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Central nervous system (CNS) glia, including astrocytes, microglia, and 
oligodendrocytes, play prominent roles in traumatic injury and degenerative 
disorders. Due to their importance, active pharmaceutical ingredients (APIs) are 
being developed to modulate CNS glia in order to improve outcomes in traumatic 
injury and disease. While many of these APIs show promise in vitro, the majority 
of APIs that are systemically delivered show little penetration through the blood–
brain barrier (BBB) or blood-spinal cord barrier (BSCB) and into the CNS, rendering 
them ineffective. Novel nanomaterials are being developed to deliver APIs into 
the CNS to modulate glial responses and improve outcomes in injury and disease. 
Nanomaterials are attractive options as therapies for central nervous system 
protection and repair in degenerative disorders and traumatic injury due to their 
intrinsic capabilities in API delivery. Nanomaterials can improve API accumulation 
in the CNS by increasing permeation through the BBB of systemically delivered 
APIs, extending the timeline of API release, and interacting biophysically with CNS 
cell populations due to their mechanical properties and nanoscale architectures. 
In this review, we  present the recent advances in the fields of both locally 
implanted nanomaterials and systemically administered nanoparticles developed 
for the delivery of APIs to the CNS that modulate glial activity as a strategy to 
improve outcomes in traumatic injury and disease. We identify current research 
gaps and discuss potential developments in the field that will continue to translate 
the use of glia-targeting nanomaterials to the clinic.
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1. Introduction

Glia, which constitute roughly half the cells in the central nervous system (CNS), have 
essential yet distinct roles in supporting neuronal homeostasis and signal transduction (Allen 
and Lyons, 2018). In particular, astrocytes, microglia, and oligodendrocytes are necessary for 
regulating synaptic function, contributing to metabolic support, creating myelin sheaths for 
signal transduction, and in the CNS immune response (Somjen, 1988; Tomassy et al., 2016; von 
Bartheld et al., 2016). Glia also are critical players in disease and after traumatic injury, as 
microglia are the primary source of pro-inflammatory cytokines, astrocytes are regulators of 
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synaptic homeostasis and glial scar formation after injury, and 
demyelination or changes in myelin thickness by oligodendrocytes 
alters signal conduction speed (Colonna and Butovsky, 2017; Liddelow 
and Barres, 2017; Wang S. S. et al., 2018). Due to the fact that neuronal 
regeneration is highly restricted following CNS injury and disease, glia 
have begun to emerge as important targets in the development of 
active pharmaceutical ingredients (APIs) in order to improve clinical 
outcomes. However, since many APIs do not readily cross the blood–
brain barrier (BBB) to impart their action on glia, nanomaterials have 
been engineered to carry APIs to the site of action, extend the API 
release timeframe, and also to impact cellular behavior based on their 
architectural features (Zhang et al., 2016; Dai et al., 2021).

Nanomaterials, including nanoparticles and nanostructured 
scaffolds, offer many advantages in the delivery of APIs to CNS glia. 
Nanoparticles (NPs), composed of polymers, liposomes, inorganic 
materials, and extracellular vesicles, are used to deliver APIs to glia 
because they can be administered systemically, engineered to cross the 
BBB, carry and protect sensitive APIs, and be  targeted to cells or 
regions of interest using antibodies, targeting peptides, and even 
nucleic acids (Patel et al., 2012; Mann et al., 2016; Zuidema et al., 2016; 
Furtado et al., 2018; Zhou et al., 2018; Ciciriello et al., 2022; Waggoner 
et  al., 2022). The advantage of NP technologies is that they can 
be administered systemically; however, in some cases, such as TBI, 
BBB permeability can decrease over time, which can reduce the 
accumulation of the API in the CNS at longer time points after injury 
(Werner and Engelhard, 2007; Mann et al., 2016). In CNS disorders, 
BBB breakdown often occurs prior to neurodegeneration and persists 
as the disease progresses (Sweeney et al., 2018a,b). While this can 
be advantageous for API delivery to the CNS, there are also complex 
mechanisms, including disrupted BBB transporter expression, 
inflammation, immune products, and impaired solute transport, 
which can limit API accumulation in these regions (Sweeney et al., 
2018b). NP design needs to consider this when attempting to traverse 
the injured or diseased BBB to deliver APIs to regions of interest. 
Nanostructured scaffolds have other advantages, even though they 
generally must be surgically implanted or injected into the site of 
interest. The nanoscale topographical features of nanomaterial 
scaffolds can influence cellular function, migration, and growth; APIs 
can be delivered from either the surface of the scaffold or incorporated 
into the scaffold to extend release, and, since the scaffolds are 
implanted directly at the site, APIs are released locally to glia (Tsui 
et al., 2019; Puhl et al., 2020, 2022). Here, we present the current state-
of-the-art in API delivery to CNS glia using nanomaterials, point out 
the existing gaps in the research, and discuss the potential future 
developments and advances of this field that will drive nanomaterial 
delivery of APIs to CNS glia towards the clinic.

2. Nanomaterials for API delivery to 
CNS glia

2.1. Nanoparticle API delivery to astrocytes

Astrocytes are CNS glia that perform core homeostatic functions 
and whose radiating processes can contact upwards of 1 million 
synapses in humans (Hasel and Liddelow, 2021). They are integral 
parts of the BBB where they uptake metabolites such as glucose to fuel 
active neurons, modulate neurotransmitter concentration in synapses, 

phagocytose synapses, form part of the glymphatic system, and aid in 
the homeostatic control of neuronal redox stress (Sofroniew and 
Vinters, 2010; Hasel and Liddelow, 2021). In the event of injury or 
pathology, including stab wound injuries, experimental autoimmune 
encephalomyelitis (EAE), middle cerebral occlusion (MCAO), 
hypertrophic ciliary neurotrophic factor induction, cortical lesion, 
spinal cord injury (SCI), Alzheimer’s disease, Parkinson’s disease, 
prion disease, Huntington’s disease, multiple sclerosis (MS), and 
amyotrophic lateral sclerosis (ALS), astrocytes respond via a process 
termed reactive astrogliosis (Anderson et al., 2014; Pekny et al., 2016; 
Escartin et al., 2019). This process can be protective, but persistent 
reactive astrogliosis can become maladaptive, making it a target for 
APIs (Pekny et al., 2016). Therefore, APIs that act on astrocytes have 
been developed that target metabolic pathways, transporters and 
receptors, cell–cell interactions, and even as glia-to-neuron conversion 
therapies (Lee et al., 2022). Their role in disease and trauma, as well as 
recent advances in nanomaterial API delivery, make astrocytes a 
critical cell to target in order to improve clinical outcomes in CNS 
disease and injury.

