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B cells are fundamental players in the pathophysiology of autoimmune diseases

of the central nervous system, such as multiple sclerosis (MS) and neuromyelitis

optica spectrum disorder (NMOSD). A deeper understanding of disease-

specific B cell functions has led to the differentiation of both diseases and

the development of different treatment strategies. While NMOSD is strongly

associated with pathogenic anti-AQP4 IgG antibodies and proinflammatory

cytokine pathways, no valid autoantibodies have been identified in MS yet,

apart from certain antigen targets that require further evaluation. Although

both diseases can be effectively treated with B cell depleting therapies, there

are distinct differences in the peripheral B cell subsets that influence CNS

inflammation. An increased peripheral blood double negative B cells (DN B

cells) and plasmablast populations has been demonstrated in NMOSD, but

not consistently in MS patients. Furthermore, DN B cells are also elevated

in rheumatic diseases and other autoimmune entities such as myasthenia

gravis and Guillain-Barré syndrome, providing indirect evidence for a possible

involvement of DN B cells in other autoantibody-mediated diseases. In MS,

the peripheral memory B cell pool is affected by many treatments, providing

indirect evidence for the involvement of memory B cells in MS pathophysiology.

Moreover, it must be considered that an important effector function of B cells

in MS may be the presentation of antigens to peripheral immune cells, including

T cells, since B cells have been shown to be able to recirculate in the periphery

after encountering CNS antigens. In conclusion, there are clear differences in the

composition of B cell populations in MS and NMOSD and treatment strategies

differ, with the exception of broad B cell depletion. This review provides a

detailed overview of the role of different B cell subsets in MS and NMOSD and

their implications for treatment options. Specifically targeting DN B cells and

plasmablasts in NMOSD as opposed to memory B cells in MS may result in more

precise B cell therapies for both diseases.
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Introduction

B cells have been shown to play a key role in the pathogenesis
of several autoimmune diseases. The main functions of B cells are
antigen recognition and specific antibody production, as well as
antigen presentation and cytokine secretion (Cyster and Allen,
2019). In autoimmune diseases, a major function of B cells can
be recognition of self-antigens, possibly by escaping self-tolerance
and/or molecular mimicry, and production of auto-reactive
antibodies (Hampe, 2012; Bonasia et al., 2021). The secretion of
antibodies can be detrimental in certain neuro-immunological
diseases exemplified by myasthenia gravis, neuromyelitis optica
spectrum disorder (NMOSD), MOG antibody associated disorder
(MOGAD) or LGI1/NMDA receptor encephalitis (Prüss, 2021).
During these autoimmune diseases, auto-antibodies either
interfere with the function of the molecules they recognize
[e.g., acetylcholine receptor antibodies (AChR) in myasthenia
gravis] and/or lead to cell destruction by complement-dependent
cytotoxicity (CDC) (e.g., NMOSD) or antibody-dependent
cell mediated cytotoxicity (ADCC). Furthermore, B cells can
function as antigen-presenting cells, potentially triggering a
pathological immune response involving T cells. The secretion
of pro-inflammatory cytokines such as IL6, TNFα or interferon
gamma might further support autoimmune reaction in terms of a
pro-inflammatory milieu and stimulation of immune cells.

This review contrasts the differences in the pathophysiology
of MS and NMOSD, with a particular focus on peripheral B cells
and B cell subsets and their association with CNS B cells and
inflammation. Besides the overall differences of B cell subsets in
disease pathology, we summarize the effects of disease-specific
treatments on B cell populations and their implications for
the pathophysiology of both diseases. Additionally, we explore
potential B cell subset-specific treatments for future therapies. The
mechanism of action of each drug discussed throughout the text
is summarized in Table 1. An overview of B cell surface makers is
provided in Table 2.

B cell subsets and development

B cells undergo several stages of maturation during adaptive
immune responses. Shortly summarized, B cells are generated
in the bone marrow (pre/pro B cells) and then released into
the peripheral blood (Cyster and Allen, 2019). Naïve B cells
(antigen inexperienced) then migrate from the peripheral blood
to secondary lymphoid tissues such as the spleen or lymph
nodes, where they undergo further differentiation in germinal
center reactions (Kurosaki et al., 2015; Cyster and Allen, 2019).
Once bound to an antigen, B cells undergo a series of receptor
and Ig subclass expression changes with co-stimulatory signaling
by, e.g., T cell help. After this differentiation process, different
subsets of antigen-experienced B cells emerge: memory B cells and
plasmablasts. When memory B cells reencounter specific antigens,
they undergo expansion and differentiate into plasmablasts mostly
in the germinal centers (Kurosaki et al., 2015). Plasmablasts develop
subsequently in either short-lived plasma cells or long-lived plasma
cells which can maintain antibody production for decades without
antigen re-stimulation (Lightman et al., 2019).

