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Impact of ferroptosis-related risk
genes on macrophage M1/M2
polarization and prognosis in
glioblastoma
Xin Xu†, Yue Zhang†, Chenlong Liao, Han Zhou, Yiwei Wu* and
Wenchuan Zhang*

Department of Neurosurgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai, China

Objective: To explore the effect impact of ferroptosis on macrophage

polarization and patient prognosis in glioblastoma.

Methods: We screened ferroptosis-related risk from the public datasets of

primary and recurrent glioblastoma, combined with reported ferroptosis genes,

calculated the risk genes among the ferroptosis-related genes using the

LASSO Cox regression model, and investigated the relationship between these

ferroptosis-related risk genes in the tumor and the spectrum of infiltrating

M1/M2 macrophages. Macrophages were analyzed using the CIBERSORTx

deconvolution algorithm. Samples from The Cancer Genome Atlas (TCGA),

Chinese Glioma Genome Atlas (CGGA) and a single-cell RNA sequencing dataset

(GSE84465) were included. The expression levels of ferroptosis-related risk

genes and molecular markers of M1 and M2 macrophages were detected by

qPCR and western blot.

Results: A total of fourteen ferroptosis-related risk genes were obtained and

the patients’ risk scores were calculated. Compared with patients in the low-

risk group, patients in the high-risk group had worse prognosis. The M1/M2

macrophage ratio and risk score were negatively correlated, indicating that the

tumor microenvironment of glioblastoma in the high-risk group contained more

M2 than M1 macrophages. In the single-cell RNA sequencing dataset, the risk

score of ferroptosis-related genes in tumor cells was positively correlated with

the proportion of high M2 macrophages. The expression of eight ferroptosis-

related risk genes was increased in glioblastoma cell, which promoted the

polarization of M1 macrophages to M2.

Conclusion: We investigated the fourteen ferroptosis-related risk genes in

glioblastoma for the first time, and clarified the impact of ferroptosis-related

risk genes on M1/M2 macrophage polarization and patient prognosis.
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1 Introduction

Glioma is the most common type of primary malignant tumor
of the central nervous system and is most likely to occur in adults
aged 45–65. Glioblastoma multiforme (GBM) is a representative
glioma, accounting for 49.1% of all malignant tumors in central
nervous system (CNS) (Chi et al., 2023). The World Health
Organization (WHO) grading system classifies gliomas into four
grades, of which GBM is classified as grade 4 (Louis et al., 2021).
Currently, the treatment of glioma includes surgical resection,
immunotherapy, radiotherapy, chemotherapy and novel molecular
targeted therapy (Jhaveri et al., 2018; Xu et al., 2020), while GBM
patients have been observed to have the shortest median patient
survival, with only 5.8% of GBM patients surviving for 5 years (Luo
et al., 2022). Despite the recent advances in clinical management,
the prognosis of malignant glioma patients remains relatively poor
(Fang and Zhang, 2020). Therefore, research into new therapeutic
strategies for gliomas, especially for GBM, is still urgently needed.

Ferroptosis is a newly identified form of programmed cell
death, distinct from apoptosis, cell necrosis and autophagy,
characterized by iron-dependent lipid peroxidation (Chi et al.,
2023). Ferroptosis is mainly due to redox imbalance and involves
several intracellular biological processes, such as iron metabolism,
lipid metabolism, and antioxidant synthesis (Zhao et al., 2022).
Induction of ferroptosis may be a novel target for glioma treatment,
and ferroptosis-related processes are associated with chemo- and
radioresistance in glioma (Shi et al., 2022).

Tumor-associated macrophages (TAMs) and ferroptosis are
coordinately regulated, and thus co-regulate response to tumor
immunotherapy (Zhou et al., 2022). As an essential component of
the tumor immune microenvironment, TAMs are a key factor in the
efficacy of tumor immunotherapy. Two distinct cell polarizations of
macrophages have opposing functions in tumor progression. The
classic phenotype, namely M1 macrophages, function in antigen
presentation, induce inflammatory responses, scavenge pathogenic
microorganisms, and exert antineoplastic effects within the tumor
immune microenvironment. In contrast, the alternative phenotype,
namely M2 macrophages are able to limit the inflammatory
response and contribute to tumor progression by stimulating
proliferation, angiogenesis, and metastasis (Mantovani et al., 2017).
Notably, M2-like TAMs are highly associated with therapeutic
resistance and are regarded as providing a barrier to effective tumor
immunotherapy (Zhou et al., 2022).

