A proliferation-inducing ligand (APRIL, aka TNFSF13) is another 
B cell survival signal (Vincent et  al., 2013). APRIL acts as a 
co-stimulator for B and T cell proliferation and acts via TACI and 
BCMA receptors. APRIL also promotes IL-10 production and 
regulatory functions of B cells (Hua et al., 2016). Within CNS, APRIL 
is expressed by astrocytes in postmortem MS patient brains 
(Thangarajh et al., 2007) and facilitated axon growth of hippocampal 
pyramidal and midbrain and striatal dopaminergic neurons during 
embryonic development (Osório et al., 2014; McWilliams et al., 2017). 
Expression of BAFF/APRIL receptors in the brain is unclear (Marella 
et al., 2022) though a recently identified BAFF receptor Noggo-66 was 
found to be expressed on neurons and possibly glial cells, and may 
be a negative regulator of cell function (Zhang et al., 2009).

BAFF and APRIL may play a role in stress. Indeed, increased 
anxiety-like behaviors (open field, elevated plus maze, novelty 
suppressed feeding), evidence of neuroinflammation (reactive 
astrocytes, activated microglia), impaired hippocampal neurogenesis, 
and disrupted long-term potentiation were found in BAFF 
overexpressing transgenic mice, a common preclinical model of 
autoimmunity (Crupi et al., 2010). In humans, one small cohort study 
reported reduced circulating BAFF in MDD patients; levels were 
elevated with antidepressant intervention (Schmidt et  al., 2019). 
However, in a larger study of 3,221 subjects, plasma levels of BAFF 
were not significantly different between healthy control subjects and 

patients with schizophrenia or MDD, though BAFF levels were 
elevated among bipolar patients (Engh et al., 2022). Plasma levels of 
APRIL were lower in psychosis patients compared to healthy controls 
and significantly correlated with higher psychotic symptom load, 
though other studies have not found APRIL levels to differ (Crupi 
et al., 2010; Schmidt et al., 2019).

While CNS levels of BAFF and APRIL have not been well 
studied in the stress exposed brain, Lynall et al. (2021) noted that 
meningeal B cells from chronic social defeat exposed mice were 
lower in number but showed trends toward increased expression of 
BAFF genes. As the stressed brain represents a state of 
neuroinflammation (Liu et al., 2017) and collective evidence suggests 
that the inflamed CNS provides a pro-survival microenvironment 
for leukocytes including B cells (Meinl et al., 2006), perspectives 
gleaned from other neuroinflammatory conditions can inform our 
understanding of B cell interactions with stress and MDD. For 
example, following experimental stroke, BAFF expression is elevated 
in microglia (Li et al., 2017) and CD11bhigh B cells recruited to brain 
after injury are known to regulate microglia activation, increasing 
their phagocytic capacity (Korf et al., 2022). BAFF ligand-receptor 
interactions have been found to support neuronal survival and 
impart neuroprotection in an animal model of amyotrophic lateral 
sclerosis, an effect that may be independent of B cells (Tada et al., 
2013). Astrocytes also express BAFF and promote B cell activation 
in response to viral infection (Lokensgard et al., 2016) or in MS 
(Krumbholz et  al., 2005). Interestingly, in animals exposed to 
experimental autoimmune encephalomyelitis (animal model of MS) 
and in MS patients, disease attenuating anti-CD20 treatment 
increased BAFF levels in serum, CSF, and leptomeninges (Wang 
et  al., 2024). Further, the beneficial effects for gray matter and 
microgliosis were reversed when anti-BAFF treatment was given in 
conjunction with B cell depletion, suggesting that BAFF plays a 
neuroprotective role in MS (Wang et al., 2024). Whether other CNS 
cell types produce BAFF and support B cell survival, especially in the 
context of psychosocial stress or MDD, is not known and represents 
an important question to be answered.

5.3.2 Growth factors
Neurotrophins, such as brain derived neurotrophic factor 

(BDNF), neurotrophic factor 3 (NT3), and nerve growth factor 
(NGF), play important roles in development, survival, and function 
of a wide variety of CNS and immune cell types. Of relevance here, 
evidence suggests that B cells express neurotrophin receptors p75TR, 
TrkA, TrkB, and TrkC in a subtype-specific pattern (Hillis et al., 2016). 
Neurotrophins have complementary and sometimes redundant 
impacts to B cells. BDNF supports bone marrow B cell maturation as 
well as mature B cell survival (D'Onofrio et al., 2000), while NGF, and 
NT3 to a lesser extent, facilitate proliferation, survival, differentiation, 
antibody production, and CD40 T cell co-stimulatory expression 
(Hillis et  al., 2016). Importantly, B lymphocytes can also secrete 
neurotrophins and this may have neuroprotective effects against 
inflammatory insults (Kerschensteiner et al., 1999).