In contrast, another heterogeneous B cell group has the ability
to suppress immune responses and are named regulatory B cells as
a functionally defined population (Catalán et al., 2021). A definitive
set of phenotypic markers are still lacking (Catalán et al., 2021). IL-
10, IL-35, and TGF-beta secretion, the cell surface proteins CD1d
and PD-L1 characterize the anti-inflammatory properties of this
cell group (Catalán et al., 2021). Immature transitional B cells,
divided into T1, T2, and T3 subpopulations are an intermediate
stage between immature cells from the bone marrow and mature
cells in the periphery (Catalán et al., 2021). T1 and T2 subtypes
constitute a significant source of functional regulatory B cells (Zhou
et al., 2020; Catalán et al., 2021). Autoimmune diseases are prone to
have a lower frequency of regulatory B cells (Zhou et al., 2020).

Double negative (DN) B cells constitute another B cell
population that lacks expression of immunoglobulin D and CD27
surface markers and has shown to be associated with autoimmune
diseases (Sanz et al., 2019; Ruschil et al., 2021). The class-switched
IgD- phenotype may indicate an antigen-specific maturation.
Some author suggests that in the absence of CD27, a transition
from a naive B cell seems unlikely (Li et al., 2021a). However,
transcriptome analysis points toward a continuum of naive B-cells,
memory B cells and plasmablasts (Ruschil et al., 2020), although
the exact origin and maturation pathway of DN B cells is still
unclear. Jenks et al. (2018) found two subgroups of DN B cells
mainly based on the expression of the follicular marker CXCR5
(DN1: CXCL5 + and DN2: CXCL5- subtype), which is involved in
the migration of B cells into B-cell follicles. CXCL5 + DN B cells are
mostly expanded in elderly healthy individuals, while CXCL5- DN
B cells were markedly found in active systemic lupus erythematosus
(SLE), a defined autoantibody associated disease. In SLE, it has
been further shown that the CXCL5- DN B cell subset develops
from an activated naïve B cell pool. The lack of CXCR5 point
toward an extrafollicular maturation pathway (Tipton et al., 2015;
Jenks et al., 2018; Sanz et al., 2019). Compelling evidence suggests
that CXCL5- DN B cell subset represents a primed precursor
population for antibody-secreting cells (Jenks et al., 2018; Sanz
et al., 2019). Although our studies didn’t differentiate these two
DN B cell subpopulations, we have also shown that DN B cells
are as well up-regulated in various auto-inflammatory neurological
diseases including myasthenia gravis, Guillain-Barreì syndrome
and NMOSD but not consistently in MS (Ruschil et al., 2020). We
and others could show that this population most likely represents
a transient precursor B cell population undergoing differentiation
into antibody-secreting cells (Ruschil et al., 2020). Along these
lines, we could show that the proportion of peripheral DN B cells
is increased after vaccination and DN B cell-derived recombinant
antibodies showed binding of specific vaccines, providing indirect
evidence of their antibody secretion capacity (Ruschil et al., 2020).

Pathophysiological roles of B cells in
autoimmunity

The development of auto-reactive properties of B cells in
autoimmune diseases remains a topic of great debate. While
molecular mimicry is a recognized mechanism that can mislead
B cells toward self-antigens, impaired self-tolerance during B cell
development also contributes to auto-reactivity. The initial B cell
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TABLE 1 B cell subset alterations in peripheral blood under various treatments.

Mode of action Lymphocyte
count

Total B
cells

% Naive B
cells

% Memory
B cells

% Bregs %
Plasmablast

% DN References

Cladribine Purine nucleoside analog selectively depleting
peripheral lymphocytes through inhibition of
enzymes involved in DNA metabolism

↓ ↓ ↑ ↓ – ↔ ↔ Ceronie et al., 2018;
Ruschil et al., 2023

Teriflunomide Reversibly inhibits dihydro-orotate
dehydrogenase. Reduction in proliferation of
activated T and B lymphocytes without
causing cell death

↓ ↓ – ↓ – ↓ – Yilmaz et al., 2021

Mitoxantrone Type II topoisomerase inhibitor. Disrupts
deoxyribonucleic acid synthesis and repair

