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players for brain tumor
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Astrocytes are highly plastic cells whose activity is essential to maintain the

cerebral homeostasis, regulating synaptogenesis and synaptic transmission,

vascular and metabolic functions, ions, neuro- and gliotransmitters

concentrations. In pathological conditions, astrocytes may undergo transient

or long-lasting molecular and functional changes that contribute to disease

resolution or exacerbation. In recent years, many studies demonstrated that

non-neoplastic astrocytes are key cells of the tumor microenvironment

that contribute to the pathogenesis of glioblastoma, the most common

primary malignant brain tumor and of secondary metastatic brain tumors. This

Mini Review covers the recent development of research on non-neoplastic

astrocytes as tumor-modulators. Their double-edged capability to promote

cancer progression or to represent potential tools to counteract brain tumors

will be discussed.
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1 Introduction

Although neurons are the excitable and firing cells of the brain driving the nervous
system signaling, glial cells in the brain parenchyma are key players for the correct
functioning and the homeostasis of the central nervous system. Among glial cells, “star-
like” astrocytes are the cells whose relative number, size, number of ramified processes
and volume increased with phylogeny and brain complexity (Nedergaard et al., 2003).
Depending on the different regions, astrocytes represent 20−40% of all brain cells
(Herculano-Houzel, 2014) and show different morphology, ranging from protoplasmic
to spherical shape (Emsley and Macklis, 2006; Oberheim et al., 2006). In the brain, each
astrocyte occupies a specific territory, with less of 5% of overlap with neighboring astrocytes
(Ogata and Kosaka, 2002). Within their specific competence territory, astrocytes contact
blood vessels and up to hundred-thousands of different synapses (Halassa et al., 2007);
moreover, due to the presence of connexin gap junctions between different astrocytes, these
cells are organized in networks (D’Ambrosio et al., 1998; Giaume et al., 2010) that appear to
be organized in functional domain (Giaume et al., 2010). Generally believed to mainly have
a supportive function (Kettenmann and Ransom, 2005), astrocytic cells play many active
roles. During development, astrocytes play a role in guiding the migration of neuronal
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axons and neuroblast (Powell and Geller, 1999), and the formation
of developing synapses (Ullian et al., 2001; Christopherson et al.,
2005); moreover, they can drive microglial synapse engulfment,
or actively engulf synapses and sculpt neuronal circuits (Chung
et al., 2013; Vainchtein et al., 2018). With their terminal
processes (end-feet), astrocytes contribute to the formation and
maintenance of brain-blood integrity (Abbott, 2002); thank to
the presence of several plasma membrane transporters, during
neuronal activity they can buffer extracellular K+ concentration
and water content (Simard and Nedergaard, 2004), regulate
the extracellular pH and remove excessive glutamate from the
synapses (Rose et al., 2018). Astrocytes sense neuronal activity
via metabotropic neurotransmitter receptors, and are able to
provide energy substrate to neurons through the so call “astrocyte-
neuron lactate shuttle” (Magistretti and Pellerin, 1999); in addition,
astrocytic networks can support the high energy demand of
neuronal activity, also at site distant from blood vessels (Rouach
et al., 2008), thus ensuring glia-neurons metabolic coupling
necessary for memory formation (Suzuki et al., 2011; Gao et al.,
2016). Also, astroglial endfeets that enwrap blood vessels are
characterized by high levels of connexins expression (Rouach et al.,
2008) and Ca2+ signaling within astrocytes can trigger the release
of vasoactive molecules that modulate local or regional cerebral
blood flow (Koehler et al., 2009; Institoris et al., 2022). Being part of
the “tripartite” synapse (Araque et al., 1999), astrocytes respond to
neurotransmitter release by presynaptic terminals with an increase
in intracellular Ca2+, and consequent release of “gliotransmitters”
that can act regulating synaptic plasticity at local synapse (Fellin
et al., 2006; Di Castro et al., 2011). Moreover, intracellular calcium
increase can be spread to other connected astrocytes (Bazargani and
Attwell, 2016; Goenaga et al., 2023) resulting in neurotransmitter
release and modulation of synapses at the level of network activity
(Fellin, 2009; Miguel-Quesada et al., 2023).