A large body of evidence has implicated growth factors in mood 
disorders and/or the response to antidepressants (Zhang et al., 2015; 
Ceci et al., 2021). For instance, BDNF and TrkB levels are reduced in 
hippocampi of depressed patients (Zhang et al., 2015) and BDNF 
knock out mice display increased depressive-like behaviors and also 
have fewer B cells (Schuhmann et al., 2005). NGF, a potent survival 
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factor for memory B cells (Hillis et al., 2016), is increased in inflamed 
tissues and has been shown to be elevated in blood in response to 
acute stress (Ceci et al., 2021). However, chronic stress and depressed 
mood conditions are often (though not always) associated with 
downregulation of NGF. Like other growth factors, NT3 is highly 
expressed in brain regions implicated in MDD, such as hippocampus, 
and is often elevated in MDD brains (Zhang et al., 2015). Known to 
regulate BDNF expression, one study reported reduced NT3 mRNA 
expression in peripheral white blood cells of MDD patients (Otsuki 
et al., 2008). While these associations are interesting, the paucity of 
work directly addressing the convergence of stress/depression, 
growth factors, and B cells leaves several remaining questions as to 
the extent to which these three factors interact to influence mood. 
Moreover, still more work is needed to address how B cells engage 
with other growth factors, including insulin-like growth factor, 
platelet derived growth factor, and glial derived growth factor, in 
these contexts.

5.3.3 Interactions with T cells
Interactions with CD4+ T helper cells support survival and 

differentiation of B cells as well as GC formation, B cell isotype 
switching and somatic hypermutation, and formation of long-lived 
antibody-secreting PC (Aloulou and Fazilleau, 2019). The classic 
mechanism by which these interactions take place is via CD40 
binding with CD40 ligand (CD40L) expressed by CD4 T and B cells 
(among other cell types) under inflammatory conditions. 
Importantly, a number of studies have identified important roles for 
CD4 T cells in CNS, namely in modulating neurological function 
in the healthy, stressed, injured, or diseased brain (Fletcher et al., 
2010; Filiano et al., 2017; Herkenham and Kigar, 2017; Rayasam 
et al., 2018). In fact, one of the most consistently reported immune 
compartment alterations in depressed patient populations is an 
elevated circulating CD4+/CD8+ ratio (Maes, 2011; Herkenham and 
Kigar, 2017; Khedri et  al., 2020). Further, preclinical studies in 
lymphocyte-deficient mice (nude, scid or Rag −/− mice) have noted 
deficits in adaptability to stress; reconstitution of various 
lymphocyte populations in these mice generally implicates the 
absence of T cells in mediating these deficits (Cohen et al., 2006; 
Beurel et al., 2013; Rattazzi et al., 2013; Clark et al., 2014; Brachman 
et al., 2015). A variety of T cell subsets have been found in brain 
parenchyma following acute and chronic stress, including CD4+ T 
cells (Beurel et al., 2013; Peng et al., 2022; Medina-Rodriguez et al., 
2023). T cells also robustly respond to glutamatergic signaling 
(Ganor and Levite, 2014), a neurotransmitter system that is 
emerging as a key contributor to MDD and a principal target for 
novel, fast acting antidepressants (Wang et al., 2021).

There is evidence that co-stimulatory pathways involved with T-B 
cell interactions are impacted in stress and depression. Basal platelet 
CD40 expression is higher in patients with MDD (Neubauer et al., 
2013). As well, circulating soluble CD40L levels were elevated in first 
episode unmedicated MDD patients and these levels were reduced 
when antidepressant interventions were administered (Leo et al., 2006; 
Myung et al., 2016), though another study reported reduced CD40L 
serum levels in MDD patients (Zhang et al., 2023). CD40 activation 
induces sickness behavior and depressive-like phenotypes in mice, as 
revealed by reduced saccharine preference and impaired fear learning 
(Cathomas et al., 2015). Thus, while T cells in the stressed brain may 
exert their own effector functions, their presence may serve to 

facilitate stress-responsive actions of B cells, or vice versa- B cells may 
facilitate the CNS effector functions of T cells.

