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AMPA receptors (AMPARs) mediate the majority of fast excitatory transmission

in the brain. Regulation of AMPAR levels at synapses controls synaptic strength

and underlies information storage and processing. Many proteins interact with

the intracellular domain of AMPARs to regulate their trafficking and synaptic

clustering. However, a growing number of extracellular factors important for

glutamatergic synapse development, maturation and function have emerged that

can also regulate synaptic AMPAR levels. This mini-review highlights extracellular

protein factors that regulate AMPAR trafficking to control synapse development

and plasticity. Some of these factors regulate AMPAR clustering and mobility by

interacting with the extracellular N-terminal domain of AMPARs whereas others

regulate AMPAR trafficking indirectly via their respective signaling receptors. While

several of these factors are secreted from neurons, others are released from non-

neuronal cells such as glia and muscle. Although it is apparent that secreted

factors can act locally on neurons near their sites of release to coordinate

individual synapses, it is less clear if they can diffuse over longer ranges to

coordinate related synapses within a circuit or region of the brain. Given that

there are hundreds of factors that can be secreted from neuronal and non-

neuronal cells, it will not be surprising if more extracellular factors that modulate

AMPARs and glutamatergic synapses are discovered. Many open questions remain

including where and when the factors are expressed, what regulates their

secretion from different cell types, what controls their diffusion, stability, and

range of action, and how their cognate receptors influence intracellular signaling

to control AMPAR trafficking.
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Introduction

Forming and maintaining functional glutamatergic synapses is crucial for proper brain
function as glutamatergic transmission underlies vital processes such as cognition, motor
coordination, learning and memory. Dysfunction in glutamatergic synapse formation,
maintenance and function has been implicated in conditions ranging from autism spectrum
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disorders to epilepsy to neurodegenerative disorders, highlighting
the importance of glutamate signaling for brain function.

AMPA receptors (AMPARs) are the principal ionotropic
glutamate receptors that mediate fast, excitatory synaptic
transmission. AMPARs are tetrameric cation channels that
are assembled from a combination of 4 different subunits, GluA1-
GluA4 (Hansen et al., 2021). Subunit composition and association
with intracellular proteins and auxiliary subunits in the membrane,
like Transmembrane Associated Receptor Proteins (TARPs),
confers distinct trafficking characteristics. Both composition and
expression levels vary across brain regions, adding another layer of
complexity. Synaptic AMPAR abundance is a major determinant of
synaptic strength and is tightly regulated via multiple mechanisms
including receptor synthesis, trafficking, membrane insertion,
clustering, internalization, recycling, and degradation, as well as
modulation of channel function (Anggono and Huganir, 2012).
Many forms of synaptic plasticity engage one or more of these
mechanisms to precisely control the number and function of
AMPARs at the synapse.

Much progress has been made in identifying proteins that
interact with the intracellular domain of AMPARs and the
mechanisms by which they regulate clustering and trafficking
(Diering and Huganir, 2018). However, these processes can also
be regulated by extracellular, secreted factors that impact synaptic
strength and plasticity (Allen and Eroglu, 2017; Yuzaki, 2018).
One class of secreted factors directly binds to the extracellular
N-terminus of AMPARs and clusters receptors at synapses (i.e.,
Neuronal Pentraxins, Noelins), whereas another class are diffusible
ligands that control AMPAR trafficking indirectly via their cognate
signaling receptors (i.e., Netrin-1, BDNF, VEGF, TNFα) (Figure 1).
Some of these diffusible factors are secreted from neurons, whereas
others are secreted from non-neuronal cells such as glia and,
intriguingly, from distal tissues such as muscle. In this mini-review,
we discuss what is known about secreted proteins that regulate
AMPAR trafficking and highlight some open questions that remain
to be addressed.