In non-physiological conditions, such as CNS (central nervous
system) injuries, disease or brain tumor, astrocytes lose their
“quiescent” state, become “reactive” and undergo changes in
molecular expression, progressive cellular hypertrophy and in some
cases also proliferation and scar formation (Lukaszevicz et al., 2002;
Sofroniew, 2009; Faideau et al., 2010; Acevedo-Arozena et al., 2011;
Cuevas-Diaz Duran et al., 2019; Makarava et al., 2019). These
changes are regulated in a context-specific manner, and lead to
altered astrocytic activities, either loss or gain of functions, that can
be either detrimental or beneficial to the brain (Sofroniew, 2005).

2 CNS primary tumors originating
from astrocytes

CNS primary tumors are the most frequent in children between
0 and 14 years of age and are the eighth most frequent in
adults (van den Bent et al., 2023). These tumors are extremely
heterogeneous, depending not only on the tissue of origin but also
on the genetic and/or molecular modifications that characterize
them and on the ethnicity of the affected population; all these
aspects define the average outcome of patients (Louis et al., 2021).
A first distinction is between malignant and non-malignant tumors;
the first ones are able to invade the surrounding tissue and have

a terrible outcome; the others are classified based on histological
and molecular characteristics. Among the malignant CNS tumors,
gliomas are the most common, and glioblastoma (GBM) is the
most aggressive and frequent primary malignant CNS tumor, with
the prognosis of an overall survival of 7−17 months after surgical
removal (Molinaro et al., 2020). Among the non-malignant tumors,
the most common is meningioma (Louis et al., 2016).

Despite malignant brain tumors can originate from neuronal
stem cells or oligodendrocyte precursor cells, astrocytes represent
the cellular origin at least for a defined number of cases (Zong
et al., 2015). In fact, a specific mouse model carrying co-deletion
of the tumor suppressor Tp53, Pten and Rb1 genes was created
using the site-specific recombinase technology (Cre-Lox/GFAP) in
adult mice (Chow et al., 2011). This model shows deletion of the
three tumor suppressor genes widespread in mature astrocytes but
also in a subpopulation of GFAP-expressing neuronal stem cells
(NSCs) in the brain proliferative niches (subventricular zone and
subgranular layer). Most tumors grew in these niches but more than
20% of tumors appeared in the non-proliferative areas (specifically
in cortex, brainstem, cerebellum, and spinal cord). These data
demonstrate that mature astrocytes are a cell type from which
malignant CNS tumors arise even if the majority originates from
stem cells.

Astrocytes can originate malignant CNS tumors not only by
alteration of their proliferation and/or cell survival process, but
also in case of alterations in the differentiation state maintenance.
Indeed, it has been shown that astrocytes dedifferentiated into
NSCs - after stimulation with TNFα - become susceptible
to the process of cancerization by irradiation; in contrast
mature astrocytes do not undergo transformation upon the same
oncogenic stress (Dufour et al., 2009).

3 Metastatic brain tumors

Metastatic brain tumors are secondary tumors that develop
from cells of a primary systemic tumor that invade the brain
and are often the main cause of mortality (Achrol et al., 2019).
The most common primary tumors that develop brain metastasis
are the lung (40−50%), breast (15−20%), skin (5−10%), and
gastrointestinal (4−6%) tumors, and most patients develop more
than one brain lesion. Similar to glioma, standard of care to treat
brain metastasis is the surgical removal, followed by radiation- and
chemo- therapies; nevertheless, these treatments have a reduced
efficacy, with most patients developing local recurrence in less
than one year (Brastianos et al., 2013). Brain metastasis formation
requires several steps such as detachment from the primary
tumor, invasion of surrounding tissue, intravasation in blood
vessel, dissemination and arrest in brain capillary, extravasation
through non-fenestrated capillaries, colonization of surrounding
tissue and local proliferation and neo-angiogenesis (Svokos et al.,
2014). The interaction between circulating tumor cells and blood–
brain barrier (BBB) components is mainly mediated by cytokines
and chemokines (Seike et al., 2011); tumor cell proliferation and
angiogenesis in the brain depend on the release of local growth
factors (Hoshide and Jandial, 2017).
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4 Brain tumor/non-neoplastic
astrocyte crosstalk