One potential though controversial action of B cells is that they 
can regulate the development and activation of subsets of T cells via 
OX40-OX40 ligand or inducible T cell co-stimulator (ICOS)-ICOS 
ligand interactions (Petersone et al., 2018). While mice exposed to a 
single 12 h session of restraint did not show differences in splenic 
OX40 protein expression (Ahmad et al., 2015), hippocampal ICOS 
mRNA expression was elevated in mice exposed to footshock induced 
learned helplessness (Beurel et al., 2018). B cells may be a potential 
source of both OX40 or ICOS ligands (Petersone et al., 2018), yet there 
is little known as to how either ligands are impacted by stress or 
depression. Of note, though ICOS ligand is the exclusive binding 
partner for ICOS, it can be produced by most antigen presenting cells 
(Wikenheiser and Stumhofer, 2016) and some barrier cell types. 
Whether B cells are a significant source of ICOS ligand production in 
response to stress is currently unknown.

5.4 B cell-neurotransmitter interactions

5.4.1 Serotonin
B cells express receptors for a wide variety of neurotransmitters 

and this may have important implications in stress and depression. 
The serotonergic (5HT) system has been historically implicated in 
chronic stress disorders and functioned as targets of antidepressant 
action, though that association is not without controversy (Jauhar 
et al., 2023). B cells express 5HT receptors 1A, 2A, 3 and 7 along with 
the 5HT transporter (SERT) (Herr et al., 2017). 5HT stimulation of B 
cells appears to induce proliferation, likely in a 5HT-1A receptor 
dependent mechanism (Iken et al., 1995) that requires inflammatory 
gene transcription (Abdouh et al., 2001). Some evidence in B cell and 
lymphoma lines suggests that SERT expression increases in activated 
B cells enabling them to take up 5HT (Meredith et al., 2005) and 
transport it, potentially long distances. However, B cell-derived 
lymphoma cells failed to proliferate with 5HT stimulation and showed 
increased apoptosis with 5HT uptake (Serafeim et al., 2002; Kolan 
et al., 2019). Interestingly, antidepressant intervention restores some 
B cell population numbers in MDD (Hernandez et  al., 2010; 
Ahmetspahic et  al., 2018). Lacking expression of tryptophan 
hydroxylase 1, B cells do not appear to be able to synthesize 5HT like 
T cells (Herr et al., 2017). MDD patients consistently show reduced 
expression of SERT on peripheral lymphocytes that can be ameliorated 
at least in part with administration of one of several classes of 
antidepressant intervention (Urbina et al., 1999; Peña et al., 2005). As 
5HT can also be synthesized in both the brain and the periphery via 
distinct mechanisms, this should be considered when trying to discern 
the convergence of 5HT, B cells, and stress (Herr et al., 2017).

5.4.2 Norepinephrine/noradrenaline
In addition to regulating the immune response via stress signaling 

through the HPA axis, the brain leverages the sympathetic nervous 
system innervation of primary and secondary immune organs 
principally through release of NE (Kin and Sanders, 2006; Herkenham 
and Kigar, 2017; Chan et  al., 2023). Antigen-mediated immune 
activation resulted in increased NE release and turnover in lymphoid 
organs, an effect that was partially blocked when NE signaling from 
brain to periphery was inhibited (Kohm et al., 2000). Immune cells 
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located in these organs express NE receptors, specifically β2 adrenergic 
receptors (Kerage et al., 2019); moreover, this receptor is expressed 
much more highly on B cells than T cells (Kin and Sanders, 2006). 
Lymphocytes express the NE transporter (Mata et  al., 2005), and 
dopamine (DA)-β hydroxylase, a key enzyme governing the 
conversion of DA to NE, is also found in B cells (Papa et al., 2017). 
This suggests that B cells can take up and also synthesize NE de novo.

