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Editorial on the Research Topic

Promoting nervous system regeneration by treatments targeting

neuron-glia interactions

Puzzled by the differences on how the central and peripheral nervous system behave

when challenged, researchers are pursuing the intriguing long standing unanswered

question: “can we heal the injured nervous system back to its original function?” As it seems

to happen, the nervous system presents major obstacles and tissue-related characteristics,

with regards to its regenerative capacity. While some repair can spontaneously occur

after peripheral nervous system (PNS) injury, the regenerative capacity of the central

nervous system (CNS) is limited. Interestingly, studies on PNS regeneration suggest that

Schwann cells coordinate the healing process and adopt a cellular phenotype that favors

removal of debris, neuronal survival, axon regeneration, remyelination, transfer of cargos,

among many other aspects (Mietto et al., 2015, 2021; Jessen and Mirsky, 2019; Babetto

et al., 2020; Bombeiro et al., 2020a,b; Sardella-Silva et al., 2021). Conversely, perturbed

Schwann cells metabolism is linked to axonal pathology (Viader et al., 2013; Girardi

et al., 2023). Therefore, regeneration of PNS has taught us many lessons, some of them

reviewed in Neuron-Schwann interaction in peripheral nervous system homeostasis, disease,

and preclinical treatment (Oliveira et al.). PNS regeneration has also inspired investigators

to study the similarities and differences between the CNS and PNS after a lesion or

in the course of neurodegenerative diseases. For more insights, see: Glia from central

and peripheral nervous system are differentially affected by paclitaxel chemotherapy and

neurodegenerative properties (Klein et al.). Others focus on understanding how glial cells

within the CNS respond to the stimulation arising from signaling pathways known to

stimulate neurogenesis, reported in: Activation of cannabinoid type 1 receptor modulates

oligodendroglial process branching complexity in rat hippocampal cultures stimulated by

olfactory ensheathing glial-conditioned medium (Paes-Colli et al.). On the other hand, very
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little is known about neuron-glia interaction which affects

CNS regeneration. Therefore, investigations into the regenerative

process in the CNS needs a broader approach, to show how specific

therapies tested in preclinical studies interfere with the regenerative

microenvironment (neuronal and glial cells)—as it is shown in

Neuroprotection by upregulation of the major compatibility complex

class I in SODG93A mice (Tomiyama et al.), where the authors

describe that the upregulation of the major histocompatibility

complex of class I (MHC I) after interferon beta treatment,

at different concentrations, affects spinal motoneuron survival,

astrocytic response, microglial activation, synapse modulation, and

motor function, in an ALS disease model. In the past decade, great

efforts were made to prove that the intrinsic growth capacity of

mature CNS neurons could be stimulated and that they could

regenerate and reconnect with specific targets after an injury. These

efforts led many labs to contribute with evidences that, this is

achievable, to some extent, with treatments that start either in the

acute or chronic phase after the injury (Kurimoto et al., 2010; Sun

et al., 2011; de Lima et al., 2012; Lim et al., 2016; Yungher et al.,

2017; Xie et al., 2022). Unfortunately, however, there is a lack of

data on the role that glial cells play in this process and, also, whether

their interaction can be beneficial or detrimental to the process.

Following those studies, it has been shown that regenerating axons

can become myelinated (de Lima et al., 2012; Lu et al., 2012; Marin

et al., 2016). However, depending on the treatment there is no

spontaneous myelination of regenerating axons, but myelination

can be stimulated after using a pro-myelination treatment (Wang

et al., 2020). There is also evidence that astrocytic scar formation at

the injury site supports axon regeneration (Anderson et al., 2016)

and stimulation of the growth intrinsic capacity of adult neurons

in the retina induces formation of newly formed astrocytes in the

regenerating optic nerve (Ribeiro et al., 2022), and that complement

cascade at the injury site is required for axon regeneration (Peterson

et al., 2021). These are some important evidences that glial cells are

active in the process of CNS recovery. These cells play a major role

in neuronal integrity and homeostasis, and undoubtedly can cause

and/or contribute to axonal pathology during disease conditions.

The comprehension of this intricate neuron-glia interaction may

provide the basis for promising therapies to repair the nervous

system and boost its regenrative capacity after an injury, or

prevent neurodegenerative conditions associated with dysfunction

of glial cells.
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