It is well established that the crosstalk between brain tumor
cells and the surrounding microenvironment is determinant
for tumor progression. In particular 50% of glioma tumor
mass is made by the infiltration of brain-resident microglia,
and peripheral macrophages (Hambardzumyan et al., 2016) that
actively contribute to tumor proliferation and invasion, but also to
the formation of an immune suppressive environment (Catalano
et al., 2020). Indeed, other infiltrating immune cells are present,
these are primarily T lymphocytes, and also rare NK, dendritic
and B cells (Gieryng et al., 2017). In particular the infiltrating T
cells display an exhausted phenotype and undergo programmed
cell death (Woroniecka et al., 2018), resulting in the inability to
contrast the tumor.

In this context, astrocytes in the proximity of the tumor
became reactive (Nagashima et al., 2002; O’Brien et al., 2013) as
a consequence of their ability to sense the tumor and to engage
a crosstalk with the tumor microenvironment (TME), becoming
part of it. Reactive astrocytes appear to play an important role
in supporting glioma growth since, as it has been recently found,
genetic ablation of tumor-associated astrocytes in glioma GL261
bearing mice, not only stalls GBM progression but drives the
tumors into regression and prolongs animal survival (Perelroizen
et al., 2022). The ability of astrocytes to modulate tumor growth
seems to depend on the phenotype of glioma cells. In fact, if
the glioma is minimally invasive (i.e., U87MG glioma cell line),
astrocytes are able to totally block its migration and probably to
stimulate a robust immune response. If the glioma is highly invasive
(i.e., LN229 glioma cell line), astrocytes increase the migratory
capacity of tumor cells by inducing over-expression of genes related
to migratory signaling pathways, such as STAT3 (signal transducer
and activator of transcription) and HGF/MET (hepatocyte growth
factor/mesenchymal-epithelial transition factor) (Cui et al., 2023).

Also in the case of brain metastasis derived from a primary
systemic tumor, the interaction between metastatic cells and
the surrounding brain TME plays a fundamental role in the
establishment of brain metastasis (Gwak, 2023). Among cells
of the TME, reactive astrocytes are the most active host cell
population, that immediately localizes to individual invading
tumor cells and continuously associates with growing metastatic
lesions (Lorger and Felding-Habermann, 2010). Moreover, in a
model of spontaneous brain metastasis, in immunocompetent
mice, Schwartz et al. (2016) demonstrated that astrocytes acquire
a proinflammatory phenotype in the brain metastatic niche before
the formation of macrometastasis.

The crosstalk between astrocytes and tumoral cells within the
brain is mediated by the release of soluble factors, the release of
extracellular vesicles (EVs) and through the direct contact between
cells, due to gap junctions or to tunneling nanotubes (Figure 1).

4.1 Crosstalk via secreted molecules

The secretome of astrocytes depends on the surrounding
milieu. For this reason, the mechanisms underlying the interaction
between astrocytes and glioma cells are not linear. In fact,

the release of many molecules by astrocytes is affected by the
ongoing TME and by factors released by tumor cells, and largely
contributes to the growth and invasion of the glioma and
metastatic brain tumors.

Astrocytes stimulated with the ligand of the receptor activator
of nuclear factor kappa-B (RANKL), that is overexpressed by
invasive glioma cell lines (Jin et al., 2011), release factors that
induce glioma cells invasion such as fibroblast growth factor
(FGF), hepatocyte growth factor (HGF), and transforming growth
factor β (TGF-β) (Kim et al., 2014). Under hypoxic conditions
(that resemble the hypoxic microenvironment in which astrocytes
and glioblastoma coexist), astrocytes increase the release of
the chemokine CCL20. Astrocytic CCL20 promotes glioma cell
invasion through the increase in tumor cell expression of the
hypoxia-inducible factor HIF-1α (Jin et al., 2018). Similarly,
the chemokine CCL2, that in the brain is mainly produced by
astrocytes, turned out to be a key element for metastatic brain
tumor cell migration both in vitro and in vivo (Hajal et al.,
2021). Cytokine IL6 represents another example of the reciprocal
activation between glioma and astrocytes; it is released by the
tumor and acts in a paracrine way increasing its own secretion by
astrocytes (Liu et al., 2010, Chen W. et al., 2016). Increased release
of IL6 promotes migration and invasion of glioma cells through the
activation of the transcription factor STAT3 (Chen et al., 2020). This
reciprocal activation has not been highlighted for GDNF (glial-
derived neurotrophic factor) that does not exert paracrine effect to
induce astrogliosis (Ku et al., 2013), but when released by astrocytes
enhances the growth and invasion of the tumor (Shabtay-Orbach
et al., 2015), and when released by the tumor acts autocrinally to
strengthen glioma growth (Lu et al., 2010).