In the context of public speaking stress, which elevated circulating 
NE levels, there was a trend toward elevated peripheral B cell counts 
but also a tendency toward less IgM produced in response to mitogen 
stimulation in vitro when compared with B cells collected pre-stress 
(Matthews et al., 1995). Retrograde viral tracing revealed that several 
stress/reward-associated brain regions, such as hypothalamus, 
hippocampus, amygdala, ventral tegmental area, and locus coeruleus, 
innervate bone marrow, a site of NE release (Dénes et  al., 2005). 
Similar regions were reflected in brain-spleen innervation patterns 
(Cano et al., 2001), further supporting an association between NE, B 
cell immunity, and stress. In MDD patients, while NE levels were not 
altered, lymphocyte NE transporter expression was reduced (Mata 
et al., 2005). It may be that stress effects on at least some immune cells 
are mediated by both corticosterone and catecholaminergic 
stimulation as noted that adrenalectomy or catecholamine receptor 
antagonism prevent at least some stress-associated circulating 
leukocyte shifts (Engler et  al., 2004). Interestingly, epinephrine 
(adrenaline), but not NE administration, reduced total B lymphocytes 
in circulation, suggesting these cells were trafficked into tissues 
(Dhabhar et al., 2012).

5.4.3 Dopamine
DA, a key mediator of reward circuits known to be dysregulated 

in MDD (Russo and Nestler, 2013), is now appreciated to have potent 
immunomodulatory actions (Vidal and Pacheco, 2020). Relative to 
other immune cell types, B cells displayed the most robust expression 
of DA receptors (DRDs); DRDs 2–5 were expressed on B cells, with 
DRD3 expressed at the highest levels (McKenna et  al., 2002). 
Stimulation of unique DRDs can exert distinct and sometimes 
competing effects within the immune system. For example, B cell 
DRD1 stimulation by CD4+ T follicular cells, found to be  potent 
secretors of DA, reorganizes expression of co-stimulator machinery, 
facilitates GC synapses, and promotes B cell maturation (Papa et al., 
2017). In a small cohort study of patients with rheumatoid arthritis, B 
cell DRD expression was lower than that of healthy controls, B cell 
DRD2 stimulation is negatively correlated with disease activity (Wei 
et  al., 2015), and DRD2 and − 3 expression levels were increased 
among patients treated for 3 months with an anti-rheumatic disease 
modifying drug (Wieber et al., 2022). However, in female rheumatoid 
arthritis patients, B cells were shown to express DRD1, the frequency 
of DRD1 was correlated with severity of disease, and stimulation of 
these cells increased expression of proinflammatory factors, suggesting 
sex-specific effects with regard to DA-B cell interactions in this 
disease. Further, the consequences of DAergic stimulation of B cells 
may be disease context-specific, as MOG-induced mouse models of 
MS promoted CNS infiltration of DRD3 expressing B cells with 
regulatory/immunosuppressive and antigen presenting phenotypes 
(Prado et al., 2021). Expression of the DA transporter is found on 
lymphocytes and mice in which it is lacking show exaggerated 
memory B cell responses (Gopinath et  al., 2023). Further, DA 
transporter expression on resting lymphocytes was reduced in 

schizophrenic and bipolar psychosis patients (Marazziti et al., 2010). 
Chronic stress can induce hyperexcitability in certain DAergic 
neuronal populations, namely in stress- and mood-related brain areas 
in which DA expression is high (including hippocampus, 
paraventricular nucleus, and striatum) (Russo and Nestler, 2013). 
Whether these stress-related consequences in DAergic signaling 
impact the number and function of B cells that are present in or 
trafficked to these regions and what that means for stress susceptibility 
or resolution is worthy of further exploration. However, evidence 
suggests this potential as designer receptors activated only by designer 
drug-induced activation of the ventral tegmental area increased IgM+ 
B cells and potentiated IgM antibody secretion with E. coli immune 
challenge relative to mice who did not receive neuronal activation 
(Ben-Shaanan et al., 2016).

5.4.4 Glutamate and GABA
Dysfunction in the glutamatergic system, representing the major 

excitatory neurotransmitter of the CNS, has emerged as a key 
component of MDD development and potential novel target for fast-
acting depressive symptom amelioration (Sarawagi et  al., 2021). 
Indeed postmortem assessments of MDD patient brains revealed 
reduced size of the glutamatergic neuronal layer VI (Cotter et al., 
2002) as well as reduced expression of glutamatergic receptor 
machinery in prefrontal cortex (Feyissa et  al., 2009). Similarly, in 
MDD, size and density of various GABAergic interneurons are 
reduced in this and other regions implicated including the anterior 
cingulate and amygdala (Rajkowska et al., 2007; Tripp et al., 2011; 
Guilloux et al., 2012). Imaging studies of a variety of modalities have 
confirmed disruption in these neurotransmitter systems (Sarawagi 
et al., 2021) and recent meta-analyses revealed decreased levels of 
glutamate+glutamine in the anterior cingulate and medial frontal 
cortex as well as decreased GABA in occipital and prefrontal cortex of 
MDD patients (Luykx et al., 2012; Romeo et al., 2018; Moriguchi 
et al., 2019).