Factors secreted from neurons

Neuronal pentraxins (NPTXs)

The neuronal pentraxin family consists of two secreted
glycoproteins, NPTX1/NP1 and NPTX2/NP2/NARP, and the
NPTX receptor (NPTXR). NPTX1 and NPTX2 cluster AMPARs
at excitatory synapses onto inhibitory neurons, interacting directly
with the N-terminus of AMPARs or indirectly via NPTXR
(Table 1). Secreted NPTX1 interacts with NPTXR and GluA4 at
shaft synapses resulting in the clustering of NPTX1 and GluA4-
containing AMPARs, which are highly expressed on parvalbumin-
positive (PV +) interneurons in the forebrain (Sia et al., 2007;
Pelkey et al., 2015). The selective effect of NPTXs on these
interneurons can be attributed to their almost exclusive interaction
with GluA4 subunits (Sia et al., 2007; Pelkey et al., 2015). NPTX2
is an immediate early gene whose expression is correlated with
neuronal activity (O’Brien et al., 1999; Xu et al., 2003; Chang
et al., 2010) and mediates homeostatic synaptic scaling (Chang
et al., 2010). NPTX2 is released from dense-core vesicles (DCVs)

near glutamatergic synapses, multimerizes, and becomes trapped
in the Extra-Cellular Matrix (ECM)-containing perineuronal nets
that surround PV + inhibitory neuron cell bodies (O’Brien et al.,
1999; Reti et al., 2008; Chang et al., 2010). Thus, NPTXs act as
extracellular scaffolds that interact with and cluster AMPARs and
mediate an activity-dependent mechanism to recruit inhibitory
neurons into circuits to dampen excitation. Interestingly, NPTX2
can be detected in the circulatory system (Reti et al., 2008),
suggesting it may have other functions and act far beyond its sites
of release.

Netrin-1

Netrin-1 was discovered as a regulator of neurodevelopmental
processes including cell migration, axon guidance, and synapse
formation in invertebrates and vertebrates (Ishii et al., 1992;
Kennedy et al., 1994; Colón-Ramos et al., 2007). More recently,
Netrin-1 was shown to promote excitatory synapse formation
(Goldman et al., 2013) and activity-dependent insertion of
AMPARs into synapses (Glasgow et al., 2018). NMDAR-
mediated Ca2+ influx stimulates the release of Netrin-1 from
hippocampal dendrites, resulting in autocrine activation of the
Netrin receptor Deleted in Colorectal Cancer (DCC), activation of
Calcium/Calmodulin Kinase II (CaMKII) and increased surface
abundance of GluA1-containing AMPARs (Glasgow et al., 2018,
2020). Netrin-1 released from dopaminergic and GABAergic
neurons in the ventral tegmental area similarly acts in an autocrine
manner to promote AMPAR-mediated currents (Cline et al.,
2023). The Netrin co-receptor Down Syndrome Cell Adhesion
Molecule (DSCAM) also promotes AMPAR levels and clustering in
cultured Aplysia neurons (Li et al., 2009). Additionally, long-term
potentiation (LTP) occludes Netrin-1-induced potentiation of
AMPAR EPSCs, and vice versa, indicating that activity-dependent
secretion of Netrin-1 is a mechanism of LTP (Glasgow et al., 2018).
Conditional deletion of Netrin or DCC from excitatory neurons in
the hippocampus results in defects in spatial memory in rodents
(Horn et al., 2013; Wong et al., 2019), and shRNA-mediated
knockdown of Netrin-1 from spinal dorsal horn neurons impairs
pain sensation and decreases the membrane fraction of GluA1-
containing AMPARs (Cui et al., 2021). Thus, Netrin is secreted in
an activity-dependent manner from dendrites of many cell types
and promotes synaptic AMPAR retention, providing an example of
a secreted factor being used in an autocrine fashion to strengthen
glutamatergic signaling in response to postsynaptic activity. It
remains to be seen whether the effects of Netrin-1 are restricted
to stimulated synapses or if secreted Netrin-1 can diffuse further
away to reach neighboring unstimulated synapses.

Noelin

Noelin-1/Olfactomedin-1 is a glycoprotein secreted from
neurons in the cortex, cerebellum and hippocampus. Noelin-1 and
the related Noelin-2 regulate AMPAR trafficking and function in
zebrafish and rodents (Sultana et al., 2014; Nakaya et al., 2017).
Noelins are conserved in all vertebrates but do not appear to
have an obvious homolog in invertebrates (Boudkkazi et al., 2023).
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FIGURE 1