In the central nervous system astrocytes are among the
major producers of CXCL12 (Trettel et al., 2020) and express its
specific receptor CXCR4. CXCL12 with an autocrine effect activates
CXCR4 promoting astrocyte proliferation through the ERK1-2/PI-
3K (extracellular signal-regulated kinase 1-2/phosphatidylinositol
3-kinase) signaling pathway (Bajetto et al., 1999; Barbero et al.,
2002). Glioma cells also release CXCL12 and overexpress its
receptor CXCR4 (Salmaggi et al., 2005; Bian et al., 2007).
Stimulation of this axis activates not only ERKs but also AKTs
proliferative pathways promoting tumor growth and invasion
(Barbero et al., 2003; Rubin et al., 2003). CXCL12 is also able
to attract CXCR4+ myeloid derived suppressor cells to create
an immunosuppressive microenvironment that favors the growth
of glioma (Alghamri et al., 2022), as reported for other tumors
(Obermajer et al., 2011; Benedicto et al., 2018). CXCL12 has higher
affinity for the receptor CXCR7 (Esencay et al., 2013) whose
high expression correlates with poor glioblastoma patient survival
(Deng et al., 2017) and similarly to CXCR4 activation, triggers
glioma proliferation and invasion (Liu et al., 2015). Astrocytes
express CXCR7 (Odemis et al., 2010), whose activation reinforces
the CXCR4-mediated proliferative signaling. The expression
of CXCR7, and not of CXCR4, on astrocytes is modulated
by microenvironmental conditions, such as hypoxic conditions
induced by tumoral cells. This distinction highlights the complex
role of the trio CXCL12/CXCR4/CXCR7 in the bidirectional
interaction between astrocytes and glioma cells. Of note, there is
another aspect that generates greater complexity in this interaction.
Astrocytes under specific stimuli are able to produce the matrix
metalloproteinases MMP2 and MMP9 (Ogier et al., 2006), both
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FIGURE 1

Schematic representation of the crosstalk between an astrocyte and a brain tumor cell. The crosstalk is mediated by soluble factors and extracellular
vesicles (EVs) released from both cell types and through the direct contact between cells, via gap junctions (GJ) and tunneling nanotubes (TNT).
More detailed information on the role of these different types of crosstalk is provided in the present review.

overexpressed in GBM patients and correlating with patient poor
prognosis. These enzymes also mediate the proteolytic processing
of CXCL12 into the specific CXCL12(5-67) peptide, a neurotoxic
protein that binds CXCR3, whose expression in GBM patients also
correlates with a patient’s poor prognosis. Even if the direct effect of
the chemokine peptide CXCL12(5-67) on glioma cells has not yet
been evaluated, CXCR3 activation increases glioma cell invasion
whilst CXCR3 downregulation inhibits glioma stem cells viability
(Pu et al., 2015; Boyé et al., 2017).