In this study, we screened fourteen ferroptosis-related risk
genes and calculated risk scores for patients with glioma based on
gene expression data and clinicopathologic information collected
from glioma patient databases, and investigated the relationship
between the expression of these genes and clinicopathologic factors
as well as macrophage infiltration of glioma to explore the role of
ferroptosis-related genes in regulating ferroptosis and macrophage
polarization in GBM.

2 Materials and methods

2.1 Data source and acquisition

In this study, a total of 1,528 glioma patient samples with
corresponding clinical information were obtained from two

primary databases: the Cancer Genome Atlas (TCGA)1 and the
Chinese Glioma Genome Atlas (CGGA).2 Subsequently, samples
lacking essential clinical information were filtered out, ensuring
a cohort consisting exclusively of patient samples with complete
clinical data for analysis.

For single-cell RNA sequencing analysis, a Gene Expression
Omnibus (GEO) dataset (GSE84465) utilizing the chip platform
GPL18573 [Illumina NextSeq 500 (Homo sapiens)] was employed,
recognized as a widely adopted platform for transcriptome analysis.

2.2 Identification of differentially
expressed genes (DEGs) in the TCGA
datasets

Based on the ferroptosis-related gene sets obtained from
MSigDB,3 we extracted data on 382 ferroptosis-related genes from
the TCGA database. The “Limma” R package was used to identify
DEGs between GBM and non-GBM glioma tissues, employing a
threshold value was set as | log2FoldChange (FC)| > 1 and adjusted
p-value < 0.05. Subsequently, 655 patient samples from the TCGA
database were segregated into training and testing sets at a ratio of
3:2. Figure 1 presents the workflow of this study. The GSE84465
data encompassed single-cell RNA-seq analysis of infiltrating
neoplastic human GBM cells (Darmanis et al., 2017), as part of
the Brain Immune Atlas incorporating single-cell RNA sequencing
datasets from the Movahedi lab across multiple publications (Van
Hove et al., 2019; Shemer et al., 2020; Pombo Antunes et al., 2021).
We adopted and analyzed the profile generated by Pombo et al.,
elucidating myeloid cell profiles in GBM.

2.3 Bioinformatic analysis

The common differential expression genes were obtained
using the “venn” package. The relationship between ferroptosis-
related genes and patients’ overall survival (OS) was evaluated by
univariate Cox regression analysis using R software. Then, the
“glmnet” package was used to perform the LASSO Cox regression
model (with the penalty parameter estimated by 10-fold cross-
validation) (Pan et al., 2020). A risk score formula based on the
expression levels of ferroptosis-related genes for OS prediction
was created, where the risk score was (3.74863 × expression
level of NRP2) + (2.223197 × expression level of
PARVA) + (0.626251 × expression level of LAMA4) + (0.463306
× expression level of EHD2) + (0.455573 × expression
level of ANTXR2) + (0.074203 × expression level
of DPYSL3)–(2.37796 × expression level of SDC3)–
(2.47335 × MTMR12)–(2.71575 × expression level of
SH3PXD2A). The risk scores were determined for all patients
included in this study, and the median value was selected as the
cut-off value to divide patients into high-risk and low-risk groups.
Meanwhile, GBM gene expression data were used to calculate the
relative proportion of 22 different genotypes in immune infiltrating
cells using the CIBERSORT algorithm.

1 https://portal.gdc.cancer.gov

2 http://cgga.org.cn

3 http://www.broadinstitute.org/gsea/msigdb
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FIGURE 1

Study Workflow.

2.4 Cell clustering and cell-type
annotation

Highly variable genes were extracted to perform principal
component analysis (PCA), and the top 30 significant principal
components were used for cluster analysis. Clusters were visualized
using Uniform Manifold Approximation and Projection (UMAP)
and t-Distributed Stochastic Neighbor Embedding (t-SNE). Genes
specifically expressed in each cluster were identified using Seurat’s
FindAllMarkers function. Significance of differences in gene
expression was determined using the Wilcoxon rank-sum test with
Bonferroni’s correction, and cell types were manually annotated
based on the cluster markers. Macrophage markers were obtained
by reviewing previously published literature and the CellMarker
website.4

4 http://xteam.xbio.top/CellMarker/index.jsp

2.5 Quantitative real-time polymerase
chain reaction (qPCR) and western blot
analyses

For RNA extraction and quantitative real-time PCR, total
RNA was extracted from glioma cells using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
protocol. The concentration of the isolated RNA was measured,
and complementary cDNA was transcribed using the RevertAidTM
First Strand cDNA Synthesis Kit (Takara Bio, Shiga, Japan). The
RNA content was measured according to the instructions of the
Invitrogen RNA extraction kit. And a reverse transcription kit was
used to reverse transcribe the secretory RNA into cDNA. A 20 µL
reaction system was used for PCR amplification and detection
by BIO-RAD fluorescent real-time PCR. The primer sequences
employed for PCR amplification are detailed in the Supplementary
material accompanying this study.
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TABLE 1 Baseline demographic characteristic (TCGA).