Emerging evidence suggests that B cells can be  impacted by 
glutamatergic receptor ligands. Indeed, human B cells expressed 
GRIK2, −3, −4, and − 5 kainate receptor genes and activation of these 
receptors resulted in increased proliferation and IgE release (Sturgill 
et al., 2011). B cells may also express metabotropic glutamate receptors 
and ligand binding may mediate apoptotic cascades (Ma et al., 2015). 
Finally, B cells may express functional N-methyl-D-aspartate receptors 
(NMDA; GluN2A and B) (Torres et  al., 2021). The functional 
significance of which is not currently well studied though one recent 
report noted that non-competitive antagonists impaired B cell 
migration, proliferation and Ig production but increased numbers of 
IL-10 secreting B cells (Simma et al., 2014). Further interrogation of 
these complex interactions will be important considering the recent 
regulatory approvals for glutamatergic modulation in patients with 
refractory MDD (Sarawagi et al., 2021).

B cells may also interact with the GABA system, the key inhibitory 
neurotransmitter of the CNS (Sarawagi et al., 2021). Indeed, B cells 
can take up glutamine and process it to produce glutamate or GABA; 
CD8+ T cell or macrophage proinflammatory antitumor responses 
were dampened as a result (Zhang et al., 2021). Importantly, GABA 
deficiency has long been considered an important component of 
disordered mood (Sarawagi et al., 2021). Whether B cells in the CNS 
of behavioral stress-exposed or depressed organisms also secrete 
GABA and exert anti-inflammatory effects or neuromodulatory 
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effects that regulate immune cascades present in stress/
MDD-implicated brain regions is yet to be  determined. For both 
glutamate and GABA, an informed understanding of B cell impacts 
will need to include the observation of B cell production of 
autoantibodies against these receptors must also be considered (Sun 
et al., 2020) (see below).

5.5 Potential CNS-directed effector 
functions of B cells

The next question to be answered is what might B cells be doing 
in the stressed CNS? The answer may be condition specific as B cells 
appear to be pathogenic drivers in autoimmunity and Alzheimer’s-like 
dementia whereas they may be neurorestorative in acute brain or 
spinal cord injury (Engler-Chiurazzi et al., 2020; Plantone et al., 2022; 
Maheshwari et al., 2023; Malone et al., 2023).

5.5.1 B cell antibody production
A key effector function of B cells is their capacity to produce 

antibodies, including IgA, IgD, IgE, IgG, and IgM. Antibody 
production ability of B cells can have important functional 
consequences for CNS. For instance, B cells, and their production of 
IgM, may play a critical role in myelin development, a tightly regulated 
process dependent on local microenvironment signaling (Nishiyama 
et  al., 2021). Tanabe and Yamashita (2018) identified that B cells, 
specifically B1a B cells, are recruited to choroid plexus and meningeal 
spaces via CXCL13 and supported oligodendrocyte proliferation via 
IgM secretion. Importantly, antibody titers may be altered by stress 
and in stress-related disease (Kronfol and House, 1989; Joyce et al., 
1992; Song et al., 1994; Gold et al., 2012). Relative to mentally healthy 
control subjects, Gold et al. (2012) noted that depressed populations 
displayed reductions in serum IgA, but not IgM or IgG levels. 
However, Joyce et al. (1992) reported increased IgA in MDD patients. 
Exam and occupational stress was associated with elevated IgA, IgG, 
and IgM levels (Maes et  al., 1999; Matos-Gomes et  al., 2010). 
Methodological differences between sample populations and 
measurement approaches may account for some of the discrepancy 
between these studies, though recent meta-analyses confirmed that 
acute stress elevated Ig levels while chronically stressed humans 
showed age-related increased IgA or decreased IgM (Khan et al., 2021; 
Castro-Quintas et  al., 2023). Mainly implicated in response to 
allergens, serum IgE levels are elevated in MDD patients (El-Ansary, 
2022) and hydrocortisone increased IgE levels in IL-4 stimulated 
human lymphocytes (Wu et  al., 1991). Though one study noted 
elevated IgD levels among MDD patients (El-Ansary, 2022), very little 
is known about how psychosocial stress or MDD impact IgD, likely 
due to its very low level of basal expression (Vladutiu, 2000). In mice, 
elevated platform stress-induced B cell profile shifts corresponded to 
an increase in IgG antibody titers in blood in the weeks following the 
stress exposure (Zhang et al., 2020). The functional consequences of 
these stress-induced shifts in Ig secretion for immunity are conflicting 
and may be Ig subtype specific. Shifted B cell profiles among CRH 
overexpressing transgenic mice were associated with less robust IgM 
and IgG antibody responses to a thymus-dependent, bacterial-like 
antigen immunization, yet there were no differences in survival when 
mice were exposed to gram-positive S. pneumoniae bacterial immune 
challenge (Murray et  al., 2001). This suggests that stress-induced 