Astrocytes are among the brain parenchymal cells that first
make contact with extravasated metastatic cells. Reactive astrocytes
close to extravasating metastatic tumor cells in the brain, also
overexpress and release MMP9 favoring the development of brain
metastasis (Lorger and Felding-Habermann, 2010). Using different
types of breast cancer or lung cancer cell lines, to induce brain
metastatization in mice, it has been shown that, by sensing brain
infiltrating cancer cells, astrocytes became reactive and attempt
to defend against metastatic invasion by releasing both Plasmin
(PA) and Fas-ligand, that induce cancer cell death. Moreover
plasmin induces the destroying of L1CAM (L1 cell adhesion
molecule) expressed by cancer cells, preventing their ability to
coopt brain capillaries. (Valiente et al., 2014). However, some
metastatic cells can express high levels of antiPA-serpin (that
prevents PA formation) preventing cell death and fostering vascular
cooption (Valiente et al., 2014).

In addition, it has been shown that proinflammatory astrocytes
are instigated to overcome brain tissue damage due to the entrance
of metastatic cells into the brain. Later on, reactive astrocytes are
hijacked by brain-metastasizing tumor cells in order to express
SerpinE1 and SerpinA3N genes, that support metastasis growth
(Schwartz et al., 2016).

4.2 Crosstalk via extracellular vesicles

In addition to the secretome, that acts close to the cell
of origin, EVs that can act also far from the donor cell.
These particles are made up of a phospholipid bilayer that
contains protein, lipid and genetic materials which is completely
transferred to the recipient cell. Tumors and among them gliomas,
release huge amounts of EVs as a tumorigenic mechanism,
being their content able to activate transforming signaling
pathways in target cells; for example, tumor-derived EVs induce
transformed features to normal adjacent cells (i.e., fibroblasts,
stromal and epithelial cells) such as anchorage-independent
growth and enhanced or aberrant growth capability (Webber
et al., 2010; Antonyak et al., 2011; Paggetti et al., 2015).
Glioma-derived EVs, as described in general for cancer-derived
vesicles, could also be shared between tumoral cells. Tumor-
derived EVs transfer drug-resistance molecules from drug-resistant
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cells to drug-sensitive ones as observed in breast cancer
(Lv et al., 2014).

In addition, they activate macrophages, B and NK cells, induce
maturation of dendritic cells and promote generation of myeloid-
derived suppressor cells (Liu et al., 2006; Valenti et al., 2006;
Yu et al., 2007; Clayton et al., 2008). All these effects belong
to the pleiotropic mechanism aimed by tumor EVs to promote
an immune-suppressive microenvironment supporting the cancer
development. Glioma-derived EVs target different immune cells
supporting their defective response, one of the major hallmarks
of tumor occurrence. They transfer onco-miRs as for example
miR155, miR214, miR21 (Zonari et al., 2013; Feng and Tsao,
2016; Abels et al., 2019; Yang et al., 2019; Xu et al., 2021;
Orso et al., 2023) or tumorigenic transcription factors (such as
Stat3) into tissue-resident microglia, infiltrating myeloid-derived
macrophages (Gabrusiewicz et al., 2018; Johnson et al., 2018; Xu
et al., 2021) and tumor-infiltrating regulatory T cells (Li et al., 2017).

With respect to astrocytes, GBM EVs stimulate astrocyte release
of a huge amount of growth factors, cytokines and chemokines
(few examples are TNFα, CCL20, IL10 and CCL2, see above)
(Oushy et al., 2018), that mediate autocrine effect promoting
astrocytes migration and paracrine effects inducing tumor cells
migration and invasion (Kucharzewska et al., 2013; Mu et al.,
2013; Taheri et al., 2018). Tumor EVs induce an upregulation of
genes important for extracellular matrix remodeling (i.e., MMP2
and MMP9). GBM EVs also show transforming capability toward
astrocytes, perhaps by transferring oncogenes how demonstrated
for the oncogenic form of the epidermal growth factor receptor
(EGF), called EGFRvIII, horizontally transferred among glioma
cells to induce the activation of EGFRvIII-dependent oncogenes
(Al-Nedawi et al., 2008).

The effect of EVs released by astrocytes in most cases enhances
brain tumor development. In fact, it has been demonstrated that
astrocytes derived EVs transfer miRs that inhibit the important
tumor suppressor PTEN in metastatic tumor cells (Zhang et al.,
2015). Notably, PTEN loss is responsible for the increased release of
CCL2 (Hajal et al., 2021) that autocrinally reinforces the migration
of tumor cells. Astrocytes derived EVs also contain factors such as
fibroblast growth factor-2 and vascular endothelial growth factor
(Proia et al., 2008) that could be shared with glioma cells in which
exert a proliferative action (Haley and Kim, 2014; Bian et al., 2000;
Jimenez-Pascual et al., 2020).