Variables GBM testing
set (n = 66)

GBM training set
(n = 84)

Non-GBM testing set
(n = 197)

Non-GBM training set
(n = 308)

Age, n (%)

<45 5 (7.58%) 12 (14.29%) 117 (59.39%) 180 (58.44%)

≥45 61 (92.42%) 72 (85.71%) 80 (40.61%) 128 (41.56%)

Gender, n (%)

Female 26 (39.39%) 24 (28.57%) 92 (46.70%) 134 (43.51%)

Male 40 (60.61%) 60 (71.43%) 105 (53.30%) 174 (56.49%)

Race (%)

Asian 1 (1.52%) 4 (4.76%) 5 (2.54%) 4 (1.30%)

Black or African American 6 (9.09%) 4 (4.76%) 7 (3.55%) 14 (4.55%)

White 59 (89.39%) 75 (89.29%) 181 (91.88%) 284 (92.21%)

Not reported 0 (0.00%) 1 (1.19%) 4 (2.03%) 6 (1.95%)

Grade (%)

G2 0 (0.00%) 0 (0.00%) 90 (45.69%) 154 (50.00%)

G3 0 (0.00%) 0 (0.00%) 107 (54.31%) 154 (50.00%)

G4 66 (100.00%) 84 (100.00%) 0 (0.00%) 0 (0.00%)

Sample type (%)

Primary tumor 62 (93.94%) 79 (94.05%) 194 (98.48%) 303 (98.38%)

Recurrent tumor 4 (6.06%) 5 (5.95%) 3 (1.52%) 5 (1.62%)

Primary site (%)

Brain, NOS 66 (100.00%) 84 (100.00%) 4 (2.03%) 4 (1.30%)

Frontal lobe – – 116 (58.88%) 181 (58.77%)

Occipital lobe – – 2 (1.02%) 6 (1.95%)

Parietal lobe – – 24 (12.18%) 22 (7.14%)

Posterior fossa, cerebellum – – 1 (0.51%) 1 (0.32%)

Temporal lobe – – 50 (25.38%) 94 (30.52%)

Laterality (%)

Left – – 99 (50.25%) 148 (48.05%)

Midline – – 1 (0.51%) 4 (1.30%)

Right – – 97 (49.24%) 156 (50.65%)

First presenting symptom (%)

Headaches – – 46 (23.35%) 57 (18.51%)

Mental status changes – – 13 (6.60%) 26 (8.44%)

Motor/movement changes – – 18 (9.14%) 19 (6.17%)

Seizures – – 83 (42.13%) 162 (52.60%)

Sensory changes – – 8 (4.06%) 9 (2.92%)

Visual changes – – 5 (2.54%) 6 (1.95%)

Unknown – – 24 (12.18%) 29 (9.42%)

Headache history (%)

No – – 106 (53.81%) 183 (59.42%)

Yes – – 69 (35.03%) 98 (31.82%)

Unknown – – 22 (11.17%) 27 (8.77%)

Seizure history (%)

No – – 76 (38.58%) 98 (31.82%)

Yes – – 108 (54.82%) 190 (61.69%)

Unknown – – 13 (6.60%) 20 (6.49%)

(Continued)
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TABLE 1 (Continued)

Variables GBM testing
set (n = 66)

GBM training set
(n = 84)

Non-GBM testing set
(n = 197)

Non-GBM training set
(n = 308)

Mental status changes (%)

No – – 124 (62.94%) 214 (69.48%)

Yes – – 49 (24.87%) 64 (20.78%)

Unknown – – 24 (12.18%) 30 (9.74%)

Sensory changes (%)

No – – 138 (70.05%) 239 (77.60%)

Yes – – 31 (15.74%) 37 (12.01%)

Unknown – – 28 (14.21%) 32 (10.39%)

Visual changes (%)

No – – 145 (73.60%) 242 (78.57%)

Yes – – 26 (13.20%) 37 (12.02%)

Unknown – – 26 (13.20%) 29 (9.42%)

Neoadjuvant treatment (%)

No 66 (100.00%) 84 (100.00%) 194 (98.48%) 308 (100.00%)

Yes 0 (0.00%) 0 (0.00%) 3 (1.52%) 0 (0.00%)

Radiation therapy (%)

No 9 (13.64%) 12 (14.29%) 59 (29.95%) 107 (34.74%)

Yes 57 (86.36%) 72 (85.71%) 112 (56.85%) 161 (52.27%)

