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Schizophrenia is a group of severe neurodevelopmental disorders. Identification 
of peripheral diagnostic biomarkers is an effective approach to improving 
diagnosis of schizophrenia. In this study, four datasets of schizophrenia patients’ 
blood or serum samples were downloaded from the GEO database and merged 
and de-batched for the analyses of differentially expressed genes (DEGs) and 
weighted gene co-expression network analysis (WCGNA). The WGCNA analysis 
showed that the cyan module, among 9 modules, was significantly related to 
schizophrenia, which subsequently yielded 317 schizophrenia-related key genes 
by comparing with the DEGs. The enrichment analyses on these key genes 
indicated a strong correlation with immune-related processes. The CIBERSORT 
algorithm was adopted to analyze immune cell infiltration, which revealed 
differences in eosinophils, M0 macrophages, resting mast cells, and gamma 
delta T cells. Furthermore, by comparing with the immune genes obtained 
from online databases, 95 immune-related key genes for schizophrenia were 
screened out. Moreover, machine learning algorithms including Random Forest, 
LASSO, and SVM-RFE were used to further screen immune-related hub genes 
of schizophrenia. Finally, CLIC3 was found as an immune-related hub gene of 
schizophrenia by the three machine learning algorithms. A schizophrenia rat 
model was established to validate CLIC3 expression and found that CLIC3 levels 
were reduced in the model rat plasma and brains in a brain-regional dependent 
manner, but can be reversed by an antipsychotic drug risperidone. In conclusion, 
using various bioinformatic and biological methods, this study found an immune-
related hub gene of schizophrenia – CLIC3 that might be a potential diagnostic 
biomarker and therapeutic target for schizophrenia.
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1. Introduction

Schizophrenia is considered to be one of the most serious mental 
illnesses, affecting approximately 1% general population (McCutcheon 
et  al., 2020). However, to date, the pathogenesis and molecular 
mechanism of schizophrenia still remain ambiguous. Early 
identification and diagnosis are likely to result in significant benefits 
for individuals with schizophrenia and the society (Gaebel and 
Zielasek, 2015). Therefore, identifying promising diagnostic 
biomarkers and therapeutic targets of schizophrenia is one of the 
focuses in future schizophrenia research.

Although the occurrence and development of schizophrenia is 
mainly located at the central nervous system (CNS), gene expression 
and metabolism in the peripheral blood of schizophrenia patients 
may also be  affected through a wide range of cytokines, 
neurotransmitters, or hormones; in addition, the strong heritability 
of schizophrenia indicates the possible presence of detectable 
genetic biomarkers in peripheral blood (Kurian et  al., 2011). 
Therefore, identifying genetic biomarkers in peripheral blood 
become a highly viable option in improving the diagnosis 
of schizophrenia.

There is growing evidence suggesting that the pathogenesis 
of schizophrenia may be  related to a range of dysfunctional 
immune processes in the CNS and peripheral tissues (Khandaker 
et  al., 2015). It was reported that indirect signs of immune 
dysregulation were presented in the CNS at the early stages of 
schizophrenia (Gangadin et al., 2019); hence, in the post-mortem 
brain samples of schizophrenia patients, biomarkers of 
neuroinflammation were detected (Trepanier et  al., 2016). In 
addition, levels of pro-inflammatory biomarkers, such as 
cytokines, were shown to be elevated in the cerebrospinal fluid 
and peripheral blood of schizophrenia patients (Muller, 2018). 
Furthermore, increased levels of inflammatory cytokines were 
revealed to be associated with monocytes and macrophages in 
various psychiatric disorders, including schizophrenia 
(Goldsmith et  al., 2016). More importantly, those immune-
related changes in the CNS may originate from peripheral blood 
(Muller, 2018). Thus, identification of immune-related 
biomarkers in peripheral blood is of great significance for the 
diagnosis of schizophrenia.

As shown in Figure 1, in the present study, four datasets of 
schizophrenia peripheral blood gene expression (GSE18312, 
GSE27383, GSE165604, and GSE38484) were selected from the 
Gene Expression Omnibus (GEO) database and combined into 
one dataset. A differentially-expressed gene (DEG) analysis and 
weighted gene co-expression network analysis (WGCNA) were 
performed with the combined dataset to screen key genes for 
schizophrenia, while an immune infiltration analysis was 
conducted to reveal significantly changed immune cell types using 
the CIBERSORT algorithm. Then, by comparing the key genes 
with the immune gene set from online databases, immune-related 
key genes for schizophrenia were obtained. Next, based on these 
immune-related key genes, three machine-learning algorithms 
were employed to identify hub gene (s) of schizophrenia, followed 
by in vivo validation of the hub gene (s). Overall, the present study 
might provide potential diagnostic biomarker (s) and therapeutic 
tactic (s) for schizophrenia.