changes in B cell responsivity may not negatively impact overall 
immune response to at least some pathogenic challenges. Yet, speech 
making stress exposure increased the magnitude of allergen skin prick 
test wheal responses among allergic rhinitis (Kiecolt-Glaser 
et al., 2009).

Beyond classic immunological roles for immunoglobulins, clinical 
observations have noted that B cell-derived autoantibodies against 
CNS targets, namely glutamatergic but also GABAergic receptors, are 
implicated in several neurological disorders (Sun et al., 2020). For 
instance, NMDA receptor antibody encephalitis is associated with 
modest CNS perivascular and meningeal CD20+ B cells while CD138+ 
plasma cells have been observed in the CNS (Tüzün et  al., 2009; 
Martinez-Hernandez et  al., 2011), an effect supported by the 
observation of elevated CSF levels of CXCL13 observed in these 
patients (Leypoldt et al., 2015). Several reports note that patients with 
anti-NMDA encephalitis report poor psychosocial function (Blum 
et al., 2020; Nguyen et al., 2020) and humans (migrants) or mice with 
chronic life stress experience display serum NMDAR1-antibody (IgA) 
(Pan et al., 2021). As well, neuronal surface autoantibody expression 
has been implicated in a number of neuropsychiatric conditions, 
MDD included (Zong et al., 2017). Though the process governing 
immune tolerant B cell development is complex (Sun et al., 2020), two 
key sources of self-reactive autoantibodies have been identified: 
antibody-secreting plasmablasts from GCs in secondary lymphoid 
organs and bone marrow resident long-lived PCs (Hansen, 2022). This 
is important given the recent findings noting increased splenic PCs 
with acute and chronic stress in rodents (Zhang et al., 2020; Lynall 
et al., 2021), linking the possibility for B cells to play a significant role 
in stress exposure-induced CNS reactive autoantibody generation 
mechanisms. As to where these cells are located, the BBB disruption 
reported in stress and MDD provides a promising mechanism by 
which Igs (autoreactive or not), expressed at very low levels under 
normal conditions (Zong et  al., 2017), are able to access the 
CNS. Intrathecal synthesis by PCs is another possibility that has yet to 
be fully discerned. It is worth noting that understanding in this field 
is still being developed and remains controversial (Vahabi et al., 2021), 
thus added clarity is likely to emerge with additional investigations in 
the coming years.