Unknown 0 (0.00%) 0 (0.00%) 26 (13.20%) 40 (12.99%)

New tumor event after initial treatment (%)

No – – 107 (54.31%) 163 (52.92%)

Yes – – 48 (24.37%) 82 (26.62%)

Unknown – – 42 (21.32%) 63 (20.45%)

For Western blot analysis, cells were lysed with
radioimmunoprecipitation assay lysis buffer (RIPA, Beyotime,
Shanghai, China) mixed with a phenylmethanesulfonyl fluoride
protease inhibitor at a ratio of 100:1 (Beyotime, Shanghai, China).
Protein concentrations were determined using a bicinchoninic acid
protein assay kit (Beyotime, Shanghai, China). A 30 µg protein
sample was used for 10% sodium dodecyl sulfate polyacrylamide
gel electrophoresis. After electrophoresis, the protein sample was
transferred to PVDF membrane (Millipore) by the wet conversion
method, and the skimmed milk powder was sealed. After overnight
incubation with primary antibodies at 4◦C, TBS buffer was added
to wash the membrane, and then it was incubated with secondary
antibodies (Abcam) for 2 h at room temperature. TBST buffer was
used for washing, and ECL reagent (Beyotime, Shanghai, China)
was used for band visualization. The expression of the target
protein was equal to the grayscale value of the target band/the
grayscale value of the GAPDH band.

2.6 Statistical analysis

The statistical analysis was conducted using SPSS version 23.0
(SPSS Inc., Chicago, IL, USA) and R software version R-4.0.2
(The R Foundation for Statistical Computing, Vienna, Austria)
on a Windows platform. Baseline demographic characteristics,

hazard ratios of risk factors, and mRNA expression levels were
presented as mean ± standard deviation (SD). To identify
independent prognostic factors for overall survival (OS), both
univariate and multivariate Cox regression models were employed.
Hazard ratios (HRs) along with their 95% confidence intervals
(CIs) were calculated. The association between variables and OS
was assessed using the Kaplan-Meier method, and survival curves
were compared using the log-rank test. Additionally, statistical
significance between different groups was evaluated using chi-
square tests, Student’s t-tests, and analysis of variance (ANOVA).
A significance threshold of P < 0.05 was set to determine
statistical significance.

3 Results

3.1 Identification of ferroptosis-related
risk genes

A total of 655 patient samples were stratified into a training
set and a testing set using a 3:2 ratio. Among these, 392 patient
samples were allocated to the training set, while 263 patient samples
comprised the testing set. The classification based on patients’
pathologic types involved assigning patient samples with a WHO
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TABLE 2 Baseline demographic characteristic (CGGA).

Variables GBM (n = 343) Non-GBM (n = 530) P-value

Age, n (%) <0.001

<45 125 (36.44%) 356 (67.17%)

≥45 218 (63.56%) 174 (32.83%)

Gender, n (%) 0.317

Female 136 (39.65%) 224 (42.26%)

Male 207 (60.35%) 306 (57.74%)

Chemo status (%) <0.001

Yes 283 (82.51%) 342 (64.53%)

No 60 (17.49%) 188 (35.47%)

Radio status (%) 0.193

Yes 280 (81.63%) 412 (77.74%)

No 63 (18.37%) 118 (22.26%)

PRS type (%) <0.001

Primary 203 (59.18%) 362 (68.30%)

Recurrent 112 (32.65%) 168 (31.70%)

Secondary 28 (8.16%) 0 (0.00%)

Grade (%) <0.001

G2 0 (0.00%) 242 (45.66%)

G3 0 (0.00%) 288 (54.34%)

G4 343 (100.00%) 0 (0.00%)

IDHmutation status (%) <0.001

Mutant 80 (23.32%) 399 (75.28%)

Wildtype 263 (76.68%) 131 (24.72%)

Bold values indicate the P < 0.05 to emphasize their statistical significance.

classification of grade 4 to the GBM group, whereas patient samples
falling within WHO grades 2–3 were designated to the non-GBM
group. Comprehensive baseline demographic characteristics of the
TCGA dataset samples can be found in Table 1.

Furthermore, the testing set from the TCGA dataset served as
internal validation, while an independent validation was performed
using 873 patient samples from the CGGA dataset. Similar
categorization by pathology into GBM and non-GBM groups
was undertaken for the CGGA dataset, with respective baseline
demographics outlined in Table 2.