Nanoparticles (NPs), including polymer, dendrimer, lipid, and 
inorganic nanoparticles, have all been developed to deliver APIs to 
astrocytes. Specific nanoparticle types, their payloads, the model 
studied, and the outcomes are listed in Table  1. The majority of 
astrocyte research to date has employed either polymer NPs or 
dendrimers to deliver APIs (Newland et al., 2014; Serramia et al., 
2015; Lozic et al., 2016; Kong et al., 2017; Chowdhury et al., 2018; 
Surnar et al., 2018; Holmkvist et al., 2020; Proulx et al., 2020; Vismara 
et al., 2020; Wang et al., 2020; Clementino A. et al., 2021; Gu et al., 
2022; Huang et al., 2022; Narsineni et al., 2023; Perumal et al., 2023; 
Sabourian et al., 2023; Zhang F. et al., 2023). API payloads range from 
small molecule drugs to proteins, plasmid DNA, and siRNA 
(Montenegro et al., 2011; Kannan et al., 2012; Chen and Foldvari, 
2016; Tickle and Chari, 2019; Porkolab et al., 2020; Gu et al., 2022). 
The goal of most APIs is to push astrocytes towards a more protective 
phenotype, improving their ability to protect neurons in these 
environments. This includes reducing reactive oxygen species, 
decreasing astrocyte inflammatory response, and reducing 
inflammatory cytokine release (Table 1). NP API delivery to astrocytes 
has been shown to improve outcomes in cerebral palsy, blast-induced 
hearing loss, neural implants, ALS, and SCI models (Table  1), 
demonstrating the potential of these therapeutic strategies in future 
clinical applications.

2.2. Nanomaterial API delivery to astrocytes

Nanomaterial strategies targeting astrocytes, including 
electrospun fibers, composite hydrogels, and hybrid materials, address 
two occurrences in the astrocytic response to injury: (1) to reduce glial 
scar formation, or (2) to mitigate an established glial scar (Jarrin et al., 
2021). Often, these materials contain anti-inflammatory API payloads 
or exogenous stem cells which assist in promoting a neuroprotective 
phenotype, by diminishing the inhibitory chemical barrier and 
promoting restoration of the blood-spinal cord barrier. Polymer 
nanofibers are fabricated by electrospinning, a process that allows for 
the creation of biodegradable and biocompatible scaffolds that can 
be used in neural tissue engineering (Schaub et al., 2016; Cheng et al., 
2021). Due to their high surface area and structure, electrospun 
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TABLE 1 Studies that use nanoparticle delivered APIs to target central nervous system glia.

Material Payload Study of Bioactivity Outcome References

Astrocytes

Arginine-modified PEI and 

Poly(lactide-co-glycolide)

Plasmid DNA In vitro human astrocytes Arginine PEI increased 

plasmid DNA transfection in 

astrocytes

Proulx et al. (2020)

Cell adhesion peptide-conjugated 

gemini nanoplexes

Plasmid DNA In vitro A7 astrocytes, in vivo 

intravitreal injection

Gemini nanoplexes enhanced 

transfection of astrocytes

Narsineni et al. (2023)

Alanine and glutathione targeted 

niosomes

Evans blue BSA In vitro primary rat astrocyte 

cultures

Alanine and glutathione 

niosomes increased astrocyte 

uptake in in vitro BBB model

Porkolab et al. (2020)

PAMAM dendrimers 2-(3-Mercaptopropyl) pentanedioc 

acid

In vivo cerebral palsy model Dendrimers localize in 

activated astrocytes and 

microglia and improve motor 

function

Zhang F. et al. (2023)

Transferrin tagged-PEG Minocycline In vivo blast-induced hearing 

loss model

Reduction in astrocyte 

activation

Perumal et al. (2023)

Aquaporin 4 Ab targeted 

poly(glycidyl methacrylate)

Resveratrol In vivo partial optic nerve 

transection injury

Reduce oxidative damage and 

AQP 4 immunoreactivity, 

preserve visual function

Lozic et al. (2016)

K2®Transfection NPs BDNF-plasmid In vitro co-culture A7 astrocytes increased BDNF 

expression protecting SH-

SY5Y cultures

Chen and Foldvari (2016)

Solid lipid nanoparticle Idebenone In vitro primary rat cerebral 

cortex astrocytes

Inhibition of ROS production 

and increase in viability

Montenegro et al. (2011)

Cationic carbosilane dendrimers HIV-1 NEF siRNA In vivo uptake via retro-orbital 

venous plexus administration

Delivered siRNA to HIV-

infected astrocytes

Serramia et al. (2015)

NeuroMag magnetic nanoparticles 

complexed with plasmids

Reporter protein plasmids In vitro primary rodent 

astrocyte transfection assay

Levels of transfection using 

magnetic-multifection reach 

viral methods

Tickle and Chari (2019)

Poly(lactide-co-glycolide) Minocycline In vivo neural implant model 

with PLGA NPs incorporated 

onto gelatin coatings

Delayed and significant 

reduction in astrocytic 

response

Holmkvist et al. (2020)

Poly(lactide-co-glycolide)-block 

(b) polyethyleneglycol 

functionalized with terminal 

lipophilic triphenylphosphonium 

cation

Aspirin and coenzyme Q10 In vivo therapeutic efficacy in 

SOD1 mice

Increased ATP production 

and reduced ROS production 

in astrocytes and neurons

Surnar et al. (2018)

Gold and PAMAM Dendrimer 

NPs

Gastrodin In vitro astrocyte gene 

expression

Reduction in astrocyte 

cytokine release

Huang et al. (2022)

Lecithin/chitosan NPs only In vitro human astrocytes Astrocyte viability in 

psychosine cultures increased

Clementino A. et al. (2021)

Poly(lactide-co-glycolide) Polo-like kinase 4 siRNA In vivo contusion SCI rat 

model

Locomotor score increased Gu et al. (2022)

Peptide conjugated chitosan Plasmid DNA In vitro EAE astrocytes Large pspCS particles were 

uptaken preferentially by EAE 

astrocytes

Kong et al. (2017)

Lipopolysaccharide-bonded 

chitosan-quantum dots/poly 

acrylic acid

NP only In vivo mild stab SCI injury NPs were preferentially 

uptaken by astrocytes and 

neurons in vivo

Sabourian et al. (2023)

(Continued)
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TABLE 1 (Continued)

Material Payload Study of Bioactivity Outcome References

Carboxy-methylchitosan/

poly(amidoamine) dendrimer 

nanoparticle

Methylprednisolone In vitro rat cortical astrocyte 

cultures

NPs are taken up by astrocyte 

endocytosis, followed by an 

increase in frequency of 

transient exocytotic fusion 

events

Chowdhury et al. (2018)

Knotted 2-(dimethylamino)ethyl 

methacrylate and poly(ethylene 

glycol) methyl ethyl methacrylate 

polymer

Plasmid DNA In vitro Neu 7 astrocyte cell 

line

Improved transfection over 

commercially available 

controls

Newland et al. (2014)

Valproic acid-labeled chitosan NP only In vivo contusion SCI injury Decreased lesion volume, 

suppression of reactive 

astrocytes and inflammation

Wang et al. (2020)

