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Understanding the developmental changes that affect neurons is a key step 
in exploring the assembly and maturation of neural circuits in the brain. For 
decades, researchers have used a number of labeling techniques to visualize 
neuronal morphology at different stages of development. However, the efficiency 
and accuracy of neuronal labeling technologies are limited by the complexity 
and fragility of neonatal brains. In this review, we  illustrate the various labeling 
techniques utilized for examining the neurogenesis and morphological changes 
occurring during the early stages of development. We compare the advantages 
and limitations of each technique from different aspects. Then, we highlight the 
gaps remaining in our understanding of the structure of neurons in the neonatal 
mouse brain.
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1. Introduction

Neurons are fundamental units in the assembly, structure, and function of the brain (Luo, 
2021). Realistically visualizing neurons requires researchers to conduct a detailed investigation 
of each subassembly, with its intricate and exquisite architecture, especially during the complex 
and rapidly changing development period (Semple et al., 2013; Lim et al., 2018; Cadwell et al., 
2019). Utilizing different labeling methodologies can reveal the elaborate developmental 
mechanisms of neurons (Figure 1A). To be more specific, neurons are derived from the division 
and differentiation of progenitor cells after migration. Their unique morphological features are 
usually formed during the postnatal development period (Riccomagno and Kolodkin, 2015; Lim 
et al., 2018), which involves the growth and pruning of axons, dendrites, and synapses (Inta 
et al., 2008; Belvindrah et al., 2011; Keil et al., 2017; Kroon et al., 2019; Figure 1B). Labeling 
technologies can neatly demonstrate any abnormal developmental changes to neurons that may 
result in abnormal neural connections and lead to long-term or adult behavioral abnormalities 
(Sizonenko et  al., 2005; Rincel et  al., 2018). Hence, accurately labeling and analyzing the 
morphological changes to neurons in the neonatal mouse brain are helpful if we are to further 
elucidate the cellular mechanisms involved in the development of neural circuits and related 
diseases (Badea et al., 2003; Luo et al., 2016).

Labeling methods can be broadly divided into two categories: traditional markers, such as 
fluorescent dyes, proteins, and bacterial toxins (Ding and Elberger, 2001; Porrero et al., 2010), 
and genetic labeling. Because of their diverse characteristics, different markers can trace different 
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sections of the neuronal arbors. Genetic labeling can even accurately 
achieve the visualization of specific types of neurons (Kim et al., 2013; 
Nakazawa et al., 2018; Olivetti et al., 2020). These labeling techniques 
provide reliable tools for the precise analysis of neuronal morphologies 
and developmental history, as is shown in Figure 2.

There are still many challenges faced when attempting to label 
neurons in the newborn mouse brain. Firstly, labeling signals are 
weaker in the early stages than in adulthood when using genetic 
tags (Porrero et al., 2010). Secondly, the neonatal mouse brain is 
fragile to interference. For example, the injection of viral tracers 
may induce an inflammatory response and microglia activation 
(Chan et  al., 2021), and the electric pulses of in utero 
electroporation (IUE) may lead to embryonic death (dal Maschio 
et al., 2012). Moreover, different brain nuclei grow at different rates 
in the neonatal brain, making it difficult to precisely localize 
neurons (Paxinos et al., 2020). To address these issues, researchers 
have optimized multiple aspects of the strategies by, for example, 
improving the efficiency and stability of markers, upgrading the 
loading methods and adopting genetic systems like Mosaic analysis 
with double markers (Figures  3A,B). These innovations have 
greatly advanced our knowledge of developmental neurons in the 
neonatal mouse brain.

In summary, labeling neurons in the neonatal mouse brain is 
key to studying the development of neural circuits. Accurately 
marking the morphology of specific neurons in the neonatal brain 

is conducive to answering the questions of how and when neurons 
connect to perform specific functions. It also helps to refine our 
understanding of the mechanisms by which abnormalities in 
neural circuits are caused by environmental or gene mutations 
during the sensitive neonatal period and to test the effects of early 
treatments and interventions on cognitive disorders and mental 
diseases. In this review, we  summarize the techniques used for 
labeling neural morphology at different developmental stages. 
We also analyze the advantages and limitations of the different 
labeling techniques, providing directions that can be  taken by 
researchers to further explore the mechanisms of 
neural development.