Protein factors secreted from neurons, glia or muscle regulate AMPAR trafficking and synaptic levels. Netrin is released in an activity-dependent
manner from neurons and results in an autocrine activation of its receptor DCC. Downstream activation of CaMKII leads to increased delivery of
GluA1-containing AMPARs to synapses. BDNF is also secreted from neurons in an activity-dependent manner and activates the tyrosine kinase
receptor TrkB and downstream Ras and Erk signaling to increase AMPAR transcription, translation and synaptic incorporation. BDNF can also be
secreted from glia (not shown). Noelin and NPTX are secreted from neurons, and act as extracellular scaffolds by interacting with the N-terminal
domain of AMPARs and a network of proteins including ECM components. Glia such as astrocytes secrete Gpc4/6 which acts on presynaptic RPTPs
leading to the release of NPTX. Chrdl1 acts via an unidentified receptor and signaling pathway to promote synapse maturation during development
by inducing the switch to calcium-impermeable GluA2-containing AMPARs. TNFα is secreted from glia in an activity-dependent manner and
activates the TNFR and downstream PI3 kinase to upregulate synaptic AMPARs during homeostatic synaptic scaling. In Drosophila, Wg is released
from specialized glia that regulate glutamate receptor cluster size and synaptic localization via its receptor DFrizzled. In C. elegans, PVF-1/VEGF
secreted by muscle promotes surface levels of AMPARs in distal neurons via its receptor VER-1 and VER-4. PVF-1 and the VERs are thought to
promote surface levels of AMPARs via long-distance recycling via retromer. In mammals, VEGF also promotes AMPAR levels at synapses and can be
secreted from many cells including neurons, glia and muscle, although it is not known if muscle-derived VEGF regulates AMPARs in mammals. Red
arrows represent activity-dependent regulation of the secreted factor.

Noelin-1 was originally isolated as an AMPAR-interacting protein
from rodent synaptosomes (von Engelhardt et al., 2010; Schwenk
et al., 2012). Noelin-1 interacts with GluA1 and GluA2 in
heterologous cells and, similar to NPTXs, binds directly to the
N-terminal domain of GluA2 (Pandya et al., 2018), resulting in
the stabilization of synaptic AMPARs (Díaz-Alonso et al., 2017).
Interestingly, the effects of Noelin-1 are modified by the presence
of the ECM because Noelin-1 reduces AMPAR mobility on young
neurons but not on mature neurons which are surrounded by
ECM. Noelin-1 may also link AMPARs with Chondroitin sulfate
proteoglycans (CSPGs) in the ECM via Nogo, a Noelin-1 receptor
(Frischknecht et al., 2009). A recent study shows that Noelins 1-
3 act as polyvalent extracellular scaffolds that stabilize AMPARs
by anchoring them to a network of secreted and transmembrane
proteins (Boudkkazi et al., 2023). Using high-resolution immuno-
EM and electrophysiology recordings, neurons lacking Noelins 1-3
were observed to have 40 and 70% reductions in AMPARs at
synapses on excitatory and inhibitory neurons, respectively, and
defects in hippocampal LTP. This study suggests that secreted
factors like Noelins and their extracellular protein networks are
major contributors to LTP (Boudkkazi et al., 2023). Interestingly,
chemical LTP increases Noelin-1 levels in the synapse suggesting

that activity may increase Noelin-1 secretion to stabilize synaptic
AMPARs during plasticity (Pandya et al., 2018).

Brain-derived neurotrophic factor
(BDNF)

Brain-derived neurotrophic factor, a member of the
neurotrophin family, signals through its tyrosine-kinase receptor,
tropomyosin-related Kinase B (TrkB) to regulate several processes
including neurogenesis, neuronal survival, axon outgrowth, and
synapse formation (Messaoudi et al., 1998; Lee and Hempstead,
2018). LTP stimulates BDNF transcription via the transcription
factor CREB (Castrén et al., 1993; Dragunow et al., 1993; Tao
et al., 1998, 2002; Hong et al., 2008) and promotes BDNF secretion
(Balkowiec and Katz, 2000; Aicardi et al., 2004). Conversely,
application of mature BDNF induces LTP at hippocampal synapses
(Kang and Schuman, 1995a,b). These early studies suggested that
BDNF could regulate AMPAR expression or trafficking during
LTP. Indeed, BDNF/TrkB signaling increases transcription and
protein expression of GluA1, GluA2, and GluA3, and AMPAR
colocalization with PSD-95 in dendrites (Jourdi et al., 2003;
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TABLE 1 List of secreted factors affecting AMPARs.