Poly(lactide-co-glycolide)-b-

poly(ethylene glycol)-

triphenylphosphonium

Antiretrovirals, coenzyme Q10, and 

an asprin pro-drug

In vivo EcoHIV and 

methampetamine-exposed 

animal model

Astrocyte ROS levels reduced Surnar et al. (2021)

Polyethylene glycol and 

polyethylene-amine nanogels

Rolipram In vitro astrocyte CM neurons 

and in vivo compression SCI

Reversed toxic effects on 

motor neurons in vitro and 

improved early functional 

recovery after SCI

Vismara et al. (2020)

Microglia

D-T7-TfR and MG1 peptide 

targeted polycaprolactone-

poly(ethylene glycol) NP

Aspirin In vivo ASD mouse model NPs targeted microglia, 

inhibited their activation, and 

improved behavior

He et al. (2022)

Hydroxyl poly(amidoamine) 

generation-6 dendrimers

Minocycline In vivo cerebral palsy model NPs targeted microglia in vivo 

following IV administration

Sharma et al. (2017)

Poly(lactide-co-glycolide) Duloxetine In vivo spinal nerve ligation 

model

NPs localized to spinal 

microglia, suppressed their 

activation, and alleviated 

mechanical allodynia

Kim et al. (2021)

Exosomes from M2 type primary 

peritoneal macrophage

Berberine In vivo contusion SCI mouse 

model

Microglia were induced 

towards M2 phenotype, motor 

function was improved

Gao et al. (2021)

Reactive oxygen species-responsive 

dendrimer-peptide conjugate

p-NRF2 peptide In vivo APP/PS1 mouse model Reduced ROS levels, alleviated 

microglia activation, and 

enhanced cognitive function

Liu et al. (2021)

Microglial BV2 cell membrane 

shell-human serum albumin core 

NPs

Flavin mononucleotide In vivo FxFAD mouse model NPs target microglial, improve 

inflammatory response, and 

ameliorated cognitive 

impairment

Zhang M. et al. (2023)

CDX-Chitosan Fingolimod In vivo experimental 

autoimmune 

encephalomyelitis mouse 

model

Microglia uptake NPs and 

regulate the inflammatory 

response

Sepasi et al. (2023)

Hydroxyl terminated generation-4 

PAMAM dendrimer

Sinomenine In vivo rabbit model of 

pediatric TBI

NPs target microglia and 

attenuate inflammation

Sharma et al. (2020)

Hydroxyl terminated PAMAM 

dendrimer

2-(phosphonomethyl)-pentanedioc 

acid

In vivo mouse model of 

experimental autoimmune 

encephalomyelitis

NPs preferentially uptaken by 

microglia causing robust 

anti-inflammatory activity, 

improved cognition

Hollinger et al. (2022)

(Continued)
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TABLE 1 (Continued)

Material Payload Study of Bioactivity Outcome References

Hydroxyl-terminated PAMAM 

dendrimer

Fluocinolone acetonide In vivo Royal College of 

Surgeons rat retinal 

degeneration model

NPs arrest retinal 

degeneration and attenuate 

activated microglia

Iezzi et al. (2012)

Hydroxyl terminated generation-4 

PAMAM dendrimer

N-(5–2-[2-(5-amino-[1,3,4]

thiadiazol-2-yl)-ethylsulfanyl]-

ethyl-[1,3,4]thiadiazol-2-yl)-2-

phenyl-acetamide

In vivo mouse model of Rett 

syndrome

Reduced glutaminase 

expression in microglia and 

selective improvement in 

mobility

Khoury et al. (2020)

Hydroxyl terminated generation-4 

PAMAM dendrimer

N-acetyl systeine In vivo Mecp2-null Rett 

syndrome mouse

Localized to microglia and 

improved behavioral 

outcomes

Nance et al. (2017)

Hydroxyl terminated generation-4 

PAMAM dendrimer

Triamcinolone acetonide In vivo mouse model of 

oxygen induced retinopathy

Suppresses activated microglia 

and improves visual function

Cho et al. (2021)

Docosahexaenoic acid 

nanostructured lipid carrier 

modified with chitosan and TAT

Glial cell-derived neurotrophic 

factor, vascular endothelial growth 

factor

In vitro HMC3 microglia cell 

line

Counteracted inflammatory 

response in LPS stimulated 

cultures

Hernando et al. (2022)

Poly(ethylene glycol)-poly-ε-

caprolactone

Minocycline In vivo contusion spinal cord 

injury mouse model

Acutely reduces pro-

inflammatory response in 

microglia and improved 

behavioral outcomes

Papa et al. (2016)

Amphiphilic poly(amidoamine)

dendrimer

siRNA In vitro primary rat microglia 

cultures

Effectively delivered siRNA 

and decreased target gene and 

protein expression

Ellert-Miklaszewska et al. 

(2019)

Plant-derived extracellular vesicles Dexamethasone In vitro BV-2 microglial 

cultures

Inhibited NO production Ishida et al. (2023)

Lecithin/chitosan nanoparticles Simvastatin In vitro human macrophage 

THP-1 cells activated with LPS

Suppression of pro-

inflammatory signaling

Clementino A. R. et al. 

(2021)

Poly(lactide-co-glycolide) Inhibitor of kappa B nuclear 

factor-kappa B kinase subunit beta 

siRNA

In vivo spinal nerve ligation 

rats

Mechanical allodynia and 

secretion of pro-inflammatory 

mediators reduced

Lee et al. (2021)

Liposomes Interleukin-4 In vivo controlled cortical 

impact mouse model

Boosted a beneficial microglia 

phenotype and protected 

against neuronal loss

Pu et al. (2023)

Astrocyte extracellular vesicles lincRNA-Cox2 siRNA In vivo LPS-induced mouse 

microglial proliferation model

Decreased LPS-induced 

microglial proliferation

Liao et al. (2020)

Mannose functionalized curdlan-

based NP

NF-κB p65 siRNA In vivo mouse model of 

transient middle cerebral 

artery occlusion

Microglia transitioned to M2 

phenotype, reduced 

neurological deficit score, and 

increased density of neurons

Ganbold et al. (2020)

Liposome Macrophage migration inhibitory 

factor

In vivo contusion SCI rat 

model

Preservation of white matter 

integrity

Saxena et al. (2015)

Poly(lactic-co-glycolic acid) miRNA-129-5p In vitro BV-2 microglia Polarized activated microglia 

into more pro-regenerative 

phenotype

Kalashnikova et al. (2023)

Lipid nanoparticle Toll-like receptor 4 siRNA In vivo mouse model of 

transient middle cerebral 

artery occlusion

Significant knockdown of 

TLR4 expression and 

improved neurological 

function

Ganbold et al. (2022)

Poly(lactic-co-glycolic acid) Perampanel In vivo photothrombic stroke 

rat model

Increased M2 polarization, 

decreased size of infarct, and 

increased motor function

Shin et al. (2022)