5.5.2 B cell interactions with T cells
In addition to supporting activation and survival (above), B-T cell 

interactions take place within the context of antigen presentation via 
major histocompatibility complexes (MHC) (Chen and Jensen, 2008). 
Indeed, after internalization via pinocytosis or B cell receptor-
mediated endocytosis, B cells display antigenic peptide via MHCs to 
the T cell receptor of their antigen-cognate T cell. This interaction 
serves discrete functions, dependent on MHC class. MHCI molecules 
are ubiquitously expressed on all nucleated cell types, including B cells 
(Rock et al., 2016) as well as neurons and glial cells in brain regions 
underlying mood and cognition (Elmer and McAllister, 2012). MHCI 
displays critical non-immune roles in cortical development, neurite 
outgrowth, synaptic regulation, and learning and memory (Shatz, 
2009; Elmer and McAllister, 2012; Nelson et al., 2013). Further, MHCI 
expression on neurons is altered by cytokines, an important 
observation given that stress exposure induces proinflammatory shifts 
in cytokine profiles. When activated B cells present antigen via MHCI, 
CD8+ cytotoxic T cells are activated (Wieczorek et al., 2017) or in 
some cases tolerized (Bennett et al., 1998; Castiglioni et al., 2005). Like 
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other professional antigen presenting cells, B cells constitutively 
express modest levels of MHCII surface molecules, though expression 
is substantially increased following cell activation or cytokine 
stimulation (Rock et al., 2016). Given the strong evidence for critical 
roles for T cells in MDD, namely the elevated ratio of CD4+/CD8+ T 
cells in MDD patients (Maes et al., 1990) and that T cell deficiency in 
mice increases maladaptive stress response behaviors which are 
ameliorated by T cell adoptive transfer (Cohen et al., 2006), antigen 
presentation and subsequent co-stimulation of T and B cells could 
have critical impacts on the stress response. Several genome wide 
association studies have revealed variants in expression of 
MHC-related genes among MDD patient populations (Woo et al., 
2018; Wray et al., 2018; Li et al., 2019). Maes et al. (1992) also identified 
increased expression of MHC-II on the surface of T cells collected 
from blood of depressed patients. MHC expression has also been 
found altered in rodent models of stress. The percent of peritoneal 
macrophages displaying MHCII surface molecules was reduced in 
adult male mice exposed to a single session of 12–18 h of restraint 
stress (Zwilling et al., 1990). This effect appears to be mediated by 
glucocorticoid signaling as in vitro, MHCII expression in B cells 
exposed to corticosterone is reduced (Nugent et al., 2011). Whether 
similar changes are occurring on B cells in response to behavioral 
stress is not known.

5.5.3 B cell cytokine production
B cells represent a heterogenous cell population with the capacity 

to secrete a variety of cytokines in response to immune stimulation 
and these secretion patterns can have fundamentally distinct 
consequences for immunity and for CNS (Hoffman et al., 2016; Jain 
and Yong, 2022). As elegantly depicted in 6, B cell-derived cytokines 
can promote macrophage activation (granulocyte-macrophage colony 
stimulating factor), support PC differentiation and survival (IL-6), 
regulate T cell differentiation, proliferation and inflammatory function 
(IL-6; transforming growth factor-β, and IL-35), facilitate formation 
of follicle-like structures (lymphotoxin-α) and modulate microglial 
cell activation (TNFα; interferon-γ). Indeed, proinflammatory B cells 
regulated microglia and macrophage proinflammatory cytokine 
expression in MS (Touil et al., 2018). In contrast, B regulatory cells 
have been recently been recognized to down-modulate inflammation, 
predominantly by restraining the inflammatory immune response via 
interleukin (IL)-10 secretion (Hoffman et al., 2016; Jain and Yong, 
2022). This cytokine plays a protective role in various brain 
inflammatory conditions (Lobo-Silva et al., 2016), systemic levels are 
altered in MDD, and converging data support its critical role in 
mediating stress susceptibility (Mesquita et al., 2008; Gazal et al., 2015; 
Laumet et  al., 2018). Importantly, in MS IL10-expressing B cells 
upregulated quiescence associated molecules (Touil et al., 2018). Such 
cell-to-cell interactions may exert important functional consequences 
considering the complex roles played by microglia in regulated CNS 
function under normal and MDD conditions (Wang et al., 2022).

6 Research tools

The pioneering insights gleaned from B cell interactions with 
CNS in other neurological conditions coupled with the availability of 
numerous B cell-modulating immunology research tools (Lee et al., 
2021; Utset et al., 2021) poises the neuroscience field to rigorously 