Secreted factor Cell of origin Effect on AMPARs References

Neuronal Pentraxins Neurons Interacts with the NTD of AMPARs and
clusters receptors

O’Brien et al., 1999; Sia et al., 2007

Netrin-1 Dendrites Activity-dependent secretion of Netrin-1
promotes GluA1 at synapses, promotes
maturation of synapses and LTP

Glasgow et al., 2018

Noelins/Olfactomedins Neurons Acts as an extracellular scaffold that binds NTD
of AMPARs and a network of extracellular
proteins, anchors and stabilizes receptors
limiting their mobility, and contributes to LTP
generation

Pandya et al., 2018; Boudkkazi et al., 2023

Insulin Neurons, pancreas Promotes AMPAR endocytosis Lin et al., 2000; Man et al., 2000

SPARC Astrocytes, microglia Inhibits synaptic recruitment of GluA1 and
GluA2, inhibits synapse formation

Jones et al., 2011

Thrombospondin Astrocytes Promotes lateral diffusion and endocytosis of
AMPARs

Hennekinne et al., 2013

Glypicans Astrocytes Increases synaptic levels of GluA1, promotes
synapse formation

Allen et al., 2012; Farhy-Tselnicker et al., 2017

Chordin-like-1 Astrocytes Increases synaptic calcium-impermeable
GluA2, limits plasticity

Blanco-Suarez et al., 2018

CSPGs Astrocytes Regulates AMPAR surface mobility and
synaptic strength

Frischknecht et al., 2009; Pyka et al., 2011

Leucine-Rich Glioma-Inactivated
Protein 1 (Lgi1)

Neurons Promotes AMPAR levels and function in the
hippocampus

Fukata et al., 2006, 2010; Ohkawa et al., 2013

Wg/Wnt, Wnt 7a Neurons, glia Regulates synapse development and GluR
distribution at the fly NMJ

Packard et al., 2002; Mathew et al., 2005; Miech
et al., 2008; Ciani et al., 2011

TNFα Astrocytes, microglia,
neurons?

Regulates AMPAR levels and synaptic scaling Stellwagen et al., 2005; Stellwagen and Malenka,
2006; Lewitus et al., 2014

BDNF Neurons, glia and muscle Promotes excitatory synapse formation,
increases AMPAR expression and trafficking,
important for LTP; exercise increases BDNF
secretion in muscle and neurons

Castrén et al., 1993; Dragunow et al., 1993; Kang
and Schuman, 1995a; Messaoudi et al., 1998;
Balkowiec and Katz, 2000; Jourdi et al., 2003;
Aicardi et al., 2004; Caldeira et al., 2007; Cuppini
et al., 2007; Matthews et al., 2009; Wrann et al.,
2013; Szuhany et al., 2015

VEGF Endothelial cells,
neurons, glia and muscle

Regulates AMPAR surface levels, LTP and
learning and memory

Licht et al., 2011; De Rossi et al., 2016; Luth et al.,
2021

FNDC5/Irisin Muscle and neurons Exercise increases Irisin which increases BDNF
in the brain

Boström et al., 2012; Wrann et al., 2013; Islam et al.,
2021

IGF-1 Muscle and neurons Exercise increases IGF-1 which increases BDNF Ding et al., 2006

TGFβ/BMP Neurons Regulates synaptic AMPAR levels by
controlling subunit expression in mammals
and C. elegans

Bae et al., 2011; McGehee et al., 2015

Caldeira et al., 2007; Nakata and Nakamura, 2007). Of all secreted
factors, the intracellular signaling pathways that mediate the
effects of BDNF on synaptic AMPAR levels are probably the
best understood. Specifically, BDNF/TrkB complexes activate the
Ras/ERK pathway that is involved in surface delivery of AMPARs
(Li and Keifer, 2008, 2009; Li and Wolf, 2011; Reimers et al., 2014)
and phosphorylates S831 on GluA1 subunits, a critical site for
CaMKII and protein kinase C (PKC) binding, promoting AMPAR
synaptic delivery and retention (Caldeira et al., 2007; Keifer, 2022).
Thus, BDNF is a secreted factor whose expression and secretion
are regulated by activity that promotes AMPAR levels at synapses
via multiple intracellular mechanisms.