(Continued)
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TABLE 1 (Continued)

Material Payload Study of Bioactivity Outcome References

Polyamidoamine dendrimer Triamcinolone acetonide In vivo peripheral nerve injury 

model

Targeted microglia and 

reduced mechanical allodynia

Kim et al. (2017)

Poly (ethylene glycol)-block-poly 

(D,L-lactide)

C3-siRNA In vivo middle cerebral artery 

occlusion mouse model

Decreased C3 expression in 

microglia and reduced volume 

of ischemic zone

Wang Y. et al. (2018)

Mannose functionalized DoGo 

Lipid nanoparticle

Toll-like receptor 4 siRNA In vitro BV2 microglia Silencing of TLR4 and 

polarization towards M2 

microglia

Xiao et al. (2021)

Poly(ethylene glycol)-poly-ε-

caprolactone

Minocycline In vivo contusion SCI mouse 

model

Reduction of the pro-

inflammatory milieu

Papa et al. (2013)

Poly(ethylene glycol)-Poly(lactic-

co-glycolic acid) coated with a lipid 

film

Toll-like receptor 4 siRNA In vivo LPS-injection model Reduction in microglial 

activation after LPS injection

Guo et al. (2022)

Poly(ethylene glycol)-poly 

caprolactone miktoarm star-

derived polymersomes

Fisetin In vitro HMC3 human 

microglia

Reduced ROS and ERK1/2 

phosphorylation

Baghbanbashi et al. (2022)

Hydroxyl terminated generation-4 

PAMAM dendrimer

N-acetyl cysteine In vivo mouse model of 

ischemia-induced neonatal 

white matter injury

Reduces the detrimental 

pro-inflammatory response

Nance et al. (2015)

Poly(lactic-co-glycolic acid) and 

L-tyrosine polyphosphate

Rolipram In vitro primary microglia NPs did not induce release of 

proinflammatory cytokines

Cahalane et al. (2020)

Fas ligand antibody conjugated 

PEGylated-lipid nanoparticle

3-n-Butylphthalide In vivo mouse middle cerebral 

artery occlusion model

Accumulation in microglia 

and improvement in 

neurological deficit

Lu et al. (2014)

Oligodendrocytes

Transferrin receptor binding 

peptide conjugated lipid 

nanocapsule with super 

paramagnetic iron oxide 

nanoparticle

Retinoic acid In vitro oligodendrocyte 

progenitor cell culture

Induced differentiation to 

more mature, myelin 

produced oligodendrocytes

Moura et al. (2023)

Liposomes Interleukin-4 In vitro OPC culture and in 

vivo TBI mouse model

IL-4 induced mature, myelin 

producing oligodendrocytes 

and improved sensorimotor 

neurological recovery 

following TBI

Pu et al. (2021)

HEK293T extracellular vesicles miR-219a-5p In vitro OPC culture and in 

vivo experimental 

autoimmune 

encephalomyelitis mouse 

model

Induced OPC differentiation 

and improved EAE functional 

outcomes

Osorio-Querejeta et al. 

(2020)

NG-2 Ab conjugated Poly(lactic-

co-glycolic acid)

Leukaemia inhibitory factor In vitro OPC culture and in 

vivo mouse model of focal 

CNS demyelination

Induced OPC differentiation 

into mature oligodendrocytes 

and increased myelin repair in 

vivo

Rittchen et al. (2015)

Hexagonal bi-pyramid shaped gold 

nanoparticle

Nanoparticle nanocatalysis In vivo cuprizone mouse 

model of demyelination

Induced remyelination Robinson et al. (2020)

Nogo receptor agonist peptide 

Nep1-40 conjugated human serum 

albumin poly(ethylene glycol)

Methylprednisolone In vivo rat contusion SCI 

model

Improved behavioral 

outcomes

Lin et al. (2019)

NFL-TBS.40–63 peptide vectorized 

lipid nanoparticle

Neurotrophin-3 In vitro oligodendrocyte 

cultures

Potentiated proremyelinating 

effects

Fressinaud et al. (2020)

(Continued)
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nanofibers mimic the native extracellular matrix of neural tissue and 
are hence suited to promote neural regeneration (Tian et al., 2015). 
Nanofibers are attractive as drug depots for astrocytes because their 
intrinsic material properties can alter astrocyte activation or direct 
astrocyte growth (Zuidema et al., 2014, 2018). Improved astrocyte 
activation outcomes have been demonstrated by employing nanofiber 
scaffolds alone, incorporating stem cells with nanofibers, and even 
with conductive nanofibers (Zhao et al., 2018; Shu et al., 2019; Yan 
et al., 2020; Dai et al., 2023; Xu et al., 2023). As a means to further 
promote neural repair and mitigation of secondary injury, nanofibers 
can be loaded with APIs that act on astrocytes due to their porous 
nature (Zhang et al., 2021). Growth factors and small molecule drugs 
released from nanofibers have shown the ability to reduce astrocyte 
activation (Zhang et al., 2018; Bighinati et al., 2020; Sun et al., 2020), 
decreasing GFAP expression and improving outcomes (Table 2).

Nanocomposite hydrogel constructs are used frequently in neural 
tissue engineering to promote cell adhesion and proliferation, 
incorporate guidance cues, and provide electrical conductivity in the 
tissue-supporting scaffold (Madhusudanan et  al., 2020). These 
properties make them especially attractive as injectable materials to 
deliver APIs to astrocytes. Conductive hydrogels with nanoparticles 
(Yang et  al., 2022) or nanosheets (Chen et  al., 2022) following 
stimulated spinal cord injury demonstrated decreases in GFAP-labeled 
astrocytes, as well as decreases in chondroitin sulfate proteoglycans 
and increased neuronal markers (Table 2). Studies using nanofiber 
hydrogels (NFH) have shown different outcomes, with NFH alone 
demonstrating no induction of astrocytes (Gonzalez et  al., 2022), 
while increased amounts of astrocytes at the injury site were seen 
using an NFH construct combined with BMSCs (Li et  al., 2020; 
Haggerty et al., 2022). Nanoparticle hydrogel composites have also 
shown varying results (Serafin et al., 2022). Hydrogel nanohybrids 
releasing NGF, diacerein, or chondroitinase ABC have reduced 
astrocyte activity (Raspa et al., 2021; Gao et al., 2022; Xing et al., 2023), 
demonstrating the potential of these API-releasing nanomaterials to 
improve astrocyte outcomes.