interrogate mechanisms by which these cells may impact the response 
to stress. For instance, recent advances in spectral flow cytometry 
allow for more robust and comprehensive phenotyping of immune 
and resident cell panels in distinct tissues (Nolan, 2022). 
Administration of fluorescently labeled immune cells permits 
tracking of immune cell migration with a high degree of spatial 
specificity. Adoptive transfer techniques can be used to reconstitute 
transgenic animals lacking in distinct leukocyte populations (e.g., B 
cells absent in μMT) with distinct immune cell populations (e.g., B 
regulatory cells) or with cells which lack certain functional 
capabilities (e.g., IL-6 vs. IL-10 secreting capacity). Further 
monoclonal antibody (mAb)-mediated strategies to deplete distinct 
B cell populations, cytokines, or survival signals in vivo can 
differentiate functional impacts during adulthood from those during 
some critical developmental window. Some of the many available 
approaches including anti-CD19 or -CD20 mAbs (e.g., Inebilizumab; 
Rituximab; Ocrelizumab) are in trials or approved for use in 
autoimmune SLE or MS (Zhang et al., 2023). Moreover, various BAFF 
B cell survival signal inhibitors (e.g., Belimumab) are being developed 
or are currently deployed in clinical populations. Treatments 
developed for other therapeutic applications that are directed against 
other central [e.g., microglial depletion with colony stimulating 
factor 1 receptor inhibitors (PLX3397) (Basilico et  al., 2022)] or 
systemic [e.g., anti-CD3 muromonab (Kuhn and Weiner, 2016)] 
immune cell populations can be used for discerning the extent to 
which interactions with other cells types is an important mechanism 
by which B cells influence the response to stress. MAbs directed 
against distinct cytokines are also available. A thorough 
understanding of the strengths and weaknesses of each approach is 
necessary to properly interpret results using these various research 
tools. For example, μMT mice exhibit reduced T cell numbers and 
functionality (Homann et al., 1998; Bergmann et al., 2001). Anti-
CD20 B cell depletion (Rituximab) spares T cells (Uchida et  al., 
2004), innate-like T cell–independent B1 cells (Hamaguchi et al., 
2005) and plasma cells (Hauser et al., 2008) while BAFF receptor 
targeting with TACI-IgG (Atacicept) robustly depletes the plasma cell 
compartment (Kappos et al., 2014). As appreciation for the role these 
cells play in orchestrating immune and neurological function during 
homeostasis and stress grows, this understanding should better 
inform our current and future interventions to support mental health 
and wellbeing.

7 Conclusion

Taken together, evidence above supports complex B cell-stress-
brain interactions (Figure 2). Psychosocial stress exerts robust effects 
on B cells; these effects can vary on a number of factors including the 
nature of the stressor, the tissue, and the B cell subtype being assayed. 
Brain control of peripheral immune cell compartments suggest 
complex regulatory cascades are engaged to control this response. 
Perturbation of B cell systems may be associated with alterations to 
hedonic state that could render an organism susceptible to a 
depressive-like phenotype. Multifaceted signaling and trafficking 
systems are engaged with stress exposure, some of which may result 
in B cell migration through blood or CSF to CNS target sites such as 
meningeal ELS, circumventricular organs, or even parenchyma itself. 
Finally, given their ability to engage with key neurotransmitter 
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systems, B cells may impact the stressed brain in functionally 
meaningful ways that will continue to be revealed as research in this 
area progresses in the coming years.
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Glossary

5-HT serotonin

ALCAM activated leukocyte cell adhesion molecule

APRIL a proliferation-inducing ligand

BAFF B cell activating factor

BBB blood–brain barrier

BDNF brain derived neurotrophic factor

BMCA B cell maturation antigen

CCL CC chemokine ligand

CD cluster of differentiation

CD40L CD40 ligand

CNS central nervous system

CRH corticotrophin releasing hormone

CSF cerebrospinal fluid

CXCL C-X-C motif ligand

DA dopamine

DRD dopamine receptor

ELS ectopic lymphoid structures

GABA gamma aminobutyric acid

GC germinal center

GR glucocorticoid receptor

HPA hypothalamic pituitary axis

ICAM intracellular adhesion molecule

ICOS inducible T cell co-stimulator

Ig immunoglobulin

IL interleukin

LFA lymphocyte function associated antigen

LPS lipopolysaccharide

mAb monoclonal antibody

MDD major depressive disorder

MHC major histocompatibility complex

NE norepinephrine

NGF nerve growth factor

MR mineralcorticoid receptor

MS multiple sclerosis

NMDA N-methyl-D-aspartate

NT3 neurotrophic factor 3

PC plasma cell

PVN paraventricular nucleus

SERT serotonin transporter

TACI transmembrane activator and calcium-modulator and cyclophilin ligand interactor

TNF tumor necrosis factor

VLA very late antigen
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