Factors secreted from glia

Thrombospondin-1

The large glycoprotein Thrombospondin-1 is secreted
by astrocytes and was originally shown to induce synapse
formation during development, although these synapses initially
lack AMPARs and are silent (Christopherson et al., 2005).
Thrombospondin-1 also functions in the mature nervous system
to reduce synaptic transmission: treatment of cultured rat spinal
cord neurons with Thrombospondin-1 increases lateral diffusion
and endocytosis of AMPARs and increases levels of inhibitory
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glycine receptors at synapses (Hennekinne et al., 2013). Thus,
Thrombospondin-1 is a glia-secreted factor that regulates synapse
development and AMPAR trafficking in mature neurons.

Secreted protein acidic and rich in
cysteines (SPARC)

Astrocytes and microglia secrete the protein SPARC which
antagonizes synapse formation induced by hevin, another
astrocyte-secreted factor (Jones et al., 2011; Kucukdereli et al.,
2011). Consistent with a role for SPARC in negatively regulating
excitatory transmission, hippocampal neurons from SPARC
knock-out mice exhibit increased mESPC amplitude and
frequency. Moreover, when cultured with SPARC knock-out
astrocytes, hippocampal neurons exhibit increased surface levels
of GluA1 and GluA2. Intriguingly, secretion of SPARC from
astrocytes is dependent on synaptic activity, suggesting a model
whereby increased synaptic activity leads to SPARC release and
downregulation of AMPAR surface levels and signaling (Jones
et al., 2011). These studies indicate that SPARC is an activity-
regulated secreted factor that inhibits glutamatergic signaling by
reducing surface levels of AMPARs at synapses, although how
SPARC controls intracellular signaling pathways in neurons to
impact AMPAR trafficking remains to be determined.

Chondroitin-sulfate proteoglycans
(CSPGs)

Astrocytes contribute to the ECM surrounding neurons by
secreting proteoglycans such as CSPG. Frischknecht et al. (2009)
showed that digestion of the ECM backbone with hyaluronidase
results in increased AMPAR mobility in the membrane and
increased short-term plasticity (STP), suggesting that the ECM
restricts exchange of desensitized synaptic AMPARs with naïve
extrasynaptic AMPARs during STP (Frischknecht et al., 2009).
Since CSPG levels increase during postnatal development, they may
contribute to synapse maturation by limiting plasticity (Pizzorusso
et al., 2002). Consistent with this, digestion of ECM increased
synapse number in a hippocampal/astrocyte co-culture system and
electrophysiological recordings indicated that the synapses were
immature (Pyka et al., 2011). Thus, components of the ECM like
CSPG and its interacting proteins are required to stabilize synaptic
AMPARs and promote synapse maturation. It will be interesting
to determine how CSPG expression or secretion from astrocytes is
regulated to control synaptic AMPARs and maturation.

Glypicans (Gpcs)

Glypicans are conserved heparan sulfate proteoglycans
(HSPGs) comprising 6 family members in mammals that are
anchored to the plasma membrane via glycosylphosphatidylinositol
links. Allen et al. (2012) biochemically isolated Gpc4 and Gpc6
from astrocyte-conditioned media as factors that induce functional
retinal ganglion cell (RGC) synapses. Both Gpc4 and Gpc6

promote cell surface clustering of GluA1-containing AMPARs
and increased excitatory transmission (Allen et al., 2012). Knock-
out of Gpc4 in mice decreases GluA1 and reduces excitatory
transmission in the developing hippocampus. The authors
proposed that glypicans induce immature synapses containing
GluA1 which then subsequently mature by incorporating GluA2/3
and GluA4 subunit-containing AMPARs. Although glypicans can
be proteolytically cleaved and released from the plasma membrane,
it is not clear how astrocytes regulate the release of glypicans.