2.3. Nanoparticle API delivery to microglia

Microglia constitute 5%–10% of total brain cells and are the only 
true CNS parenchymal macrophages (Aguzzi et al., 2013). Upon CNS 
injury or disease, microglia adopt an “amoeboid” morphology and are 
responsible for phagocytosis and elimination of microbes, dead cells, 
and protein aggregates, and the secretion of soluble factors, including 
chemoattractants, cytokines, and neurotrophic factors (Colonna and 
Butovsky, 2017; Li and Barres, 2018). These polarized cells were 

traditionally categorized as having either toxic (M1) or protective 
(M2) states; however, accumulating evidence suggests microglial 
polarization is complex and multidimensional (Ransohoff, 2016a). In 
fact, single cell sequencing suggests that depending upon their 
anatomical compartment and pathological environment, microglia 
display an entire spectrum of functional states, ranging from highly 
inflammatory and phagocytic to anti-inflammatory and 
neuroprotective (Sankowski et al., 2022) Persistent pro-inflammatory 
microglial activation is a component of almost all neurodegenerative 
diseases (Ransohoff, 2016b). Because of this, many APIs have been 
developed to target microglia in order to improve outcomes in CNS 
disorders or after injury. This has prompted researchers to employ 
nanomaterials as an engineering approach to amplify further the 
impact of APIs designed for microglia.

NPs, including polymer, dendrimer, lipid, extracellular vesicles, 
and inorganic nanoparticles, have been designed to deliver APIs to 
microglia in many different CNS disorders and studied in various 
models, including autism spectrum disorder, cerebral palsy, 
neuropathic pain, SCI, Alzheimer’s, experimental autoimmune 
encephalomyelitis (EAE), TBI, retinal degeneration, Rett syndrome, 
and stroke (Iezzi et al., 2012; Sharma et al., 2017, 2020; Ganbold et al., 
2020; Khoury et al., 2020; Liao et al., 2020; Gao et al., 2021; Kim et al., 
2021; Liu et al., 2021; He et al., 2022; Sepasi et al., 2023) (Table 1). API 
payloads range from small molecule drugs to proteins, peptides, and 
siRNA (Lee et al., 2021; Liu et al., 2021; Hernando et al., 2022; Zhang 
M. et al., 2023). Most NP API therapies aim to modulate the microglial 
inflammatory response, polarizing microglia towards the more 
neuronally protective M2 phenotype to alleviate the inflammatory 
response and improve functional outcomes (Papa et al., 2013, 2016; 
Lu et al., 2014; Nance et al., 2015, 2017; Saxena et al., 2015; Kim et al., 
2017; Wang Y. et al., 2018; Ellert-Miklaszewska et al., 2019; Cahalane 
et al., 2020; Cho et al., 2021; Xiao et al., 2021; Baghbanbashi et al., 
2022; Ganbold et al., 2022; Guo et al., 2022; Hollinger et al., 2022; Shin 
et al., 2022; Ishida et al., 2023; Kalashnikova et al., 2023; Pu et al., 
2023). NP API delivery to microglia has been shown to improve 
functional outcomes in many in vivo models of CNS disorders 
(Table 1), demonstrating that these cells have important implications 
across CNS pathologies and that modulating their response to injury 
and disease using NPs has immense potential in improving 
clinical outcomes.

2.4. Nanomaterial API delivery to microglia

Nanomaterial strategies targeting microglia are focused on 
nanofibrous scaffolds and hybrid nanostructured materials, often with 

TABLE 1 (Continued)

Material Payload Study of Bioactivity Outcome References

NIDPNAV peptide conjugated 

gold nanoparticles

NIDPNAV peptide In vivo focal demyelination 

mouse model

Significantly enhanced myelin 

content

Farhangi et al. (2023)

Lipoidal nanoparticle Dimethyl fumarate In vivo cuprizone-induced 

demyelination rodent model

Rejuvenation of the myelin 

sheaths and improved 

functional outcomes

Kumar et al. (2018)

Liposomes Interleukin-4 In vivo murine model of 

transient cerebral ischemia

Improved white matter 

integrity and functional 

outcomes

Zhang et al. (2019)
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an immunomodulatory payload to polarize microglia towards an anti-
inflammatory phenotype in order to promote neuronal protection and 
repair (Table  2). Microglia have diverse, complex reactions to 
nanomaterials. 3D biodegradable hybrid inorganic nanoscaffolds 
modulated microglia in vivo to reduce scar formation during stem cell 
transplantation therapy for SCI (Yang et al., 2018). PCL nanofiber 
scaffolds coated with self-assembled colloidal graphene implanted in 
the striatum or subventricular zone of adult rats promoted reduced 
microglial infiltration (Watson et al., 2017). On the other hand, when 
primary microglia were cultured on poly(trimethylene carbonate-co-
1-caprolactone) nanofibrous scaffolds, there was a reduction in 
phagocytic capacity, which indicates an inflammatory phenotype 
(Pires et  al., 2015). Microglia were studied with engineered self-
assembling (RADA)4-IKVAV peptide nanoscaffolds, and in vitro 
remained viable, phagocytosed the matrix, and remained ramified 
with high levels of TNF-ɑ and IL-1b and NO expression. When 
injected intracerebrally, however, the nanoscaffold did not lead to 
microglial migration, proliferation, or microglia-induced scarring 
(Koss et al., 2016). The inflammatory behavior of BV2 microglia was 
significantly reduced when interfaced with graphene nanomaterials 
compared to conventional polystyrene tissue culture substrates, and 
3D graphene foams elicited a significantly milder neuroinflammatory 
response compared to a 2D graphene film (Fabbri et  al., 2021). 
Nanostructured self-healing hyaluronan and chitosan hydrogel 
scaffolds injected into the rat brain striatum had negligible microglial 
activation or neuroinflammation (Liu et al., 2020).

The ability of nanomaterials to alter microglial response led 
researchers to include APIs during development to add a further level 
of control. Glial cell-derived neurotrophic factor (GNDF)-loaded 
polydopamine (PDA) nanoparticle-based anisotropic gelatin scaffolds 
efficiently deliver PDA nanoparticles to scavenge reactive oxygen 
species and promote the M2 anti-inflammatory polarization in the 
murine BV2 microglial cell line (Ma et al., 2023). Poly(lactic acid) 
nanofiber scaffolds with incorporated rat NGF in hyaluronate 
hydrosol were engrafted with immunoregulatory IL-4 plasmid-loaded 
aldehyde cationic liposomes and implanted into rats with acute SCI, 
resulting in a downregulated acute microglial inflammatory response 
and reduced glial scar formation (Xi et al., 2020). PCL/PSA hybrid 
nanofiber scaffolds encapsulating methylprednisolone (MP) 
implanted after transection SCI inhibited microglial inflammatory 
activation as evidenced by reduced secretion of TNF-ɑ and IL-6 
(Zhang et al., 2018). As more advanced nanomaterials are developed, 
the ability to deliver APIs that modulate the microglial response has 
therapeutic potential in many CNS disorders.