↓ ↓ ↑ ↓ – – – Kim et al., 2011

Fingolimod Sphingosine-1-phosphate receptor modulator ↓ ↓ ↓ ↓ ↑ ↓ ↑ Blumenfeld-Kan
et al., 2019;

Kemmerer et al.,
2020; Kowarik

et al., 2021

Siponimod Sphingosine-1-phosphate receptor modulator ↓ ↓ ↓ ↔ ↑ – – Wu et al., 2020

Natalizumab Humanized monoclonal antibody against the
cell adhesion molecule α4-integrin

↑ ↑ ↑ ↑ – ↓ Kemmerer et al.,
2020; Kowarik

et al., 2021

Alemtuzumab Monoclonal antibody against CD52 ↓ ↓↑ – – – – – Baker et al., 2017a,b

Ocrelizumab Monoclonal antibody against CD20 ↓ ↓ ↓ ↓ – ↓ ↓ Hauser et al., 2021

Interferon Beta Inhibition of T-cell activation and
proliferation, apoptosis of autoreactive T cells,
induction of regulatory T cells, inhibition of
leukocyte migration across the blood-brain
barrier.

↔ ↔ ↑ ↑ – NC NC Kemmerer et al.,
2020

Dimethyl fumarate Interfere with the aerobic glycolysis of
activated lymphoid cells with a high metabolic
turnover

↓ ↓ ↑ ↓ ↔ ↔ ↓ Spencer et al., 2015;
Smith et al., 2017;
Kemmerer et al.,

2020

Glatiramer acetate Inhibits the T cell response to several myelin
antigens

↔ (↓) ↔ (↑) – NC NC Kemmerer et al.,
2020

Rituximab Monoclonal antibody against CD20 ↓ ↓ ↓ ↓ ↑ ↓ ↑ Quan et al., 2015;
Ramwadhdoebe

et al., 2019

Ofatumumab Monoclonal antibody against CD20 ↓ ↓ – – – – – Bar-Or et al., 2022

Inebilizumab Monoclonal antibody against CD19 ↓ ↓ ↓ ↓ – ↓ ↓ Agius et al., 2019

Tocilizumab Monoclonal antibody against interleukin-6
receptor

↔ ↔ ↑ ↓ – ↓ ↓ Liu et al., 2021

Eculizumab* Monoclonal antibody against complement C5 – – – ↓ – – – Li et al., 2021b

NC: no clear changes. The arrows in parenthesis mean a slight change. DN, double negative; Bregs, regulatory B cells. The (-) means no data found. *In patients with myasthenia gravis.
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repertoire generated by random V(D)J recombination undergoes
a bimodal removal of autoreactive clones due to exposure to
self-antigens (Meffre and O’Connor, 2019). This exposure occurs
initially in the bone marrow, the site of B cell generation, and later
in the periphery when B cells encounter a new set of self-antigens,
resulting in the removal of autoreactive clones (Goodnow, 1996;
Wardemann et al., 2003; Meffre and O’Connor, 2019). Distinct
mouse models have shown that developing self-reacting B cells
can be silenced through the following mechanisms: (1) clonal
deletion; (2) clonal unresponsiveness to antigen or anergy; and
(3) "receptor editing" or antigen receptor gene replacement by
continued V(D)J recombination (Meffre, 2011; Stoehr et al., 2011;
Meffre and O’Connor, 2019). Several lines of evidence suggest that
central tolerance is likely dysregulated in NMOSD (Cotzomi et al.,
2019; Meffre and O’Connor, 2019). The identification of pathogenic
anti-AQP4 clones, which originate from unmutated autoreactive
naive B cells in patients with NMOSD, is in potential agreement
with this scenario (Meffre and O’Connor, 2019). In contrast, MS
patients exhibit distinct B cell tolerance patterns compared to
other autoimmune diseases. Here, an impaired peripheral B cell
tolerance checkpoint is believed to be the main culprit, leading
to the peripheral buildup of polyreactive mature naïve B cells, as
shown by Kinnunen et al. (2013). Consistent with this assumption,
regulatory T cells (Tregs) in MS patients seem to exhibit impaired
suppressive activity and abnormally secrete interferon gamma
(IFNγ) (Dominguez-Villar et al., 2011).

Molecular mimicry arises when peptides from pathogens
display structural similarities with self-antigens. The presence of
diverse pathogens, with each having its own potential unique
molecular mimic to a CNS antigen, may elucidate why researchers
have struggled to link a specific virus to, e.g., multiple sclerosis
(Libbey and Fujinami, 2014). However, Epstein-Barr virus (EBV)
has been identified as a potential viral agent that may trigger the
production of autoreactive antibodies targeting GlialCam (Lanz
et al., 2022). Nonetheless, more extensive evaluation of these
findings is required. To the best of our knowledge, there is presently
no conclusive evidence of established pathogens incorporating
molecular mimicry mechanisms in NMOSD.