2. Chemical tracers

2.1. Labeling neurons of young mice in 
vitro

At the end of the nineteenth century, the classic Golgi stain, which 
is still widely used to study the development of neurons, was 
formulated. The principle of sparse labeling is that the dark brown 
precipitation generated by the reaction between the potassium 
bichromate solution and silver ions randomly labels a relatively small 
number of neurons, particularly the dendrites. Using Golgi staining, 

FIGURE 1

Labeling methods studying the development of neurons in neonatal mouse brain. (A) Application of labeling methods at different developmental 
stages. Markers are delivered to neonatal mouse brain by electrical impulse and injection to label neurons in vivo or in vitro. (B) Milestones of neuron 
development. The timeline starts from the mid-embryo to the adult. Above the green timeline, it shows the division and migration of neurons during 
the embryonic period and the growth of pruning of axons, dendrites and synapses during the early postnatal period. Below the green timeline, it shows 
the detailed development events.
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researchers have recorded the morphological changes to dendrites 
occurring in the early developmental stages (Ivy and Killackey, 1981; 
Niwa et al., 2010). The use of hematoxylin and eosin (HE) stains the 
cell nuclei within brain tissue blue with hematoxylin, and proteins are 
stained pink with eosin (Fischer et  al., 2008; Picut et  al., 2021). 
HE staining can detect morphological changes to neurons in model 
mice during their early developmental stages (Zhou et al., 2018). The 
Nissl staining method uses basic dyes like cresyl violet acetate or 
toluidine blue to permanently stain nucleic acids within neurons in 
the brain (Paul et al., 2008; Smiley et al., 2023) and is used for detecting 
the morphology and pathology of neuronal tissues and understanding 
the cytoarchitecture of different brain areas (Kawase-Koga et  al., 
2009). Immunohistochemical staining uses antibodies to target 
specific antigens in order to show morphological changes to neurons 
at different developmental stages (Lee et al., 1998). Nevertheless, these 
classic staining methods are laborious. They are limited in use to fixed 
brain samples, instead of live ones.

2.2. Labeling neurons of young mice in vivo

In the second half of the twentieth century, many traditional 
neural tracers were developed that can label neurons in vivo. 
Horseradish peroxidase (HRP) is one of the earliest markers used in 
the morphological study of neuronal axons and is still being used in 
labeling neonatal axons (van der Togt and Feirabend, 1990; Sohur 
et al., 2014; Harb et al., 2016; De León Reyes et al., 2019; Saleeba et al., 
2019). Phytohemagglutinin (Phal) (Fish et al., 1991) is a long-lasting 
tracer employed for labeling neonatal axons. Biocytin and neurobiotin 
can also clearly label the dendritic and axonal structure of neurons 
(Staiger et  al., 2004; Moreno-Velasquez et  al., 2020). Biotinylated 
dextran amine (BDA) can be used to detect the normal morphological 

development of axons and dendrites in neonates (Ding and Elberger, 
2001; Sugar and Witter, 2016; Kroon et  al., 2019) and abnormal 
morphology in disease models (van Velthoven et  al., 2012). 
Fluorescent dyes, such as Fluro Gold (Hartung et al., 2016) and Fast 
Blue (Lopez-Roman et al., 1993), are absorbed by axon terminals and 
accumulate in the soma through retrograde transport, thus they 
highlight the dendrites of neurons involved in specific loop 
connections. Unfortunately, high doses of dyes like Fluro Gold may 
lead to the death of young mice (Hu H. et al., 2021).