2. Methods

2.1. Data processing

Four datasets of the mRNA expression profiles of the whole blood, 
blood lymphocytes, or peripheral blood mononuclear cells (PBMC) 
of schizophrenia patients and their corresponding healthy controls 
were downloaded from the NCBI’s GEO,1 including GSE18312 
[GPL5175, Affymetrix Human Exon 1.0 ST Array], GSE165604 
[GPL16791, Illumina HiSeq  2,500 (Homo sapiens)], GSE27383 
[GPL570, Affymetrix Human Genome U133 Plus 2.0 Array], and 
GSE38484 [GPL6947, Illumina HumanHT-12 V3.0 expression 
beadchip]. The information of each dataset is demonstrated in Table 1.

The four datasets contain a total of 309 samples, including 158 
samples of schizophrenia patients and 151 samples of healthy 
controls (Table 1). The batch effects of these datasets were adjusted 
using the COMBAT function from the R package inSilicoMerging 
(Taminau et al., 2012). Then, a normalized merged expression matrix 
of the four datasets were generated and visualized by a box line plot. 
All these analyses were performed in the SangerBox platform.2

2.2. Weighted gene co-expression network 
analysis

WGCNA was performed to screen the key genes for 
schizophrenia (Langfelder and Horvath, 2008). Briefly, every gene 
of the merged expression matrix was calculated the MAD (Median 
Absolute Deviation) separately and eliminated the first 50% of 
genes with the smallest MAD. The goodSamplesGenes method 
from the R package WGCNA was used to remove outlier samples. 
The soft threshold power value was selected using the 
pickSoftThreshold function from the R package WGCNA, followed 
by building a scale-free co-expression network. Co-expression 
modules were constructed by dynamic tree cut and merge 
dynamic. The modules were composed of high-correlated genes 
and each module contained at least 30 genes. The correlation 
coefficient and p value of the module characteristic gene (ME) 
value with the clinical trait phenotype (Schizophrenia group and 
Control group) were calculated. Then, the relationships between 
gene significance (GS) and module membership (MM) were 
determined. The key schizophrenia-related module was 
determined by p value and correlation coefficient.

2.3. Identification of 
differentially-expressed genes

Differentially-expressed genes (DEGs) of the merged expression 
matrix were screened using the R package limma (Version 3.40.6) 
(Ritchie et  al., 2015). The selection criteria of the DEGs included 

1 https://www.ncbi.nlm.nih.gov/geo/

2 http://sangerbox.com/
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adjusted p value <0.05 and |log fold change (FC)| > 1.5. Heat map and 
volcano map of the DEGs were generated using the SangerBox platform.

2.4. Identification of hub genes and 
functional enrichment analysis

A Venn diagram (Bardou et  al., 2014) was created using the 
SangerBox platform to analyze the intersection between the genes of 
the key WGCNA module and the DEGs to acquire 

schizophrenia-related key genes. Similarly, subsequent immune-related 
hub genes were also obtained using a Venn diagram. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were then performed. The GO annotation of genes 
in the R package org.Hs.eg.db was used as the background, and the R 
package clusterProfiler was adopted to perform the enrichment analyses. 
The minimum gene was set to 5, the maximum gene was set to 5,000, 
and p-value <0.05 was considered statistically significant. Lastly, top 10 
KEGG pathways (ranked by p-value) and top 10 GO terms (ranked by 
p value) were visualized using bubble charts, respectively.

FIGURE 1

Flow chart of the present study. DEG, differentially expressed gene; LASSO, least absolute shrinkage and selection operator; PBMC, peripheral blood 
mononuclear cells; ROC, receiver operating characteristic; SCZ, schizophrenia; SVM-RFE, support vector machine – recursive feature elimination; 
WGCNA, weighted gene co-expression network analysis.

TABLE 1 Information of the samples of the datasets.