Regarding other mechanisms of B cell-mediated autoimmunity,
B cells contribute to the development of diabetes through
recognition of self-antigens with autoreactive antibodies and

presentation of self-antigens via MHC class II molecules to T
cells (Serreze et al., 1996). These findings indicate that self-
antigen presentation by autoreactive B cells, which evade tolerance,
could be the catalyst for the onset of autoimmune disorders. In
multiple sclerosis, HLA class II alleles of the DR2 haplotype,
DRB1∗1501, DRB5∗0101, and DQB1∗0602, are well established
genetic risk factors for MS and show a functional redundancy in Ag
presentation (Sospedra and Martin, 2006). Thus, B cells serving as
antigen presenting cells may shape an autoreactive T cell repertoire
by presenting autoantigens by DR2 HLA-DR molecules (Wang
et al., 2020).

Finally, altered cytokine levels that may result from a
misdirected B cell activation can provide a pathogenic milieu for
autoimmunity. Shortly summarized, serum IL-6 concentrations are
significantly elevated in patients with NMOSD and are higher
than in healthy individuals and patients with MS (Fujihara
et al., 2020). Serum cytokine levels in MS do not show a clear
proinflammatory profile, and several cytokines have even been
shown to be downregulated (Lepennetier et al., 2019; Melamud
et al., 2022). Within the CSF compartment, IL6 is also upregulated
in NMOSD patients while CXCL13 seems to be a consistently up-
regulated B cell-associated cytokine in MS (Sospedra and Martin,
2006). However, B cells are also able to secrete anti-inflammatory
cytokines such as IL10 which is also upregulated in the CSF of
NMOSD patients (Kaneko et al., 2018).

B cells in multiple sclerosis

Evidence for an important role of B cells
in MS

With the discovery of oligoclonal bands in the cerebrospinal
fluid (CSF) of patients with MS, evidence pointed toward a
pathophysiological role of B cells with potentially disease-driving
antibodies in the CSF (DiSano et al., 2021). In MS, the majority
of B cells in CSF are antigen-experienced B cells (Harp et al.,
2007; Eggers et al., 2017), and the frequency of memory B cells
is increased in CSF compared to peripheral blood (Eggers et al.,
2017). In addition, B cell infiltration has been found within
the brain parenchyma (Machado-Santos et al., 2018) and also

TABLE 2 Overview of B cell surface makers.

Transitional B cells/Regulatory
B cells

Naïve B cells Memory B cells Plasmablasts DN B cells

IgD + + − − −

CD 19 + + + + +

CD 20 + + + Low Low

CD 27 − − + + −

CD 38 + Low − High Low

CD 5 + − − / /

CD 9 + / / / /

CD 24 + Low Low / /

CXCR5 / + + + ±

IgD, immunoglobulin D; CD, cluster of differentiation; DN, double negative. “/” means unknown data.
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in leptomeningeal aggregates, which are strongly associated with
cortical lesions (Fraussen et al., 2014; Martin et al., 2016; Jain and
Yong, 2022). Although Th1/Th17 T cells have at times attracted
attention as potential therapeutic targets due to their important
role in EAE models, specific CD4, Th1/Th17 immunotherapies
have largely failed to show a clear impact on MS relapses (Baker
et al., 2017c). In contrast, the high efficacy of B cell depletion
in multiple sclerosis, first demonstrated for the CD20-specific B
cell depleting agent rituximab (Hauser et al., 2008), was surprising
and again highlighted the role of B cells. Subsequent clinical trials
with ocrelizumab (Hauser et al., 2017; Vermersch et al., 2022),
ofatumumab (Hauser et al., 2020), and ublituximab (Steinman
et al., 2022) provide further evidence for the efficacy of (CD20) B
cell depletion not only in relapsing but also in primary progressive
multiple sclerosis (Kappos et al., 2011; Hauser et al., 2017).