Injecting chemical markers into the ventricle can label massive 
progenitor cells, with some of the markers being passed onto the 
progeny. Thymidine analogs like bromodeoxyuridine (BrdU) are 
commonly used markers (Miller and Nowakowski, 1988) that can 
be inserted into the double-strand DNA of progenitors during S-phase 
(Inta et al., 2008). However, they label neurons that have already been 
in the migration state, which means that intact migration and 
differentiation pathways cannot be  fully traced. To overcome this 
problem, researchers developed Flash-tag (FT) technology. After 
injection into the ventricles, carboxyl fluorescein (CFSE) can bind to 
the proteins in M phase progenitors and their progeny. The specificity 
of CFSE for M-phase progenitors is the result of the soma of these cells 
being transiently exposed to the CFSE injected into the cerebrospinal 
fluid (Telley et al., 2016; Govindan et al., 2018; Yoshinaga et al., 2021). 
These chemical markers combine with specific molecules in progenitor 
neurons but are diluted as the cells undergo rapid division.

2.3. Labeling specific neurons combined 
with physical methods

Single-cell injection of traditional chemical tracers can achieve the 
goal of targeting specific individual neurons in neonatal mouse brains 

FIGURE 2

Timeline of the neuronal labeling techniques. Above the horizontal axis, it shows when the traditional tracers were firstly applied in the study of 
neuroscience. Below the axis, it demonstrates the development of genetic approaches in tracing the neurons.
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(Larsen and Callaway, 2006). Anterograde tracers such as biocytin 
(Moreno-Velasquez et  al., 2020), biotinylated glucosamine 
(Cunningham et al., 2002; Staiger et al., 2004), and carbocyanine dyes 
(red fluorescent Dil and green fluorescent Dio) (Lee et  al., 2005; 
Lickiss et  al., 2012; Sohur et  al., 2014) can mark the axons and 
dendritic structures of developing neurons. By utilizing physical 
methods like single-neuron injection, researchers can locate specific 
neurons within a targeted area. As it is challenging to perform 

single-neuron injection, more labeling methods targeting specific 
neurons are needed.

Chemical tracers are diverse, highly sensitive, and can 
be  transported retrograde or anterograde by being attached to 
different vectors at different rates (Table 1). However, some types 
of traditional chemical tracers are toxic to neurons, prone to dye 
leakage and the mislabeling of passing fibers, and fail to identify 
neurons that express specific molecular markers. These limitations 

FIGURE 3

(A) Mosaic analysis with double markers (MADM) is a genetic system that allows fluorescent labeling of sparse neurons in vivo. Two chimeric marker 
genes, each containing the N terminus of one marker and the C terminus of the other marker interrupted by a loxP-containing intron, are located on 
the homologous chromosomes. The expression of green or red fluorescent proteins requires Cre-mediated interchromosomal recombination. 
X segregation or Z segregation can generate four types of neurons with different markers. (B) Diagram showing how MADM system can labeled sister 
neurons and record their differentiation and migration. (C) Supernova system can help to sparse label neurons based on low Tetracycline response 
element (TRE) leakage. In a small number of neurons with over-threshold leakage, initial tTA (Tetracycline transactivator) -independent weak 
expression is enhanced by positive feedback along with a site-specific recombination system (Cre/loxP). (D) Mosaicism with Repeat Frameshift (MORF) 
allows a single Bacterial Artificial Chromosome (BAC) transgene to sparse label neurons in mice. A mononucleotide G22 repeat was inserted and only 
neurons with frameshift of G22 to G3n will express fluorescent signals.
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TABLE 1 Parameters of the neural tracers: “−” indicate no effect, “+” “++” “+++” show the strength of labeling effect.

Works in Quality of labeling Uptake References

Tracer Vivo Fixed 
tissue

Live 
slices

Dissociated 
cells

Soma Dendrites Axon Transport Fiber of 
passage

Stability

FB ++ − − − +++ + − R + ++ Lopez-Roman et al. (1993)

FG + − − − +++ ++ − R + ++ Hartung et al. (2016)

Fluro-Jade B ++ − − − ++ ++ + R + +
Sizonenko et al. (2005) and Picut et al. 

(2021)

HRP +++ +/− − − + + ++ A ++ ++

Ivy and Killackey (1981), van der Togt and 

Feirabend (1990), Sohur et al. (2014), 

Harb et al. (2016), De León Reyes et al. 