Differential gene expression analysis between the GBM and
non-GBM groups within both the training and testing sets revealed
239 commonly differentially expressed genes. Subsequently, 172
genes exhibiting significance (p-values < 0.05) were identified
following univariate Cox regression analysis. To assess the
impact on OS among glioma patients, a Lasso Cox model was
constructed to screen for ferroptosis-related risk genes, culminating
in the identification of fourteen significant genes (Supplementary
Figures 1A, B and Supplementary Table 1).

3.2 Identification and verification of
viability of fourteen ferroptosis-related
risk genes

Following the application of the Lasso-Cox model, each case
was assigned a risk score, leading to the stratification of patients

into high-risk and low-risk subgroups based on the median value of
the risk score (Figures 2A–C). Notably, the prognosis of the high-
risk subgroup exhibited a significantly poorer outcome compared
to the low-risk subgroup (Figure 2A). Evaluation of risk score
distributions, survival durations, and patient status revealed a
potential correlation where lower risk scores appeared associated
with longer life expectancies (Figure 2B).

Furthermore, independent validation using the CGGA
database (illustrated in Figures 2D–F) substantiated these findings,
demonstrating consistent outcomes between datasets. Specifically,
the validation reinforced the observation of a notably worse
prognosis within the high-risk subgroup, aligning with results
obtained from the initial analysis.

3.3 Identification and verification of
independent risk factors

The investigation into the association between fourteen
ferroptosis-related risk genes and clinicopathology revealed distinct
categorization. AURKA, RRM2, HBA1, CAPG, HSPB1, GDF15,
STEAP3, and NNMT were identified as risk genes, suggesting
that elevated expression levels might correlate with a poorer
prognosis. Conversely, NF2, YY1AP1, XBP1, BLOC1S5, GCLC,
and BID were categorized as protective genes, indicative of
a potential better prognosis when expressed at higher levels
(Supplementary Figure 2). Of particular interest was the notable
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FIGURE 2

Survival analysis of glioma patients in the TCGA cohorts (A–C) and independent validation in the CGGA cohorts (D–F). (A,D) Kaplan-Meier survival
analysis, (B,E) risk score by the fourteen ferroptosis-related risk genes, patients’ survival status and time, (C,F) time-dependent ROC curves. The 3
and 5-year AUCs were used to evaluate the prognostic accuracy, and the log-rank test was used to calculate the p-value.

FIGURE 3

Investigation of the independent prognostic risk factors in glioma patients. Univariate (A) and multivariate (B) Cox regression analysis of
clinicopathologic characteristics were performed, and the hazard ratios (HR) and 95% confidence intervals (CI) were calculated, respectively.
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overexpression of the first eight genes, notably HBA1, GDF15,
and NNMT, within patients classified as high-risk. Intriguingly,
these genes exhibited significantly heightened expression levels
in WHO Grade 4, predominantly among GBM patients, hinting
at a possible relationship between their elevated expression and
the onset of GBM. Additionally, this subset of genes showed
increased expression in patients aged 45 years or older and those
with a fatal prognosis, suggesting a potential association with
disease occurrence, progression, and an unfavorable prognosis.
Subsequent univariate and multivariate Cox regression analyses
were conducted to assess clinicopathologic factors (Figures 3A, B).
Results identified age, grade, new tumor event, and risk score
as independent risk factors. Internal validation (Supplementary
Figure 3) and independent validation (Supplementary Figure 4)
further supported the significance of age, primary tumor site, grade,
headache history, new tumor event, and risk score as independent
risk factors, particularly within the high-risk group.

3.4 Clinicopathological subgroup risk
analysis

Additionally, we conducted a comprehensive survival analysis
for each independent risk factor across clinicopathologic subgroups
of glioma patients. The analysis unveiled significantly lower OS
rates in the high-risk group compared to the low-risk group
within various subgroups of the TCGA cohort. Specifically, this
disparity was evident among patients younger than 45 years, aged
45 years or older, graded 2–3 based on the WHO classification,
individuals presenting headache and epilepsy as initial symptoms,
and those with or without a history of headache and neoplastic
conditions (Figure 4). These findings underscore the potential
predictive utility of the fourteen ferroptosis-related risk genes for
glioma patients across diverse clinical parameters. Notably, the
high-risk group exhibited an overwhelming prevalence of WHO
grade 4 patients, primarily comprising GBM cases, hinting at

FIGURE 4

Prognostic analysis in the subtypes with each independent risk factor group (A–I). P-value was calculated by log-rank test.
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FIGURE 5

A total of 22 immune cell genotypes infiltration analysis in gliomas. (A) The proportions of immune cell subsets in the low- and high-risk groups
were analyzed in the TCGA dataset. (B) The violin map showed statistical differences between the immune cells of low- and high-risk groups.

the substantially poor prognosis associated with this subgroup.
Consequently, no supplementary survival analysis was conducted
for this specific subgroup, as the distribution of GBM patients was
predominantly confined to the high-risk category.