2.5. Nanoparticle API delivery to 
oligodendrocytes

Oligodendrocytes generate myelin to increase the speed of 
propagation of axon potentials and provide metabolic support to 
neurons in the CNS (Simons and Nave, 2015). Unfortunately, 
oligodendrocytes are vulnerable to reactive oxygen species, hydrogen 
peroxide, and excitotoxicity from glutamate, and as such, are 
detrimentally impacted in a range of CNS disorders (Matute et al., 
1997; Juurlink et al., 1998; Kuhn et al., 2019; Kenigsbuch et al., 2022; 
Pandey et al., 2022). The most common causes of oligodendrocyte 
death in the CNS are trauma, ischemia, or autoimmune attacks, such 
as multiple sclerosis. However, white matter pathology is also 

characteristic of other CNS diseases, including Alzheimer’s (Love, 
2006; Fancy et al., 2011; Assinck et al., 2017; McAleese et al., 2017). 
Remyelination is a natural regenerative process that has been shown 
to prevent neurodegeneration and restore function (Duncan et al., 
2009, 2018). Therefore, APIs have been studied in order to promote 
oligodendrocyte remyelination in CNS trauma and disease. 
Nanomaterial design for API delivery to oligodendrocytes is being 
studied to capitalize on the synergy between the advantageous 
properties of the API and those of the material (Russell and Lampe, 
2017; Murphy and Lampe, 2018).

Nanoparticles, including polymer, lipid, extracellular vesicles, and 
inorganic nanoparticles, have been designed to deliver APIs to 
oligodendrocytes in models of TBI, EAE, focal CNS demyelination, 
cuprizone-induced demyelination, SCI, and ischemia (Table  1) 
(Rittchen et al., 2015; Kumar et al., 2018; Lin et al., 2019; Zhang et al., 
2019; Osorio-Querejeta et al., 2020; Robinson et al., 2020; Pu et al., 
2021). API payloads range from small molecule drugs to proteins, 
peptides, and miRNA (Fressinaud et al., 2020; Farhangi et al., 2023; 
Moura et  al., 2023). The goal of most NP API therapies directed 
towards oligodendrocytes is to reduce myelin loss and induce 
remyelination after injury or disease in order to improve functional 
outcomes (Table 1). Importantly, NP API delivery to oligodendrocytes 
has been shown to rejuvenate myelin and improve outcomes in in vivo 
models of CNS injury and demyelinating disorders (Table 1). While 
NP API delivery to oligodendrocytes is the least studied of the three 
most prominent glia in the CNS, the functional benefits demonstrate 
the potential for developing these NP therapies to improve myelin 
outcomes in many different CNS pathologies in order to push these 
treatments towards the clinic.

2.6. Nanomaterial API delivery to 
oligodendrocytes

Nanomaterial strategies that target oligodendrocytes have focused 
on engineered nanofibrous materials due to their ability to provide an 
axon-like substrate to promote oligodendrocyte differentiation and 
myelination. Two fundamental studies pioneered this approach by 
demonstrating that rat oligodendrocyte progenitor cells (OPCs) 
cultured on electrospun nanofibers of diameter 500-800 nm 
proliferated and differentiated into oligodendrocytes and ensheathed 
the fibers, resembling myelination (Lee et al., 2012). The same group 
also reported similarly compacted myelination on polystyrene 
electrospun nanofibers cultured with rodent oligodendrocytes (Lee 
et al., 2013). Further studies have shown that nanofibers can guide 
oligodendrocyte orientation that more closely resembles in vivo 
morphologies, preferentially drive neural stem cells to 
oligodendrocytes, induce compact myelination, and protect 
oligodendrocytes following traumatic CNS injury (Tysseling-Mattiace 
et al., 2008; Cao et al., 2009; Li et al., 2014; Shah et al., 2014; Wang 
et al., 2015; Ehrlich et al., 2017; Hyysalo et al., 2017; Tupone et al., 
2021; Zhang et al., 2022) (Table 2). The ability to mimic the in vivo 
environment and alter oligodendrocyte response has led to the design 
of nanomaterials that release APIs to act more specifically on 
these glia.

Further, hybrid PCL-gelatin nanofiber scaffolds, combined with 
polyaniline graphene nanocomposites, were incorporated in gelatin 
to lend conductive properties similar to axons. Chitosan nanoparticles 
loaded with T3 were incorporated into PCL for sustained release, and 
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TABLE 2 Studies that use nanomaterials and nanomaterial delivered APIs to target central nervous system glia.

Material Payload Study of bioactivity Outcome References

Astrocytes

PHBV, PLA and Collagen 

electrospun nanofibers

In vivo implanted in adult 

female Sprague dawley rats 

with complete T10 

hemisectioned spinal cord 

injury

Decreased expression of GFAP 

by astrocytes

Zhao et al. (2018)

Gelatin-coated nanofibers, cross-

linked by genipin with NT-3 

(MNS-G/NT3)

NT-3 In vitro rodent neural stem 

cells

In vivo implantation in rat 

with T9 segment spinal cord 

injury

Inhibition of GFAP+ astrocyte 

differentiation

Negligible GFAP+ astrocytes 

observed; no glial scar

Sun et al. (2020)

PLLA nanofibers loaded with 

Ibuprofen and Triiodothyronine 

(PLLA-Ibu-T3)

Ibuprofen, T3 In vivo implanted in female 

CD/Sprague Dawley rats with 

T9 contusive spinal cord 

injury

Reduced astrocyte reaction in 

ventral horn

Bighinati et al. (2020)

PCL/PSA nanofiber scaffold 

encapsulating MP

MP In vivo implanted in rats with 

spinal cord transection at 

T10

Decreased GFAP expression; 

increased NF200 and GAP43 

expression in astrocytes

Zhang et al. (2018)

PLL_PCL triol-co-sebacic acid-co-

BES sodium salt (PPSB) nanofibers 

with human NSCs

BES In vivo implanted in rats with 

complete spinal cord 

transection

Fewer GFAP+ astrocytes Dai et al. (2023)

Hyaluronic acid, with BDNF loaded, 

micro-sol particle encapsulated into 

PLLA (core-shell nanofibers); Type 

I collagen solution, loaded with 

BMSCs, onto surface of nanofibers

BDNF In vitro astrocytes

In vivo implanted at site of 

spinal cord injury in rat

IL-1β and TNF-ɑ expression in 

astrocytes downregulated

Fewer GFAP+ astrocytes

Xu et al. (2023)

PPy embedded into PLA 

nanoscaffold (PLA/PPy)

PPy In vivo implanted in rat 

spinal cord injury lesion

Decreased accumulation of 

GFAP+ astrocyte around 

injured area

Shu et al. (2019)

Poly [aniline tetramer 

methacrylamide]-co-[dopamine 

methacrylamide]-co-[poly(ethylene 

glycol) methyl ether methacrylate]/

PCL (PCAT) with NGF nanofiber 

mesh

NGF In vitro rodent neural stem 

cell

Nanofiber mesh applied with 

electrical stimulation 

suppressed spreading of 

differentiated astrocytes

Yan et al. (2020)