(2019), and Saleeba et al. (2019)

CTB +++ − − − +++ +++ +++ R + +++ Heise and Mitrofanis (2004)

BDA +++ + + +/− +++ ++ +++ A/R +/− +++
Ding and Elberger (2001) and van 

Velthoven et al. (2012)

Biocytin +++ + + − +++ ++ +++ A/R +/− +++
Cunningham et al. (2002) and Staiger et al. 

(2004)

Neurobiotin +++ ? ++ − +++ ++ +++ A/R +/− +++ Kohara and Okada (2023)

DiI ++ +++ +++ ++ + + ++ A +++ ++
Lee et al. (2005), Lickiss et al. (2012), and 

Sohur et al. (2014)

DiO ++ ++ ++ ++ + + ++ A +++ ++ Sohur et al. (2014)

PHA-L ++ +++ ++ + + + +++ A +/− +++ Fish et al. (1991)

“R” stands for retrograde while “A” stands for anterograde.
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may reduce their reliability and accuracy for labeling neurons in 
neonatal mice.

3. Genetic engineering technology

3.1. Viral tracers

Neurotropic viruses are widely used vectors for labeling neurons 
in young mice. As the first viral tracers used to label the soma of the 
neonatal mouse, retroviruses can permanently integrate the genome 
they carry into host neurons after mitosis, achieving a long-term and 
stable fluorescent signal (Price et al., 1987; Badea et al., 2003; Yu et al., 
2009). Despite this, the infection efficiency of retroviruses is relatively 
low. In addition, gene insertion by retroviruses is random, which may 
lead to the mutation of endogenous genes, resulting in unexpected 
abnormal changes to neurons.

Adeno-associated viruses (AAV) have the advantages of versatility 
and multiple serotypes, rendering them a popular tool in the field of 
neuroanatomy (Castle et al., 2016; Hammond et al., 2017). A viral 
tracer can be  injected into neonatal mouse brains, facilitating the 
visualization of neurons in about 2 weeks (Cheetham et al., 2015; Chen 
et al., 2018). Through the implementation of an exceptional extrinsic 
transgenic system and the utilization of various viral tracers, one can 
investigate specific morphological transformations in distinct neuron 
types, such as pyramidal neurons and interneurons, in the postnatal 
period (Kim et al., 2013). Furthermore, AAV can carry a supernova 
system (Luo et  al., 2016) that makes use of the low leakage 
characteristics of the tetracycline response element for select marking 
(Figure 3C). The clustered regularly interspersed short palindromic 
repeats (CRISPR)-CRISPR associated (Cas)9 system can be used to 
integrate specific genes and viral tracers into the genomes of target 
neurons with unprecedented speed and precision, allowing researchers 
to visualize developing neurons by identifying the specific proteins 
they express (Uemura et al., 2016). In addition, diluted viruses such as 
AAV (Gibson and Ma, 2011; Kim et al., 2013), Sindbis virus (Lendvai 
et al., 2000), and retroviruses (Kerloch et al., 2019) may be used to 
sparsely label neurons in neonatal mice.

Viral tracers are a popular tool in the field of neurodevelopment. 
Nevertheless, there are still several limitations associated with the 
application of viral tracers in neonatal mouse brains. Only a few 
studies have revealed details of the morphological development of 
neurons during the early postnatal period using viral tracers (Pilpel 
et al., 2009), as it generally takes about 2 weeks for viral tracers to 
express detectable signals in mouse brains. There is some debate as to 
whether the use of viral tracers causes the inflammation and gene-
coding-related abnormal growth of neurons (Uyaniker et al., 2019). In 
addition, the standard procedure used for the stereotactic injection of 
viruses into adult mice may not be suitable for use on neonatal mice. 
It is more complicated to anesthetize, immobilize, locate brain regions, 
and precisely inject viruses into neonatal mice (Ho et al., 2020; Olivetti 
et al., 2020).

3.2. Transgenic mice

Transgenic mice provide an option for non-invasive labeling. A 
wide variety of transgenic mice can be  generated by prokaryotic 

injection, bacterial artificial chromosomes (BACs), or knock-in 
techniques. In the study of neuron lineage tracing, transgenic mice 
have been generated to target specific types of neurons that develop 
after embryonic development (Gao et  al., 2014; Huang, 2014; He 
et al., 2016).