Possible roles of B cells during MS
pathophysiology

The exact role of B cells in the pathophysiology of MS remains
controversial. Epstein-Barr virus (EBV) infections have recently
been strongly associated with multiple sclerosis, with 97% of
patients in a large cohort showing positive EBV serum titers
or seroconversion prior to the development of multiple sclerosis
(Bjornevik et al., 2022). In addition, another study suggested
molecular mimicry between EBNA1–a prominent EBV antigen–
and GlialCAM (glial cell adhesion molecule), suggesting a direct
role of pathogenic antibodies in MS (Lanz et al., 2022). However,
only a limited number of antibodies reacted against both targets, so
further confirmation seems necessary. Other potentially interesting
targets for MS antibodies that have been proposed in recent years
are chloride-channel protein Anoctamin 2 (ANO2) (Tengvall et al.,
2019), which is a transmembrane protein for modulation for
neural-excitability; alpha-crystallin B (CRYAB), which is expressed
by oligodendrocytes and may have a protective effect by down-
regulating the innate immune system (Thomas et al., 2023).
Another group recently found antibodies against conformational
membrane complexes containing the myelin proteolipid protein
1 (PLP1) (Owens et al., 2023). In addition to these recently
described targets, a large number of autoantibodies have been
described against various CNS cell types, including neurons,
oligodendrocytes and astrocytes, and even immune cells (Fraussen
et al., 2014). Although some of these possible antigen-antibody
interactions seem to point toward an antibody-driven role of
B cells in multiple sclerosis, multiple antigens could not be
confirmed in further analyses, and one or a subset of clear
antibody targets such as AQP4 in NMOSD have not yet been
identified. An alternative function of B cells could be centered
around antigen presentation and T cell stimulation. Our group
(Kowarik et al., 2021) and other studies (Stern et al., 2014; Ruschil
et al., 2021) have demonstrated that B cells not only traverse
the blood-brain barrier but also recirculate in the peripheral
blood through cervical lymph node drainage (Figure 1.). B cells,
potentially primed against antigens in the CNS compartment
during relapse, could thus possess the capacity to re-enter germinal
centers in the periphery and perpetuate autoimmune circuits
(Ruschil et al., 2021). Altogether, it remains unclear whether B cells

predominantly produce autoantibodies against specific targets or
act as antigen-presenting cells that circulate between the CNS and
peripheral compartments; however, the diversity and inconsistency
of suggested antigen targets might point toward a substantial
antigen-presenting role.

Peripheral B cells and treatment-specific
effects on B cell subsets in MS:
consistent effects on memory B cells

Peripheral blood B cell subsets including total B cell numbers,
naïve, memory B cells, double negative B cells and plasmablasts
during stable disease do not show significant differences when
compared to healthy controls (Kemmerer et al., 2020; Ruschil
et al., 2020). The prevalence of transitional/regulatory B cells
is often low (Zhou et al., 2020) while DN B cells did not
show a consistent up-regulation in MS (Fraussen et al., 2019;
Ruschil et al., 2020). Besides the broad depletion of circulating
B cells by anti-CD20 antibodies such as rituximab, ocrelizumab
and ublituximab, several MS treatments have shown to also
exert profound effects on peripheral B cells and cerebrospinal
fluid (Tables 1, 3). The absolute number of B cells in MS
treatments has been shown to be slightly reduced during dimethyl
fumarate, fingolimod, and siponimod treatment, unchanged during
glatiramer acetate and interferon beta treatment and increased
during natalizumab treatment (Kemmerer et al., 2020; Traub
et al., 2020). Natalizumab is a monoclonal antibody against the
cell adhesion molecule α4-integrin, which is highly expressed in
B-cells (Saraste et al., 2016). The increase in peripheral B cell
number during natalizumab most likely relies on the egress of
memory B cells from the marginal sinus of the spleen through
the blockade of integrins by which memory B cells attach to
the sinus (Kowarik et al., 2021). However, these cells are also
impaired in their ability to cross the blood-brain-barrier so that
natalizumab treatment has to be considered separately (Kowarik
et al., 2021). Further differential flow cytometric analyses showed,
that in most treatments, the fraction of naïve B cells is increased,
while the percentage of memory B cells is significantly decreased
(Kemmerer et al., 2020; Traub et al., 2020). Regulatory B cells show
consistently elevated percentages during most treatments while DN
B cells show unchanged percentages or an elevated proportion
during fingolimod therapy (Kemmerer et al., 2020). Plasmablast
percentages show different patterns or are unchanged during
treatment with cladribine, interferon beta, dimethyl fumarate
or glatiramer acetate. Further analyses by B cell repertoire
mass sequencing or whole transcriptome analysis underlined
that memory B cells are significantly affected during cladribine
treatment (Ceronie et al., 2018; Rolfes et al., 2022; Ruschil et al.,
2023) and also alemtuzumab treatment (Ruck et al., 2022). Data
regarding changes in CSF immune cell subsets are limited and
differences are difficult to assess due to the overall low number
of immune cells. However, treatment with dimethyl fumarate,
natalizumab, rituximab, ocrelizumab, and alemtuzumab resulted
in reduced CSF B cell counts, whereas fingolimod did not alter
the proportion of CSF B cells (Table 3). Plasmablasts were
reduced during treatment with dimethyl fumarate, natalizumab
and fingolimod (Table 3).
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FIGURE 1