Other studies have revealed the mechanism by which Gpc4
regulates AMPARs. Mammalian glypicans and the Drosophila
glypican homolog Dally like interacts with Leukocyte common
antigen-related (LAR) receptor tyrosine phosphatases (RPTPs)
family members (Johnson et al., 2006; Takahashi and Craig,
2013; Ko et al., 2015) and postsynaptic Leucine-Rich Repeat TM4
(LRRTM4) (de Wit et al., 2013; Siddiqui et al., 2013). These
interactors promote excitatory synapse formation and function in
mice (Dunah et al., 2005; Linhoff et al., 2009; Siddiqui et al., 2013;
Soler-Llavina et al., 2013) by increasing surface GluA1-containing
AMPARs (Schwenk et al., 2012; Shanks et al., 2012; Siddiqui
et al., 2013). Additionally, astrocyte-secreted Gpc4 stimulates
release of NPTX1 to promote AMPAR clustering at synapses
(see above). Disruption of the NPTX1-AMPAR interaction with
antibodies blocks Gpc4-mediated synapse formation, and loss of
Gpc4 or LAR family member RPTPδ results in accumulation
of NPTX1 in presynaptic terminals, reduced GluA1 clusters and
decreased synapse number (Farhy-Tselnicker et al., 2017). These
data suggest a model whereby astrocyte-released Gpc4 interacts
with presynaptic RPTPδ resulting in secretion of NPTX1 from
neurons and postsynaptic AMPAR clustering.

Chordin-like-1 (Chrdl1)

Excitatory synapse maturation is marked by a switch from
calcium-permeable GluA1-containing to calcium-impermeable
GluA2-containing AMPARs. Blanco-Suarez et al. (2018) identified
Chordin-like 1 (Chrdl1) as an astrocyte-secreted factor that
promotes synapse maturation by increasing surface levels of
GluA2-containing AMPARs at synapses on rat RGCs, thus
inducing the switch from calcium-permeable to calcium-
impermeable AMPARs (Blanco-Suarez et al., 2018). Interestingly,
Chrdl1 knock-out mice exhibit a shift toward immature synapses
which is associated with increased plasticity in the visual cortex.
The authors propose a model where Gpcs act first to promote
clustering of GluA1-containing AMPARs at immature synapses
followed by Chrdl-1 which promotes the switch to GluA2-
containing AMPARs typically associated with mature synapses.
Consistent with this model, astrocyte expression of Gpc4 and
Gpc6 is highest in the first two postnatal weeks when immature
synapses are developing while Chrdl1 peaks in the cortex later at
the time of synapse maturation in mice (Cahoy et al., 2008; Allen
et al., 2012). It remains to be determined how Chrdl1 secretion
is regulated and how Chrdl1 regulates intracellular trafficking
to promote GluA2-containing AMPARs. Given that CSPGs also
promote synapse maturation, it will be informative to investigate
how Chrdl-1 and CSPG interact to regulate maturation.
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Tumor necrosis factor α (TNF-α)

The proinflammatory cytokine TNFα is secreted from
astrocytes or microglia and promotes surface levels of AMPARs
in hippocampal neurons in vitro and in vivo (Beattie et al., 2002).
TNFα regulation of AMPARs is not involved in hippocampal LTP
or LTD, but is required for homeostatic synaptic scaling (Stellwagen
and Malenka, 2006) in which chronic changes in synaptic activity
result in a global adjustment of synaptic strength by altering
AMPAR levels (O’Brien et al., 1998; Turrigiano et al., 1998).
Synaptic scaling up is blocked if TNFα is scavenged by soluble
TNFR1 or if neurons are co-cultured with TNFα knock out glia
(Stellwagen and Malenka, 2006). Mechanistically, TNFα increases
the exocytosis of GluA2-lacking AMPARs in hippocampal and
cortical neurons (Ogoshi et al., 2005; Stellwagen and Malenka,
2006; He et al., 2012) via PI3 kinase (Stellwagen and Malenka,
2006) while simultaneously promoting the internalization of
GABA receptors (Stellwagen et al., 2005). The effects of TNFα are
brain region-specific. TNFα has the opposite effect on AMPARs in
the mouse dorsolateral striatum where it promotes internalization
of GluA1-containing AMPARs from medium spiny neurons and
reduces corticostriatal synaptic strength (Lewitus et al., 2014).
In the striatum, TNFα treatment activates protein phosphatase
1 (PP1) via DARPP-32 which promotes AMPAR endocytosis by
increasing the dephosphorylation of GluA1 on S845 and S831.