In the case of transgenic mice, different insertion sites and 
copies of foreign genes can be  used to enable the sparse and 
random labeling of neurons. Driven by specific promoters, genes 
in these transgenic mice express site-specific recombinases that 
identify specific DNA sequences and activate the expression of 
fluorescent proteins (Huang et  al., 2002). For instance, the 
dendrites of neurons in the cortex and hippocampus have been 
visualized in transgenic mice that express fluorescent proteins 
regulated by the Thy1-promotor (Feng et  al., 2000). Mosaic 
analysis with double markers (MADM) is a genetic system that 
allows for the fluorescent labeling of neurons in vivo and has been 
used in the tracing of neuron lineages (Espinosa and Luo, 2008; 
Figure 3A). In MADM, two chimeric marker genes interrupted by 
a loxP-containing intron are located on homologous 
chromosomes, and the expression of the fluorescent proteins 
requires cyclization recombinase (Cre)-mediated 
interchromosomal recombination. Transgenic mice used for 
lineage tracing with the MADM (Figure  3B) system can also 
be used to visualize partial neuronal dendrites in neonatal mice 
brains (Yu et al., 2009; Tasic et al., 2012). Cyclization recombinase 
estrogen receptor (Cre-ER) transgenic mice, which express fusion 
proteins containing estrogen receptors and Cyclization 
recombinase (Cre), have neurons that are sparsely labeled under 
the induction of tamoxifen (Badea et  al., 2003). The Flp/FRT 
recombinase system is based on the same strategy as the Cre/loxp 
system, but it has only been applied in a few cases for visualizing 
the neuronal morphology in neonatal mice brains (Nern et al., 
2011). Mosaicism with repeat frameshift (MORF) allows a single 
Bacterial artificial chromosome (BAC) transgene to sparsely label 
neurons in mice. A mononucleotide G22 repeat is inserted, and 
only neurons with the G22 to G3n frameshift express the 
fluorescent signals. With the aid of in vivo imaging techniques, 
transgenic mice facilitate the dynamic long-term tracking of 
development of dendrites (Portera-Cailliau et  al., 2005; Zuo 
et al., 2005).

Despite the advantages, labeling signals in transgenic mice maybe 
unstable in the early developmental stages. Transgenic mice like 
mGFP, L21, may express relatively weak signals during the early 
postnatal period (Porrero et al., 2010). The temporal expression of 
these signals may be  caused by the gradual promotion of the 
expression of genes, such as the Thy-1 promotor. Or it could 
be attributed to the insertion of foreign genes and the timing of the 
expression of specific markers in various neuron types. For example, 
only the dendrites and soma-proximal axons of dopamine neurons 
can be  observed in the early postnatal period of Mosaicism with 
repeat frameshift (MORF) transgenic mice (Lu and Yang, 2017). BAC 
transgenic mice, which are based on homologous recombination, 
show weak signals for labeled GABAergic neurons (GABA: Gamma-
aminobutyric acid) during the early postnatal period (Chattopadhyaya 
et al., 2004). CreER transgenic mice, which need to be treated with 
tamoxifen before they activate the expression of specific genes, do not 
display strong signals in their cholinergic neurons until 2 or 3 weeks 
after birth (Rotolo et al., 2008). While the combination of transgenesis 
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and viral tracers increases the flexibility of sparse labeling (Le 
Magueresse et al., 2011; Zhang et al., 2017), the problem of the delayed 
expression of genetic tags remains unresolved. Further improvements 
are required to optimize the labeling efficiency of transgenic tools.