3.5 Analysis of immune cell infiltration in
gliomas

The analysis of immune cell infiltration within gliomas
revealed distinctive patterns among 22 immune cell genotypes.
Notably, a discernible trend emerged wherein the low-risk group
exhibited lower expression levels of macrophage M1, while
conversely demonstrating higher expression levels of macrophage
M2. These differences were statistically significant with p-values
below 0.05, implying a potential association between macrophage
M2 polarization and a negative impact on glioma prognosis.
Conversely, the presence of higher macrophage M1 levels hinted
at a potential protective factor associated with this immune cell
subtype. Moreover, within the high-risk group, there was notable
elevation observed in the expression levels of CD8 + T cells
and CD4 naïve T cells, both displaying statistically significant

differences. These findings bear implications for subsequent
studies, suggesting a necessity for further investigation into the role
and implications of these immune cell subtypes in the prognosis
and progression of gliomas (Figures 5A, B).

3.6 Single-cell cluster analysis of
macrophages

Distinguishing variations in the distribution of M1 and M2
macrophages between high and low-risk groups prompted an in-
depth investigation. To delve deeper, we employed the GSE84465
database, focusing on cell alterations in GBM using the “seurat” R
package to scrutinize cell types in human primary GBM samples
(Supplementary Figure 5). Leveraging prior literature and the
CellMarker website (see text footnote 4), we identified three
distinct clusters of macrophages (Figure 6) and compiled a set of
macrophage markers (Supplementary Table 2).

Subsequently, the examination of the eight ferroptosis-
related risk genes, notably overexpressed in the high-risk group,
led to an intriguing observation. It revealed that AURKA,
HSPB1, and NNMT exhibited high expression levels in M2
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macrophages. Meanwhile, RRM2, GDF15, and STEAP13 were
expressed in both M1 and M2, and CAPG demonstrated
high expression across all three macrophage clusters. This
confluence of findings suggests distinctive patterns of gene
expression within specific macrophage clusters, shedding light
on potential correlations between ferroptosis-related genes and
distinct macrophage phenotypes.

3.7 Expression of the eight
ferroptosis-related risk genes in glioma

In alignment with our earlier observations, eight ferroptosis-
related risk genes—AURKA, RRM2, HBA1, CAPG, HSPB1,
GDF15, STEAP3, and NNMT—displayed heightened expression
levels within the GBM group and notably in the macrophage M2
phenotype. Consequently, we conducted a comprehensive
assessment of these genes’ expression within gliomas
(Figures 7A–D). Our RT-PCR analysis of the mRNA levels
pertaining to these eight ferroptosis-related genes unveiled a
noticeable increase in their relative expression levels across all
genes assessed (Figure 7A). Further, employing Western blot
analysis targeting the relevant proteins confirmed significantly
elevated expression levels of all eight ferroptosis-related genes in
the glioma group compared to the non-tumor group (Figure 7B).

Moreover, our investigation extended to examining the mRNA
expression levels of M1 and M2 macrophage markers in both
GBM and non-GBM glioma samples. The results from RT-PCR
demonstrated a notable upsurge in the expression of two M1
macrophage markers—TNF-α and IL-6—in non-GBM gliomas.
Conversely, the expression levels of three M2 macrophage
markers—ARG1, TGF-β, and IL-10—were notably increased in
GBM samples (Figures 7C, D). These findings elucidate distinct
patterns of gene expression within specific macrophage subtypes
and their association with ferroptosis-related genes in gliomas.

3.8 Drug sensitivity analysis of the eight
ferroptosis-related genes

The connection between macrophage-ferroptosis interplay and
its implications on immune tolerance and drug resistance in tumors
has been highlighted in research (Zhou et al., 2022). The substantial
challenge in GBM prognosis is primarily attributed to the resistance
of cancer cells to drugs. Addressing this through the modulation
of the ferroptosis pathway might present an effective strategy.
Considering the heightened expression of the aforementioned eight
ferroptosis-related genes in GBM, they potentially offer a promising
avenue for GBM pharmacotherapy. To explore this prospect, we
specifically targeted these eight genes and conducted a screening

FIGURE 6

Single cell cluster analysis of macrophages in GBM. (A) The three identified macrophage classes in GBM. (B) The expression of eight
ferroptosis-related risk genes in macrophage clusters.
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FIGURE 7

Eight ferroptosis-related genes were detected by panel (A) qPCR at mRNA level and (B) Western blot at protein level. (C) qPCR was used to detect
the molecular markers of M1 macrophages in non GBM and GBM groups. (D) The molecular markers of M2 macrophages in non GBM and GBM
groups were detected by qPCR. ∗p < 0.05 and ∗∗p < 0.01.