Wingless (Wg)/Wnt

Wingless (Wg)/Wnt is secreted from neurons and glia and
regulates pre- and postsynaptic development via the receptor
Frizzled at the glutamatergic Drosophila neuromuscular junction
(NMJ) (Packard et al., 2002; Mathew et al., 2005; Miech et al., 2008).
Loss of Wg results in decreased synapse numbers and abnormal
glutamate receptor (GluR) distribution (Packard et al., 2002).
Interestingly, Wg is secreted from glia in addition to motor neurons
at the Drosophila NMJ. Loss of Wg in neurons or subperineurial
glia results in increased GluR cluster size and intensity, however,
these synapses are correlated with reduced quantal content. Thus,
Wg secreted from both glia and neurons is required for the
normal distribution and function of GluRs. Interestingly, the
source of Wg matters because Wg secreted from motor neurons,
but not glia, regulates NMJ size, suggesting that neuron-derived
Wg regulates NMJ structure. Although it is not clear how
the Wg receptor Frizzled signals to regulate GluR trafficking,
vertebrate Wnt7a promotes synapse formation in hippocampal
neurons via postsynaptic CaMKII (Ciani et al., 2011) which
is known to promote synaptic AMPAR levels during plasticity
(Hayashi et al., 2000).

Factors secreted from other tissues

Vascular endothelial growth factor
(VEGF)

A recent study in C. elegans showed that the VEGF homolog
PVF-1 is secreted from muscle and regulates surface levels of

the calcium-permeable AMPAR GLR-1 in upstream neurons
(Luth et al., 2021). Interestingly, PVF-1/VEGF is expressed and
released from muscle to mediate GLR-1 surface levels in pre-
motor interneurons that reside two synaptic layers upstream
of the neuromuscular junction. Loss of the VEGF Receptor
(VEGFR) homologs VER-1 and VER-4, or PVF-1 reduces GLR-
1 cell surface levels, resulting in impaired glutamate-dependent
locomotor behaviors (Luth et al., 2021). Local recycling of GLR-1
to the plasma membrane is notably unchanged in VER mutants,
consistent with the idea that VEGFR signaling in C. elegans
promotes long-range AMPA receptor trafficking, perhaps via
retromer (Luth et al., 2021).

In vertebrates, VEGF is expressed in vascular endothelial cells
throughout the body including in the brain and spinal cord (Licht
et al., 2011), but also in neurons (Ogunshola et al., 2002; Schiera
et al., 2007), microglia (Bartholdi et al., 1997) and astrocytes (Ijichi
et al., 1995). VEGF is also expressed in multiple muscle cell-types
such as cardiac myocytes (Levy et al., 1995), vascular smooth
muscle (Ishida et al., 2001) and skeletal muscle (Germani et al.,
2003). VEGF expression can be induced by ischemia and, in the
case of skeletal muscle, is known to both promote angiogenesis
and act in an autocrine manner to regulate myoblast function to
promote new muscle growth (Germani et al., 2003). Interestingly,
VEGFR family members are expressed in neurons and glia and can
be induced in astrocytes and microglia following injury (Ogunshola
et al., 2002; Choi et al., 2007a,b).

Several studies indicate that VEGF regulates glutamatergic
transmission in vertebrates (Cammalleri et al., 2011; Licht et al.,
2011; De Rossi et al., 2016). Inhibiting or stimulating VEGF
signaling in adult mice has respective effects on LTP in the
hippocampus and glutamate-dependent fear conditioning (Licht
et al., 2011). VEGFRs localize to the postsynaptic density of
mouse hippocampal neurons, and although VEGF alone failed to
increase AMPA receptor trafficking or LTP (Cammalleri et al., 2011;
De Rossi et al., 2016), co-administration of VEGF and NMDA
activated PKC and CaMKII, increased the delivery of calcium-
permeable GluA1-containing AMPARs to synapses, and increased
excitatory synapse number. Conversely, conditional knockout of
VEGFR2 in neurons impaired LTP and fear-related memory
consolidation, without altering basal transmission (De Rossi et al.,
2016). Collectively, these findings suggest that in the hippocampus,
VEGFR2 signaling may promote activity-dependent strengthening
of glutamatergic transmission and resultant behavior by promoting
the synaptic incorporation of AMPARs. Together these studies
indicate that VEGF regulates AMPAR levels and trafficking in
vertebrates and invertebrates, however, the source of VEGF in
vertebrates is not clear. Given that PVF-1/VEGF is secreted from
muscle to regulate AMPARs in C. elegans, it is tempting to speculate
that muscle-secreted VEGF may, under some circumstances, also
act at a distance to regulate AMPARs in the brain in vertebrates.