Agarose/Gelatin/polypyrrole (Aga/

Gel/PPy) (AGP3) – Aga/Gel 

Hydrogel with PPy nanoparticles

PPy nanoparticles In vitro

Primary rodent astrocytes

In vivo implanted in rats with 

hemisectioned spinal cord 

injury

Lower expression of CS56 in 

astrocytes

Decrease in GFAP+ astrocytes 

in lesion

Yang et al. (2022)

PVA hydrogels with molybdenum 

sulfide (MoS2)/ graphene oxide (GO) 

nanosheets

In vitro neural stem cells

In vivo implanted in male 

mice with T9/T10 spinal cord 

injury

Inhibition of differentiation 

towards GFAP expressing 

astrocytes

Reduced GFAP expression in 

lesion

Chen et al. (2022)

Silk-elastin-like-polymer (SELP) 

(EIS)2-RGD6 (When injected, 

rapidly forms nanofibrillar hydrogel)

(EIS)2-RGD6 In vivo implanted in adult 

female wistar rats with T10 

contusive spinal cord injury

Reduced astrocyte-mediated 

fibrosis

Gonzalez et al. (2022)

Aligned Silk Fibroin Nanofiber 

(ASFN) hydrogels + NGF

NGF In vivo implanted in rats with 

hemisectioned spinal cord 

injury

Orientational astrocytes along 

spinal cord

Gao et al. (2022)

(Continued)
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TABLE 2 (Continued)

Material Payload Study of bioactivity Outcome References

PCL nanofibers bound to thiolated 

hyaluronic acid (HA-SH) and 

PEGDA in a nanofibrillar hydrogel 

composite

In vivo implanted in adult 

female Sprague Dawley rats 

with T9 contusive spinal cord 

injury

Reduced astrocyte infiltration Haggerty et al. (2022)

PSS cross-linked CNT and SA (CNT-

PSS-SA) with Diacerein (CNT-PSS-

SA-DA)

Diacerein In vitro human astrocytes Reduced expression of IL-6 and 

IL-1β

Xing et al. (2023)

Chondroitinase ABC (ChABC)-

loaded injectable SAP 

nanostructured hydrogels (Self-

organize into braided nanofibers)

ChABC In vivo implanted in rats with 

T10 weight drop spinal cord 

injury

Reduced GFAP+ astrocytes in 

the center of the lesion

Raspa et al. (2021)

Gelatin:Hyaluronic Acid:poly(3,4-

ethylenedioxythiophene) polystyrene 

sulfonate (PEDOT:PSS) 

(Gel:HA:PEDOT-NPs) nanoparticle 

hydrogel composite

PSS In vivo implanted in make 

fisher 344 rats with T3 

transected spinal cord injury

Downregulation of GFAP in 

astrocytes around scaffold 

activation area

Serafin et al. (2022)

Microglia

Biodegradable hybrid inorganic 

nanoscaffolds composed of 

manganese oxide and coated with 

laminin

Laminin coating In vivo spinal cord injury site 

of adult mice

Modulated microglia to reduce 

scar formation during stem cell 

transplantation therapy

Yang et al. (2018)

PCL nanofiber scaffolds coated with 

self-assembled colloidal graphene

Colloidal graphene coating In vivo implanted into the 

striatum or subventricular 

zone of adult rats

Reduced microglial infiltration Zhou et al. (2016)

P(TMC-CL) nanofibrous scaffold In vitro primary microglia 

from Wistar rat pups

Reduction in microglial 

phagocytic capacity

Pires et al. (2015)

Self-assembling (RADA)4 -IKVAV 

peptide nanoscaffolds

IKVAV In vitro primary rat microglia

In vivo intracerebral 

implantation into Long-

Evans rat pups

Microglia remained viable, 

phagocytosed matrix, ramified 

with high TNF-ɑ and IL-1b and 

NO expression and high 

proliferation

Did not lead to microglial 

migration, proliferation or 

microglia-induced scarring

Koss et al. (2016)

GNDF-loaded PDA nanoparticle-

based anisotropic gelatin scaffolds

GNDF-loaded PDA 

nanoparticles

In vitro murine BV2 

microglial cell line

Promote anti-inflammatory M2 

microglial phenotype

Ma et al. (2023)

2D graphene film and 3D graphene 

foam

In vitro murine BV2 

microglial cell line

Inflammatory behavior of 

significantly reduced on 

graphene; significantly lower on 

3D foam vs. 2D film

Song et al. (2014)

PLA nanofiber scaffolds with rat 

NGF in hyaluronate hydrosol 

engrafted with IL-4 plasmid-loaded 

aldehyde cationic liposomes

IL-4 plasmid-loaded aldehyde 

cationic liposomes

In vivo implanted in rats with 

acute spinal cord injury

Downregulated acute microglial 

inflammatory response and 

reduced glial scar formation

Xi et al. (2020)

PCL/PSA hybrid nanofiber scaffolds 

encapsulating MP

MP In vivo implanted into rats 

with spinal cord transection

Inhibited microglial 

inflammatory activation; 

reduced secretion of TNF-ɑ and 

IL-6

Zhang et al. (2018)

Nanostructured self-healing 

hyaluronan and chitosan hydrogel 

scaffold

In vivo injected into rat brain 

striatum

Negligible microglial activation 

or neuroinflammation

Liu et al. (2020)

(Continued)
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TABLE 2 (Continued)

Material Payload Study of bioactivity Outcome References

Oligodendrocytes

PLLA nanofibers Coated with PLL In vitro rodent 

oligodendrocyte progenitors

Oligodendrocyte differentiation 

and ensheathment 

(myelination)

Lee et al. (2012)

Polystyrene nanofibers Coated with PLL In vitro rodent 

oligodendrocyte progenitors

Oligodendrocyte differentiation 

and ensheathment 

(myelination)

Lee et al. (2013)

FGLmx nanofibrous self assembling 

peptide scaffolds

FGL In vitro rat oligodendrocyte 

progenitors

Oligodendrocyte differentiation Wang et al. (2015)

PCL nanofiber platforms coated with 

laminin

Laminin coating In vitro human pluripotent 

stem cell derived 

oligodendrocyte precursors

Cell orientation guided to 

resemble that of spinal cord in 

vivo

Hyysalo et al. (2017)

Hybrid PCL-gelatin nanofiber 

scaffold with polyaniline graphene

T3 In vitro rat bone marrow 

stem cell derived neural stem 

cells

Oligodendrocyte differentiation Rasti Boroojeni et al. (2020)

PCL nanofibers loaded with PDGF-

AA, FGF2, BMP2 and BMP4 and 

coated with laminin

PDGF-AA, FGF1, BMP2, 

BMP4; laminin coated

In vitro primary mouse 

oligodendrocytes

Myelination of nanofibers Enz et al. (2019)

Polyethersulfone nanofiber meshes Laminin coated In vitro primary rat 

hippocampal derived neural 

stem cells

Oligodendrocyte differentiation Christopherson et al. (2009)

PCL nanofibers coated with 

graphene oxide and laminin

Graphene oxide and laminin 

coating

In vitro primary rat neural 

stem cells

Oligodendrocyte differentiation Shah et al. (2014)