of 16 drugs highly correlated with them. We focused on drugs
approved by the US Food and Drug Administration (FDA) or
undergoing clinical trials sanctioned by the FDA (Figure 8A).
Notably, our analysis unveiled intricate correlations: the expression
of HSPB1 displayed a positive correlation with LY-294002
sensitivity and a negative correlation with PX-316 sensitivity.
Meanwhile, NNMT expression demonstrated a negative correlation
with drugs like tamoxifen, barasertib, EMD-534085, volasertib,
AMG-900, and BP-1-102. Additionally, CAPG expression exhibited
negative associations with drugs like lexibulin, docetaxel, and
eribulin mesilate. Further, we analyzed drug sensitivity concerning
gene expression levels within both high-risk and low-risk groups
(Figure 8B). These findings underscore the potential for targeting
specific drugs correlated with ferroptosis-related genes, offering
insights into therapeutic interventions for GBM.

4 Discussion

In this study, we screened fourteen ferroptosis-related risk
genes and calculated risk scores for patients with glioma based on

gene expression data and clinicopathological information collected
from databases. We found that patients in the high-risk group
had a significantly worse prognosis than patients in the low-risk
group. And in studying the relationship between the fourteen
ferroptosis-related risk genes and clinicopathological factors, eight
genes, AURKA, RRM2, HBA1, CAPG, HSPB1, GDF15, STEAP3,
and NNMT, were significantly highly expressed in the high-
risk group. Independent clinicopathologic risk factors were also
validated. In the analysis of immune cell infiltration in gliomas,
we found that M2 macrophages outnumbered M1 macrophages
in the tumor microenvironment of gliomas in high-risk group,
and the three ferroptosis-related risk genes, AURKA, HSPB1,
and NNMT, significantly inhibited ferroptosis of glioblastoma
cells and promoted the polarization of M1 macrophages to M2.
The expression of M2 macrophage markers was also higher in
GBM patient samples than in non-GBM glioma patient samples,
while the opposite was true for M1 macrophage markers. We
also analyzed the drug sensitivity of 16 drugs in relation to the
expression levels of the above eight genes.

Macrophages can have different activation states depending
on the stimuli they encounter. M1 and M2 are two polarized
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FIGURE 8

Drug sensitivity analysis of eight ferroptosis-related genes. (A) The relationship between gene expression and the drug sensitivity for the 16 selected
drugs. (B) The relationship between gene expression and drug sensitivities in low- and high-risk groups. NS means No significant, ∗p < 0.05, ∗∗p <
0.01, and ∗∗∗p < 0.001.

phenotypes of macrophages that have different functions and
characteristics (Biswas and Mantovani, 2010). M1 macrophages
are usually considered to be pro-inflammatory and anti-tumor,
as they can secrete nitric oxide, tumor necrosis factor, and
other effector molecules that kill bacteria and intracellular
pathogens, as well as participate in inflammation and tissue
damage (Mills and Ley, 2014). M2 macrophages are usually
considered to be anti-inflammatory and pro-tumor, as they can
secrete ornithine, interleukin-10 and other regulatory molecules
that promote tissue repair and angiogenesis, as well as participate
in immune suppression and tumor development (Gordon and
Martinez, 2010; Potas et al., 2015). The switch between M1
and M2 macrophages is a dynamic process influenced by many
factors, including cytokines, chemokines, extracellular matrix,
etc. Under various physiological and pathological conditions,
the ratio and function of M1 and M2 macrophages may
change, thereby affecting the outcome of immune responses
(Wang et al., 2014; Liu et al., 2021; Zhu et al., 2021, 2023c).

TAMs are important targets for immunotherapy of glioma,
and by regulating or inhibiting the activity of TAM, the sensitivity
of tumors to drugs such as immune checkpoint inhibitors can
be increased, thereby improving the therapeutic effect (Jaiswal
et al., 2009). The distribution of M1 and M2 macrophages in
gliomas is heterogeneous and correlates with tumor location,
progression, and microenvironment. In general, M1 macrophages
predominate in the early stages of the tumor and have anti-tumor
and pro-inflammatory properties, but as the tumor progresses, they
are converted to M2 macrophages, which have pro-tumor and
anti-inflammatory properties (Hambardzumyan et al., 2016). M2

macrophages are more prevalent in the peripheral regions of the
tumor than in the core, which may be related to the more hypoxic
and acidic microenvironment of the core region (Wang et al., 2022;
Ren et al., 2023; Zhu et al., 2023b). A study showed that the shape
of M1 macrophage is relatively large and rounded, and the M2
macrophage, which is not conducive to antitumor immunity, is
elongated in body shape, and that the morphological characteristics
have a significant effect on the polarization of massive TAMs.
The use of external interventions to control cell shape revealed
that elongation of cells promotes the polarization of macrophages
toward the M2 genotype (McWhorter et al., 2013). In this study,
we found that the proportion of M2 genotype macrophages was
higher in GBM compared to the M1 genotype. This also informs
our future work, and subsequent studies may include the regulation
and morphology of macrophage M1 and M2 polarization.