Differential roles of B cells in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). In MS, B cells have been shown to enter
the CNS compartment (via integrin activation) but also recirculate into the periphery by drainage into cervical lymph nodes. B cells show an
increased proportion in the CSF, are found in lesions and follicular-like structures at the meninges, and are the source of oligoclonal IgG bands in
the CSF of MS patients. Although several interesting antigens have been proposed as potential B cell targets, no clear target or a subset of targets
have yet been identified. In addition to antibody secretion, a major function of B cells may be presentation of CNS antigens and stimulation of, e.g., T
cells once they have re-entered germinal centers in the periphery. These mechanisms could perpetuate autoimmune cycles leading to recurrent
relapses. Memory B cells seem to be of particular interest in this context, although this hypothesis requires further evaluation. In NMOSD,
aquaporin-4-specific antibodies are produced in the periphery and target astrocytic end feet, leading to CNS inflammation and breakdown of the
blood-brain barrier. During relapses, AQP4-specific B cells are also found in the CSF and may further enhance antibody-mediated,
complement-dependent inflammation. Double negative B cells may represent a transient precursor B cell population that differentiates into
AQP4-specific antibody-secreting cells through extrafollicular maturation pathways. M: Memory B cells, DN: double negative B cells, OCB:
Oligoclonal bands, RBC: red blood cell.

Frontiers in Cellular Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fncel.2024.1337339
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-18-1337339 February 5, 2024 Time: 16:39 # 7

Tieck et al. 10.3389/fncel.2024.1337339

TABLE 3 B cell subsets changes in the cerebrospinal fluid (CSF) under various treatments.

Total B
cells

% Naive B
cells

% Bmem %
Plasmablast

% DN References

Dimethyl fumarate ↓ – ↔ ↓ – Høglund et al., 2018

Fingolimod ↔ (↑) ↔ (↓) ↔ Kowarik et al., 2021

Natalizumab ↓ ↔ ↓ ↓ ↔ Stüve et al., 2006; Warnke
et al., 2015; Kowarik et al., 2021

Ocrelizumab ↓ – – – – Cross et al., 2019

Rituximab ↓ – – – – Monson et al., 2005; Cross
et al., 2006

Alemtuzumab ↓ – – – – Müller-Miny et al., 2023

The arrows in parenthesis mean a slight change. DN, double negative.

In contrast to these approved treatments, other drugs that
also affect B cells have been shown to be ineffective or even
worsen MS. For example, atacicept was stopped in the ATAMS trial
because of a pronounced conversion to MS in patients with optic
neuritis. Although the exact mechanisms regarding B cells was not
elucidated in the study, an increase in IL15 provided some evidence
suggesting stimulation of memory B cells as a possible explanation
for the clinical outcomes observed in the study (Kappos et al.,
2014). In addition, the use of anti-TNF blockers such as infliximab,
which can stimulate memory B cell activity, has been associated
with an increased incidence of MS in patients with chronic disease
(Avasarala et al., 2021). Regarding B cell depleting treatments, it is
important to note that regulatory B cells may also be depleted, but
this does not seem to drastically limit the therapeutic potential.

Interestingly, numerous MS treatments influence T cell
function and T cell subset distribution (Martin et al., 2016),
however, a direct effect on B cell populations seems to have an even
more relevant effect on the disease course. The consistent effect of
MS treatments on the memory B cell subset could further underpin
this assumption due to their frequent occurrence in the CSF and
their ability to recirculate into the periphery and to repeatedly
participate in germinal center reactions. Of note, memory B cells
are the primary site of persistent latent EBV infection which
could partially explain the association between EBV infections and
multiple sclerosis (Tracy et al., 2012).