PCL nanofibers loaded with miR-

219, miR-338-3p and miR-338-5p, 

and coated with laminin

MicroRNA (miR-219, miR-338-

3p and miR-338-5p); laminin 

coating

In vitro primary rat 

oligodendrocyte precursors

Differentiation and maturation 

into oligodendrocytes

Diao et al. (2015)

PCL nanofibers co-polymerized with 

50% gelatin

Gelatin In vitro neonatal rat 

oligodendrocyte precursor 

cells

Enhanced differentiation and 

myelination

Li et al. (2014)

PCL-PSA hybrid nanofiber scaffold Methylprednisolone In vivo rat transected spinal 

cord injury

Increased survival of 

oligodendrocytes and axonal 

myelination

Zhang et al. (2018)

PCL nanofibers coated with laminin Laminin coating In vitro human induced 

pluripotent cell derived 

oligodendrocytes

Induction of myelination Ehrlich et al. (2017)

RAD16-I self-assembling peptide 

nanofiber scaffolds containing 

embryonic hippocampal neural 

progenitor cells

Embryonic hippocampal neural 

progenitor cells

In vivo adult rats with spinal 

cord dorsal column 

transection

Oligodendrocyte differentiation Guo et al. (2007)

IKVAV self-assembling peptide 

nanofibrous scaffolds

IKVAV In vivo female mice with 

dorsoventral compression 

induced spinal cord injury

Reduction in oligodendrocyte 

death during astrogliosis

Tysseling-Mattiace et al. 

(2008)

Fibrin nanofibrous scaffolds loaded 

with NT-3

NT-3 In vitro mouse embryonic 

stem cell derived neural 

progenitor cells

Oligodendrocyte differentiation Willerth et al. (2008)

Collagen-PCLEEP hybrid 

nanofibrous scaffold loaded with 

NT-3

NT-3 In vivo hemi-cervical incision 

induced rat spinal cord injury

Extensive oligodendrocyte 

remyelination

Nguyen et al. (2017)
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these nanohybrids led to the differentiation of rat bone marrow-
derived neural stem cells towards an oligodendrocyte lineage with 
high expression of PDGFRα, O4. Olig2, O1, MOG, and MBP (Rasti 
Boroojeni et al., 2020). Primary oligodendrocytes isolated from B16 
mice were able to myelinate aligned PCL nanofibers that released 
PDGF-AA, FGF2, BMP2, and BMP4 (Enz et al., 2019). PCL nanofibers 
loaded with miR-219, miR-338-3p, and miR-338-5p enhanced the 
differentiation of primary rat oligodendrocyte progenitor cells and 
their maturation into RIP+ oligodendrocytes (Diao et al., 2015).

Moreover, when hybrid PCL-PSA (polysialic acid) nanofiber 
scaffolds encapsulating glucocorticoid methylprednisolone were 
implanted into a transected rat SCI, the methylprednisolone delivered 
by the hybrid scaffold led to increased survival of oligodendrocytes and 
enhanced axonal myelination (Zhang et al., 2018). NT-3 is another API 
that has been used to act on oligodendrocytes, and fibrin nanofibrous 
scaffolds releasing NT-3 increase oligodendrocyte differentiation of 
neural progenitor cells (Willerth et al., 2008), while PCLEEP(PCL-co-
ethyl ethylene phosphate)-collagen hybrid nanofibrous scaffolds 
releasing NT-3 showed extensive oligodendrocyte remyelination with 
MAG+ structures when implanted into a hemi-cervical incision 
induced rat spinal cord injury (Nguyen et  al., 2017). Future 
oligodendrocyte-targeting nanomaterial design will seek to devise 
API-releasing strategies that specifically improve re-myelination after 
injury and improve myelin integrity in nervous system disorders.

3. Discussion

Nanomaterials designed to deliver APIs to CNS glia are beginning 
to emerge as viable therapies to improve outcomes in CNS disorders 
or after CNS injury. While many API-releasing nanomaterials are still 
being designed to focus their action on neurons (Kwon et al., 2016; 
Bruggeman et  al., 2018; Zuidema et  al., 2020), there is growing 
evidence that glia should not be overlooked as targets to improve 
outcomes in CNS injury and disorders (Tables 1, 2). However, in order 
for nanomaterial-mediated API delivery to glia to become a standard 
clinical intervention, further advances in engineering such materials 
are necessary.

Nanoparticle-mediated API delivery holds promise as a 
systemically administered approach to treat neurological disorders 
and CNS injuries where direct implantation into the site of action 
would be detrimental. For such treatments to become commonplace, 
one of the main areas of improvement is in traversing the BBB and 
delivering APIs directly to the relevant site of action. This will require 
a greater understanding of the mechanisms of nanoparticle 
permeation into the brain, including the importance of NP 
composition, size, charge, and shape, engineering the adsorbed 
biomolecular corona to not obstruct NP targeting, targeting the 
proper cell type once the NPs enter the brain, design of better-
targeting moieties on the external surface of nanoparticles through 
such processes as in vivo phage display screening, exact API release 
timelines that induce desired outcomes, and, importantly, a more 
complete understanding of how to modulate glia to produce desired 
clinical outcomes (Salvati et al., 2013; Mann et al., 2016; Furtado et al., 
2018; Waggoner et  al., 2023; Wu et  al., 2023). More personalized 
therapies can be envisioned, where each individual may respond to 
NPs differently. This may require a battery of different NP constructs 
to first be administered systematically, and once it is known which NP 
accumulates to the desired location, potential by using an imaging 

modality such as magnetic resonance imaging, then that NP construct 
can be  incorporated with the desired API and delivered to the 
individual. Still, much research is needed to make NP-delivered APIs 
that act on glia a standard therapy to treat CNS disorders and injuries.

Nanomaterial-mediated API delivery has shown promise in areas 
where surgical intervention or injection into the site of action to act 
on glia can be  used. These combinatorial nanomaterial-based 
therapies can simultaneously provide biophysical and biochemical 
cues to glial cells, eliciting their bioactive responses to facilitate robust 
neuronal repair and protection in the CNS. For these therapies to 
be  used in the clinic, advances in API release paradigms must 
be  realized, nanomaterial modulation of glia needs to be  better 
understood, surgical implantation techniques optimized, degradation 
of the implanted material engineered based on the application, and 
the immune response accounted for not to impart adverse clinical 
outcomes (Nunes et al., 2012; Huang et al., 2017; Dai et al., 2021). 
We also envision the potential for nanomaterial therapies to be tailored 
to each patient to maximize therapeutic efficacy and minimize 
off-target adverse effects – by varying API release rates, compositions 
and coatings in nanomaterials design, and even the timeline of the 
surgical intervention. As advances in NPs, nanomaterials, and API 
design for targeting glia continue to be  realized, there are many 
avenues for such therapies to improve clinical outcomes in CNS 
disorders and after CNS injury.
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