Ferroptosis exhibits a dichotomous role in glioma progression,
acting as a predominant mechanism for programmed cell death
while contributing to the construction of an immunosuppressive
microenvironment within gliomas. This dual function of
ferroptosis is central to tumor cell demise and concurrently
fosters an environment conducive to tumor growth, diminishing
the host’s anti-tumor immune response (Lu et al., 2022). Recent
investigations have highlighted the contrasting impacts of M1 and
M2-polarized macrophages on ferroptosis regulation in gliomas.
Studies suggest that M1 macrophages can promote ferroptosis
in glioma cells, whereas M2 macrophages exhibit an inhibitory
effect (Wang et al., 2019b; Zhuo et al., 2022). This interplay
underscores the potential significance of modulating M1/M2
polarization as a means to regulate ferroptosis, presenting an
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intriguing avenue for therapeutic intervention. Strategies targeting
M1 polarization to bolster ferroptosis may bolster anti-tumor
immunity and impede tumor growth. Conversely, favoring M2
polarization while inhibiting ferroptosis might aid in reducing
inflammation and facilitating tissue repair (Szulzewsky et al.,
2015). The high malignancy and drug resistance exhibited by
gliomas may stem from their adeptness at evading ferroptosis
(Huang et al., 2022; Niu et al., 2023; Zhu et al., 2023a). Compounds
inducing ferroptosis have been suggested as potential candidates
to counteract this evasion mechanism, potentially mitigating
enhanced drug resistance in gliomas (Wu et al., 2020). Moreover,
ferroptosis triggers a significant accumulation of M2 macrophages
in the tumor immune microenvironment, leading to a tolerance in
tumor cells against immunotherapy through the interplay between
macrophages and ferroptosis (Wang et al., 2019a). This study
also explores the correlation between eight ferroptosis-related risk
genes in glioblastoma (GBM) and drug sensitivity. Recent research
suggests that LY-294002 is a potent and selective PI3K inhibitor
that increases the chemosensitivity of liver cancer to oxaliplatin
by blocking the PI3K/AKT/HIF-1α pathway (Xu et al., 2021).
Tamoxifen is a selective estrogen receptor modulator, and it has
been shown to increase oxidative stress and induce cell death by
regulating reactive oxygen species (ROS), the accumulation of
which leads to the production of lipid hydroperoxides. Activation
of ferroptosis in tamoxifen-resistant breast cancer with high levels
of fascin may serve as a potential treatment (Chen et al., 2022).
Imatinib is an oral targeted therapy drug known as a tyrosine
kinase inhibitor. Cysteine depletion in an imatinib-resistant
chronic myeloid leukemia cell line induces ferroptosis (Mynott
et al., 2023). However, the relationship between their effects on
macrophage polarization and drug sensitivity is unclear, and
the specific mechanism and in vivo manifestation need to be
confirmed. Further studies are needed to understand the complex
interplay between ferroptosis and M1/M2 macrophage polarization
in gliomas and to develop effective therapeutic interventions.

However, there are several limitations to this study. Although
data from the TCGA and CGGA databases were used to analyze
and validate this study, further validation of the results using
other databases and more clinical samples from different hospitals
is needed. In addition, only eight ferroptosis-related genes were
suggested to be associated with M2 macrophage polarization, and
their specific mechanisms need to be further verified in vivo and
in vitro. Also, we only examined the changes in the ratio of M1
and M2 macrophages in the samples without investigating other
aspects such as their morphology. As mentioned above, M1 and
M2 macrophages are morphologically different, and this has a
significant impact on the polarization of TAMs, so we would like to
further investigate the relationship between different macrophage
morphologies and gliomas at a later stage. In addition, further
in vitro and in vivo experiments on the relationship between the
expression of various ferroptosis-related genes and drug sensitivity
are needed to shed light on the clinical treatment of gliomas.

5 Conclusion

In conclusion, our results suggest that the expression of
ferroptosis-related genes is associated with the prognosis of glioma

patients and plays a potential role in M1 and M2 macrophage
polarization. This may be a potential therapeutic target for
glioma immunotherapy.
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