B cells in neuromyelitis optica
spectrum disorder

Anti-AQP4 antibody-secreting B cells as
the major driver of NMOSD
pathophysiology

Neuromyelitis optica spectrum disorder has been recognized
as a separate disease entity with the discovery of autoantibodies
against the water-channel aquaporin-4 (AQP4-AB) (Lennon
et al., 2004). It could be clearly demonstrated that AQP4-AB
bind to AQP4 channels on astrocytes triggering an activation
of the complement cascade, with granulocyte, eosinophil, and
lymphocyte infiltration, resulting in astrocyte damage. As a
secondary event, oligodendrocyte injury leads to demyelination

and neuronal loss (Carnero Contentti and Correale, 2021). Lineage
analysis of AQP4- specific B cells from the peripheral blood and
CSF B cells of NMOSD patients showed a clonal relationship with
memory B cells, plasmablasts and DN B cells in the periphery
during active disease. Immunoglobulin transcriptome analysis
further indicated that expanded DN B cells undergo antigen-
specific B cell maturation and are closely linked to AQP4-specific
CSF B cells (Kowarik et al., 2017). Although it is believed that mis-
priming and/or escape from tolerance mechanisms of peripheral
B cells and the peripheral secretion of AQP4-AB might initiate
NMOSD disease pathology, AQP-4 specific CSF plasmablasts have
been shown to originate from peripheral B cells and intrathecally
secrete AQP4-AB during active disease and thus might contribute
to disease exacerbation (Kowarik et al., 2015).

Double negative B cells in NMOSD—Link
to rheumatic diseases

Besides the peripheral up-regulation and association of DN B
cells and AQP4-reactive CSF plasmablasts in active NMOSD, DN B
cells have received increasing attention in recent years, especially
in SLE, where they have been found to be a marker of disease
severity (Jenks et al., 2018; Szelinski et al., 2022). DN B cells are
also elevated in the elderly, in infections and in other autoimmune
diseases such as rheumatoid arthritis, Guillain-Barre syndrome and
myasthenia gravis (Fraussen et al., 2019). DN B cells (CXCR5-) are
extensively expanded in antibody-mediated autoimmune diseases
such as SLE, where a worse disease course is correlated with an
inflated population of DN B cells (CXCR5-), which are thought to
represent plasmablasts precursors (Jenks et al., 2018; Szelinski et al.,
2022). When co-cultured with Th cells, DN B cells have the capacity
to differentiate into antibody-secreting cells (Janssen et al., 2020;
Hoshino et al., 2022). Conversely, most of DN B cells in MS are not
CXCR5-, indicating a different mechanism from that observed in
NMOSD and SLE (Li et al., 2021a).

Peripheral B cells and treatment: specific
effects on B cell subsets in NMOSD

In the peripheral blood, plasmablasts
(CD19intCD27highCD38highCD180-) have been shown to
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be up-regulated in NMOSD and secrete AQP4-AB following IL6
stimulation (Chihara et al., 2013). This dysregulatory shift toward
antibody-secreting cells has been reaffirmed by different studies
(Hoshino et al., 2022). As mentioned above, peripheral DN B cells
have also been shown to be upregulated in the peripheral blood
of NMOSD patients (Ruschil et al., 2020). Regulatory B cells are
significantly reduced in AQP-4 positive patients compared to MS
patients, possibly due to the high IL6 secretion, which subsequently
inhibits the generation of regulatory B cells (Quan et al., 2013).

Most approved therapies currently target effector B cell lineages
and the direct interaction caused by antibodies. B cell depletion,
including the use of rituximab as an anti-CD20 antibody, as well
as inebilizumab targeting CD19, has demonstrated effectiveness in
treating NMOSD (Barreras et al., 2022; Nie and Blair, 2022). As
DN B cells and plasmablasts lose CD20 expression, targeting the
consistently expressed CD19 marker on both cell types may result
in a more profound depletion and improve treatment effects (Agius
et al., 2019). After receiving treatment with rituximab, the presence
of regulatory B cells increases (Quan et al., 2015). Satralizumab and
tocilizumab both inhibit the IL6 receptor, disrupting lymphocyte
activation (Chu and Huang, 2022). Tocilizumab reduces memory
B cells in the peripheral B cell subset, while regulatory B cells and
plasmablasts remain unaffected (Traub et al., 2020). Eculizumab
and ravulizumab are inhibitors of complement factor 5 and
disrupt the complement signaling cascade initiated by anti-AQP4
antibodies. Eculizumab reduced the percentage of memory B cells
in patients with myasthenia gravis (Li et al., 2021b).