3.3. In utero electroporation

In utero electroporation (IUE) is a popular labeling method 
that has been in development since 2001 (Saito and Nakatsuji, 
2001). Gene vectors can be injected into the ventricle as early as 
the embryonic stage. Then, electrical pulses induced by the 
electrodes on both sides of the embryo’s head help transduce the 
vectors into the progenitor neuron population within a specific 
brain region, such as the cortex (Niwa et al., 2010) or hippocampus 
(Navarro-Quiroga et al., 2007). As the progenitor neurons continue 
to divide, foreign genes are passed to daughter neurons, which 
differentiate and migrate to targeted regions. For mice, the optimal 
surgical period for IUE is between 10.5 and 16.5 embryonic days 
(Yoshida et al., 2010). In this regard, IUE can alleviate the issue of 
delayed gene expression in the postnatal period. The vectors 
carrying fluorescent protein genes can be transfected into specific 
neurons during the embryonic period to enable the tracking of 
axon fiber bundles during development (Wang et al., 2007; Chen 
et al., 2008; Ka and Kim, 2016; Kerloch et al., 2019). However, the 
transfection range of IUE is limited, and electrical impulses may 
affect the normal development of neurons (Azzarelli et al., 2017).

A notable advantage of transgenic labeling technology lies in its 
ability to precisely detect molecular markers in distinct types of neurons. 
This allows for controlled detection signals to be expressed solely in 
targeted neuron subtypes. IUE provides a reliable protocol for delivering 
genetic tags to specific types of neurons. By selectively targeting neural 
progenitors across distinct developmental stages, IUE can facilitate the 
investigation of unique groups of newborn neurons that will 
subsequently migrate to various brain regions (Mizuno et al., 2010). 
Minimal amounts of plasmid (Pacary et al., 2012; Sugiyama et al., 2020) 

are needed, and single-neuron electroporation can be used to label a 
relatively small number of neurons (Uesaka et  al., 2005). Vectors 
carrying the supernova system can be delivered to specific neurons for 
morphological labeling (Mizuno et al., 2018). Moreover, using CRISPR/
Cas9 combined with piggyBac transposase technology, researchers can 
track the development of specific neocortical progenitors with IUE 
(Chen et al., 2015). The promoter-assisted spares-neuron multiple-gene 
labeling using in utero electroporation (PASME) system (Ako et al., 
2011) utilizes the Thy1S promoter, the Cre-loxP system, and IUE. The 
Thy1S promoter is highly selectively expressed in the postnatal 
neocortex and can induce GFP expression in only a limited number of 
neurons (Figure 3D).

It is vital that we  discover what links the different types of 
morphological changes that occur in the basic unit of signal 
transmission in the brain, the neuron, with the connections and 
functions of complex neural circuits. The development of genetic 
engineering technology provides abundant options for scientists to 
track changes to the morphology of neurons during the developmental 
period (Table  2). Genetic labeling methods can be  used to target 
different types of neurons, but it is difficult to target single neurons by 
physical methods, and there is a lack of stable signal during the early 
developing period. Consequently, to obtain a continuous and 
comprehensive map of the morphological development of various 
neuron types, further research is required.

4. Discussion

The development of neurons is a critical step in the establishment 
of precise neural circuits. Over the past several decades, a variety of 
labeling techniques have been invented that allow us to visualize the 
morphology of neurons as they develop. Thus, researchers have found 
that different neurons form distinct structures and exhibit different 
dynamics. However, current labeling techniques do not yet satisfy the 
need to track all types of neurons from their formation in the 
embryonic stage to maturation in adulthood.

TABLE 2 Summary of viral, plasmid, and genetic labeling methods: advantages and warning.

Method Means of 
delivery

Cell types 
targeted

Advantages Caveats References

Retro-virus Stereotaxic, 

focal injection

Dividing cells ~7.5 kb insert Genomic integration disrupts 

host DNA at insertion site

Price et al. (1987), Suzuki and Goldman (2003), Yu 

et al. (2009), Artegiani and Calegari (2013), Zhang 

et al. (2017), Kerloch et al. (2019), and Program 

et al. (2022)
Persistent genetic alteration 

of dividing transduced cells

Focal injection by its nature 

causes lesion

Adeno 

associated 

virus

Stereotaxic, 

focal injection

Broad range ~8 kb insert Take more time for expression Gibson and Ma (2011), Cheetham et al. (2015), Luo 

et al. (2016), Chen et al. (2018), Ren et al. (2018), 

and Hu S. et al. (2021)
Higher efficiency of 

infection

Focal injection by its nature 

causes lesion

Plasmid Stereotaxic, 

focal injection, 

electroporation

Broad range Permits larger inserts Cannot replicate 

autonomously

Uesaka et al. (2005), Yoshida et al. (2010), 

Belvindrah et al. (2011), Lickiss et al. (2012), and 

Szczurkowska et al. (2016)

Trans-genic 
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– Broad range Intrinsic fluorescence Higher breeding cost Feng et al. (2000), Chattopadhyaya et al. (2004), 

Madisen et al. (2010), Porrero et al. (2010), Le 

Magueresse et al. (2011), van Velthoven et al. 