4.3 Crosstalk via gap junctions

Astrocytes are highly interconnected through gap junctions
that allow for fast ions and metabolites exchange. Gap junctions
are made up of two hemichannels, each expressed on a different
cell. Each hemichannel, called connexin, consists of six protein
subunits (Scott et al., 2012). Connexin 43 (Cx43) represents the
most abundant subunit on astrocytes (Rash et al., 2001, Xing
et al., 2019). Even if Cx43 is overexpressed in the tumoral core,
contributing to the increase of GBM-GBM cell communication,
it is also over expressed in a subset of reactive astrocytes close
to tumor cells. Selective deletion of Cx43 in reactive astrocytes
attenuates glioma invasion in vivo (Sin et al., 2016). In line with
this finding, it has been found that glioma-astrocyte gap junctions

enable the transfer from GBM cells to astrocytes of many miRs
(such as miR19) that downregulates the expression of cadherins,
integrins, focal adhesion kinases, and other adhesion molecules.
This process favors a reduced adhesion of astrocytes to the
basement membrane, thereby opening a gateway that favors tumor
cell invasion (McCutcheon and Spray, 2022). In addition, Cx43
mediates the transfer of cGAMP from brain metastatic cancer cells
to astrocytes inducing the release of factors (such as TNFα) that
activate the NF-kB pathways on cancer cells (Chen Q. et al., 2016),
thus promoting metastasis progression (Wang et al., 2017). Cx43
gap junctions between metastatic brain cancer cells and astrocytes
are favored by the over expression of the brain specific cell adhesion
molecule protocadherin 7 (PCDH7) in metastatic cells (Chen Q.
et al., 2016).

The expression of genes related to drug resistance, anti-
apoptosis and survival in glioma cells also depends on genetic
material that is transferred from astrocytes to glioma cells through
gap junctions (Lin et al., 2016). Among these genetic materials are
also microRNAs such as miR5096 that can activate pro-invasive
pathways in cancer cells (Hong et al., 2015), or miR152-3p that can
reduce cell migration and invasion of glioma cells (Fukuda et al.,
2021).

The tight junctions between astrocytes and vessel smooth
muscle cells are unsettled by tumor cells that creep between the two
healthy cell types (Watkins et al., 2014). In this manner, tumor cells
take control of vessel tone by modulating K+ efflux, and thus dilate
or constrict arterioles by the same mechanism used by astrocytes
(Zonta et al., 2003).

4.4 Crosstalk via tunneling nanotubes

Another direct contact between astrocytes and glioma cells
is represented by tunneling nanotubes (TNTs), thin and long
protuberances (up to 550 µm) of the cell cytoplasm. TNTs allow
the transfer of ions, molecules, and organelles from the donor to the
target cell (Davis and Sowinski, 2008). Astrocyte-glioma nanotubes
initiating from astrocytes are able to reduce the proliferation
of tumor cells (Zhang and Zhang, 2015). Tumoral TNTs, called
tumor microtubes, are structurally different showing less F-actin
content, and being long-live and thicker than non-tumoral TNTs.
They contribute to tumor growth, by distributing potentially
toxic material for tumor cells, such as calcium (Li et al., 2020),
to neighboring cells keeping its intracellular levels within non-
lethal limits (Osswald et al., 2015). Besides TNTs can translocate
larger structures such as cellular organelles that can change the
functionality of recipient cells. For example, tumor microtubes
transfer mitochondria from glioma to healthy astrocytes. These
mitochondria transform the metabolism of recipient cells (i.e., non-
neoplastic astrocytes) into a tumor-like metabolism, especially with
regard to the utilization of glutamine as major energy source instead
of glucose and lipids used by healthy astrocytes (Valdebenito et al.,
2021); thus, non-neoplastic astrocytes become resistant to the
hypoxic environment induced by the fast proliferation of tumor
cells (Beppu et al., 2002). The in vivo discovery of a microtubes-
mediated functional coupling between GBM cells and astrocytes
is recent (Venkataramani et al., 2022) and highlights a potentially
relevant aspect for diagnostic and therapeutic purposes.
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5 Non-neoplastic astrocytes
counteract GBM

Although non-neoplastic astrocytes engage direct and indirect
dialogue with glioma cells contributing to tumor progression,
recent data suggest that these cells can also represent key elements
to contrast tumor progression (Fletcher-Sananikone et al., 2021;
Serpe et al., 2022).