The wide development of MS medications has led to
experimental usage of these therapies in NMOSD in the past
when no approved medications for NMOSD were available.
Several medications have failed to show positive treatment
effects or even worsened NMOSD disease course in single
patients or small case series. Natalizumab and fingolimod
appeared to increase the proportion of DN B cells in the
periphery (Kemmerer et al., 2020), potentially clarifying why
these drugs have not been shown to be effective in treating
NMOSD. Along these lines, paradoxical rebound under rituximab
therapy in NMOSD patients may be explained by an increase
of CD20-negative DN B cell/plasmablasts and an asynchronous
B cell depletion (Kowarik et al., 2017). Other approved MS
drugs that were not effective or even harmful when used
in single NMOSD cases included alemtuzumab, dimethyl
fumarate, glatiramer acetate, interferon-β, fingolimod and
natalizumab. Analyses of peripheral B cell subsets reveals that
the mentioned medications might increase the proportion of
plasmablasts, as wells as B cells supporting the pathophysiology
of NMOSD. Some medications also increase serum interleukin-
6 levels and serum BAFF levels, which could contribute to
the pro-inflammatory reaction, worsening the disease course
(Traub et al., 2020).

Discussion

Several lines of evidence suggest that there are significant
differences in the composition of peripheral B cells between MS
and NMOSD. Whereas only minor changes in peripheral B cell
subsets are observable in untreated MS patients, alterations and

an up-regulation of DN B cells and plasmablasts are apparent in
NMOSD. Although it is possible to effectively treat both diseases
with B cell-depleting therapies that broadly target circulating B
cells, distinct treatment effects on particular B cell subsets can
be observed in both diseases. Numerous MS treatments have
demonstrated effective targeting of memory B cells, suggesting
a significant pathophysiological role in MS. Vice versa, this
assumption is underlined by the inefficiency of therapies that
potentially increase peripheral memory B cell activity. In NMOSD,
efficient treatments have been shown to target the stimulation of
effector B cells such as plasmablasts or deplete effector B cells
including DN B cells. In this context, anti-CD19 depletion might
be even more effective than anti-CD20 depletion since DN B
cells and plasmablasts show a low frequency or even lack the
CD20 surface marker. The ineffectiveness of several MS drugs in
treating NMOSD most likely results from their failure to target
effector B cells or to increase the proportion of DN B cells
and plasmablasts. Based on these results the pathophysiological
role of B cells has to be discussed in both diseases. While
these treatment effects highlight the role of anti-AQP4 antibody-
secreting B cells in NMOSD, several MS treatments have profound
effects on the peripheral memory B cell subset and reduce CSF
B cell numbers. The widespread inconsistency regarding clear B
cell targets in MS raises the question of whether the primary
pathophysiological role of B cells in MS is indeed autoantibody
production. Instead, there is evidence suggesting that memory
B cells can act as antigen-presenting cells (Figure 1), possibly
supporting autoimmune circuits and the activation of autoreactive
T cells (Morbach et al., 2011; Rastogi et al., 2022). Since CSF
B cells are able to re-circulate from the CNS to the periphery
(Ruschil et al., 2021), subsets of peripheral memory B cells could
possibly present CNS related antigens they have once encountered
within the CNS (during an acute relapse). The persistence of EBV
in memory B cells could possibly alter memory B cell functions
and persistence (Tracy et al., 2012). In addition, alterations in
peripheral tolerance (Pugliese, 2004) and the association between
MS and certain HLA class II alleles of the DR2 haplotype, which
might influence antigen presentation, could further substantiate
this hypothesis. Although cases of onset or exacerbation of
NMOSD following EBV and other pathogens have been reported,
no clear association between NMOSD and a specific virus has
been found (Frau et al., 2023); however, environmental factors
cannot be ruled out. In this context, disruption of central tolerance
mechanisms is likely to be a critical factor in the development of
NMOSD, with poly reactive naive B cells possibly transforming
into antibody-producing cells (Kinnunen et al., 2013). Similar to
NMOSD, patients with antibodies against myelin oligodendrocyte
glycoprotein (MOG) appear to share pathophysiologic mechanisms
that remain to be fully elucidated (Lana-Peixoto and Talim, 2019).
To date, no approved treatments are currently available for MOG
antibody associated diseases.

In conclusion, this review highlights distinct differences in the
pathophysiology of B cells in MS and NMOSD, as revealed by
the analysis of peripheral and CSF B cell subsets in untreated
patients and treatment-related effects of different drugs. Although
further studies are needed to fully understand the exact triggers
of autoimmunity and development of pathologic B cell subsets in
both diseases, current knowledge suggests more refined treatment
strategies targeting defined B cell subsets rather than deep B cell
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depletion. Bruton’s tyrosine kinase inhibitors are an interesting new
treatment approach targeting B cells, but their effects and exact
role on B cell subsets remain to be determined. Specific targeting
of memory B cells in multiple sclerosis vs. antibody-secreting B
cells, including the DN B cell subsets, in NMOSD may be promising
treatment strategies in the near future.
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