(2012), and Lu and Yang (2017)
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Adjustments to surgical protocols and the optimization of 
equipment continue to improve the utility of labeling technology. For 
IUE, triple-electrode probes have been developed to greatly extend the 
range of suitable transfection areas (dal Maschio et  al., 2012; 
Szczurkowska et al., 2016). Dual IUE is used to label different neurons 
in a spatially and temporally specific manner (Zhang et al., 2021). In 
addition, the simultaneous application of multiple labeling methods, 
such as a combination of transgenic mice and viral tracers, helps to 
separately label specific subtypes of neurons with different spatial and 
temporal characteristics (Madisen et al., 2010). The optimization of 
workflow can be useful in enriching the labeling options for neurons 
in neonates while improving the labeling efficiency of the markers.

One major main technical barrier to overcome in this field is our 
ability to balance the long-term stable expression of markers with the 
sparse labeling of specific neurons during different development 
stages. Usually, the insertion and expression of foreign genes takes a 
certain amount of time, which may result in us missing the short time 
window for the optimal observation of developing neurons. For 
example, AAV does not express strong enough signals until a few 
weeks after injection. To accelerate the expression of labeling signals, 
especially during the early postnatal period, transgenic systems can 
be  updated by increasing the number of gene copies encoding 
fluorescent proteins or developing more efficient sparse labeling 
constructs. The Brainbow system can be employed to label individual 
neurons with distinguishable colors through the stochastic expression 
of several fluorescent reporter transgenes, and neurons expressing a 
particular color thus share a common lineage (Livet et al., 2007). With 
further advances in these imaging technologies, these systems may 
continue to be  attractive choices for tracing several types of 
neurons simultaneously.

The development of new labeling technology is always 
accompanied by advances in imaging technology. Initially, neural 
tracers were limited in use to fixed tissues or thin slices in vitro until 
dyes with higher biocompatibility and in vivo imaging techniques 
were invented. Nowadays, technologies such as intracranial 
multiphoton microscopy and head-mounted microscopes offer us the 
ability to observe the development of living animals in real-time. 
Secondly, the retention of precise fluorescence signals in neurons 
within intact brains provides more possibilities for scientists to 
conduct the anatomical dissection of neural systems and even study 
the fine morphology of individual neurons (Ren et al., 2018, 2021). 
Fluorescence micro-optical sectioning tomography (fMOST) enables 
researchers to benefit from three-dimensional imaging with single-cell 
resolution at the mesoscopic scale (Li et al., 2010; Gong et al., 2016; 
Zhong et al., 2021). This greatly facilitates the visualization of the 
complete morphology of single neurons and even synaptic projection 
patterns and lesion characteristics in the whole brain (Oh et al., 2014; 
Li et al., 2018; Sun et al., 2019, 2022; Tian et al., 2022). Advanced 
imaging techniques such as these permit researchers to better exploit 
labeling techniques when exploring the developmental mechanisms 
of neurons.

With the ongoing development of labeling and imaging 
technologies, researchers are beginning to integrate databases on 
neuron morphology, genome, proteins, etc., to compile a more 
detailed map of the developing brain. The results have already revealed 
the abnormal changes to neonatal neurons in mice with pathologies 
such as autism (Varghese et  al., 2017). These abnormal neuronal 
morphological changes are closely related to impairments to the 
cognitive functions shown by pathological mice (Druart et al., 2021). 
The scientific community now has a deeper understanding of the 
mechanisms involved in brain development, which provides a solid 
theoretical foundation upon which cures for neurodevelopmental 
disorders and neurodegenerative diseases can be based.
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