One strategy to counteract glioma might be represented by
EVs released by non-neoplastic astrocytes. Recently (Serpe et al.,
2022) we have found that EVs derived from glioma-stimulated
astrocytes increase glioma proliferation and in vivo tumor volume.
In contrast, EVs derived from normal astrocytes are able, in vitro, to
reduce glioma cell proliferation, migration and invasion capability.
Moreover in vivo, administration of these EVs reduces glioma
tumor volume, proliferation rate, and in addition, impairs cell
volume regulation. We found that among molecules transported
by these EVs there is miR124. Such molecules are able to reduce
the expression in glioma cells of LRCC8C protein, a subunit of
the volume regulated anion channels (VRACs) that play a role in
the modification of cell volume, necessary for cell migration and
proliferation. Glioma cells kill surrounding neurons by releasing
glutamate in order to create the necessary space to grow (Ye
and Sontheimer, 1999). VRACs are also permeable to excitatory
amino acids including glutamate (Feustel et al., 2004); thus, we
speculate that the reduction of VRAC expression might contribute
to reduction in glioma release of glutamate.

Another strategy could be the use of non-neoplastic astrocytes
as therapeutic targets. After surgical resection of glioma, the
standard of care is patients’ treatment with up to 60 Gy of
fractionated ionized irradiation (IR) with concurrent adjuvant
chemotherapy, such as Temozolomide (Stupp et al., 2005).
However, despite the positive response following IR therapy, later
on the recurrence of a more invasive and resistant glioma lead to a
fatal prognosis (Osuka and Van Meir, 2017, Scoccianti et al., 2021).
Recently, it has been demonstrated in vivo, using syngeneic GL261
mouse model of glioma, and in vitro, using coculture of normal
astrocytes and GL261 glioma cells, that upon irradiation normal
astrocytes became senescent and release factors, including HGF.
HGF then activates the Met receptor on glioma, promoting tumor
invasiveness. In vivo, blocking Met activation by pharmacological
approach results in attenuation of tumor growth and increased
mice survival. Further, the elimination of senescent astrocytes using
a senolytic drug results in delayed tumor growth in pre-irradiated
brains (Fletcher-Sananikone et al., 2021).

6 Conclusion

In this Mini Review different strategies of the crosstalk
between surrounding non-neoplastic astrocytes and brain primary
or metastatic tumor cells have been reported. Astrocytes react to
brain tumor cells engaging in undirect and direct dialogues mainly
to support the tumor growth. Astrocytic release of soluble factors
fosters migration, invasion, and growth of primary brain tumor
cells. In brain metastasis these factors, released by astrocytes close
to the extravasated cancer cells, support the brain entering.

Extracellular vesicles released by primary tumor cells promote
astrocytic polarization toward an immunosuppressive phenotype

and astrocytic release of soluble factors that contribute to the
tumor progression. EVs released by astrocytes transfer miRs
and growth factors into metastatic cancer cells that support
metastatization into the brain.

Direct exchange of molecules occurs through gap junctions or
tunneling nanotubes between astrocytes and brain tumor cells also
support their crosstalk.

However, recent data suggest that EVs from non-neoplastic
astrocytes or selective elimination of non-neoplastic astrocytes may
be used to counteract brain tumors. Considering these findings,
it is possible to speculate that in the future, administration
of EVs obtained from non-neoplastic astrocytes (for example
derived from patient differentiated IPSCs), and/or targeting non-
neoplastic astrocytes by using senolytic therapy, could represent an
alternative or coadiuvant therapeutic approach to limit brain tumor
progression and to contrast glioma recurrence.
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