Fibronectin type III domain-containing
protein 5 (FNDC5)/Irisin

Muscle activity during exercise has beneficial effects on
energy metabolism and brain function (Cotman et al., 2007;
Mattson, 2012). Interestingly, previous studies identified irisin as
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a muscle-released factor that signals to the brain. FNDC5 is a
transmembrane protein expressed in the brain and skeletal muscle
that is cleaved and released as a peptide called irisin during
exercise. Irisin enters the circulation and directs fat metabolism and
thermogenesis and also mediates many of the beneficial effects of
exercise on cognition (Boström et al., 2012). Peripheral injection of
FNDC5 or irisin increases irisin protein levels in the hippocampus
without altering irisin mRNA levels in the brain (Wrann et al.,
2013; Lourenco et al., 2019; Islam et al., 2021), suggesting that
irisin can cross the blood-brain barrier. Once in the brain, irisin
induces the expression of BDNF in the hippocampus (Wrann et al.,
2013), which as discussed above, can regulate AMPAR expression
and trafficking. Interestingly, BDNF expression is increased after
exercise in the hippocampus (Vaynman et al., 2004; El Hayek et al.,
2019; Lourenco et al., 2019) and also in skeletal muscle (Cuppini
et al., 2007; Szuhany et al., 2015) and can be released into the
circulatory system (Pan et al., 1998; Matthews et al., 2009).

Discussion

This mini-review highlights secreted protein factors that
regulate trafficking or clustering of AMPAR subunits and discusses
their effects on glutamatergic transmission and plasticity (Table 1).
Several factors are secreted in response to activity either from
neurons or glia and are thus ideal for coordinating synapse
development or plasticity in an activity-dependent manner.
Regulation of the expression and release of secreted factors
potentially provides a multitude of spatio-temporal mechanisms to
control neuronal development and function. Depending on their
range of action, secreted factors could act locally to coordinate
subsets of synapses within a neuron or more globally to coordinate
groups of glia or neurons in a circuit or region of the brain. Longer
range factors may act more distally in another region of the brain
and still signal to a restricted subset of neurons that express their
specific cognate receptor, enabling precise long-distance signaling.
However, since most studies described in this review typically focus
on one neuronal cell type or one region of the brain, their full
complement of target cells within the brain are not known.

We also describe a role for PVF-1/VEGF as a muscle-secreted
factor in C. elegans that regulates AMPAR levels in a distal neuron
that coordinates locomotion. Although VEGF is also expressed
and released from muscle in vertebrates, it’s role in signaling to
the brain has not been investigated. However, the fact that muscle
cells release hundreds of factors, many of which are stimulated
by contraction that may mediate the beneficial effects of exercise
on metabolism and brain function (Görgens et al., 2015) and that
studies in Drosophila and mammals have revealed hundreds of
secreted proteins that may mediate inter-organ communication
including between peripheral tissues and the brain (Droujinine
and Perrimon, 2016; Severinsen and Pedersen, 2020), raises the
intriguing possibility that there may be other factors secreted from
peripheral tissues that regulate glutamatergic synapses in the brain.

Many open questions remain. Although neuronal activity
can regulate the release of some of these factors, we do not
understand how they are packaged into vesicles, the mechanisms
that regulate their secretion, or how their range of action might
be modulated. Similarly, although we have some idea how a

few of these factors regulate AMPAR trafficking, for the vast
majority, the molecular mechanisms by which they impinge
on intracellular trafficking pathways (lateral diffusion, clustering,
insertion, removal, degradation, transport, etc.) to control synaptic
AMPAR levels are unknown. It will also be interesting to
determine when these factors are expressed and released either
during development or in the mature brain and if they are
expressed in a region-specific manner. Finally, although this
review largely focused on the secretion of soluble factors, there
are many membrane-associated or transmembrane proteins, like
FNDC5 and glypicans that undergo cleavage to release extracellular
domains (Tien et al., 2017) that may have signaling or regulatory
functions that remain to be discovered. It will not be surprising
if more extracellular factors that regulate AMPAR trafficking and
glutamatergic synapses will be discovered that are secreted from
both neuronal and non-neuronal cell types in the brain, and
perhaps also from peripheral tissues.
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