Datasets Samples Controls Schizophrenia Method Platform

GSE165604 Blood lymphocytes 18 19 RNA-seq GPL16791

GSE27383 PBMC 29 43 Microarray GPL570

GSE18312 PBMC 8 13 Microarray GPL5175

GSE38484 Whole blood 96 106 Microarray GPL6947

https://doi.org/10.3389/fncel.2023.1256184
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Zhu et al. 10.3389/fncel.2023.1256184

Frontiers in Cellular Neuroscience 04 frontiersin.org

2.5. Immune infiltration analysis

An immune cell infiltration analysis was performed using a 
machine learning method CIBERSORT.3 A total number of 1,000 
iterations with LM22 labeling of genes were performed to quantify the 
corresponding proportions of 22 groups of immune cells. The 
composition of the 22 groups of immune cells was exhibited using 
multiple stacked histograms and the differential immune cells 
(p < 0.05) were selected and visualized using a violin plot.

2.6. Screening of immune-related hub 
genes

In the present study, the immune gene set was collected by 
combining and deduplicating three online datasets. The Pan-cancer 
immune genes were acquired according to a previous study 
(Charoentong et al., 2017). The innate immune system dataset was 
downloaded from PathCards of GeneCardsSuite4 after being retrieved 
by the keyword “immune.” The last gene set was obtained from the 
online database ImmPort.5

The machine-learning algorithms were performed in R. Hub 
genes were screened using three machine learning algorithms 
including Random Forest algorithm (Izmirlian, 2004), least absolute 
shrinkage and selection operator (LASSO) algorithm (Tibshirani, 
1997), and support vector machines - recursive feature elimination 
(SVM-RFE) algorithm (Guyon et al., 2002). Random Forest algorithm 
was implemented using the R package randomForest (Version 4.7–1.1) 
(Breiman, 2001). The threshold for candidate hub genes was 
determined by the lowest point of the tenfold cross-validation error 
curve. The intersections of the genes with top-ranked mean decrease 
accuracy and those with top-ranked mean decrease Gini were 
considered as candidate genes. The R package glmnet (Version 4.1–7) 
was applied to implement the LASSO algorithm (Friedman et al., 
2010; Simon et al., 2013). Candidate genes were selected by performing 
a tenfold cross-validation to adjust the optimal penalty parameter. 
Furthermore, the SVM-RFE approach was implemented using the R 
package e1071 (Version 1.7–13).6 The parameters of the algorithm 
were set as follows: cost = 10, cachesize = 500, scale = F, 
type = “C-classificatio,” kernel = “linear.” The point of the lowest tenfold 
cross-validation error was selected as the threshold for candidate 
genes. Finally, the intersection gene(s) of the above three groups of 
candidate genes were selected as final hub gene(s).

The potential of the expression levels of the hub genes to 
differentiate schizophrenia patients from healthy controls was 
determined by a receiver operating characteristic (ROC) curve using 
GraphPad Prism 9.5.1. The area under curve (AUC) indicates the 
accuracy with which a particular hub gene can differentiate 
schizophrenia patients and controls. AUC values above 50% suggest 
that a hub gene can possibly differentiate between schizophrenia 
patients and controls and an AUC value of 100% indicates that it can 
perfectly differentiate between schizophrenia subjects and controls.

3 https://cibersortx.stanford.edu/

4 https://pathcards.genecards.org/

5 https://www.immport.org/

6 https://CRAN.R-project.org/package=e1071

2.7. Animals, drug administration, and brain 
tissue dissection

Male Sprague–Dawley (SD) rats (aging 21 days and weighing 
60 ± 5 g) were obtained from the Chang Cavens Laboratory Animals 
Co., Ltd. (Changzhou, Jiangsu, China). The rats were housed in a 
controlled environment (22 ± 1°C; light cycle from 07:00 AM to 
07:00 PM) with food and water ad libitum. After 1-week 
acclimatization, the rats were randomly assigned into three groups (6 
rats per group) and drug administration began. The experimental 
procedures of the present study were approved by the Animal Ethics 
Committee of Yangzhou University Medical College (Ethics No.: 
YXYLL-2020-53).

MK-801 is a non-competitive N-methyl-D-aspartic acid 
receptor (NMDAR) antagonist and commonly-used to establish 
NMDAR hypofunction models that mimic schizophrenia (Białoń 
and Wąsik, 2022). The drug administration was performed as 
described previously (Pan et al., 2022a,b, 2023a,b). Briefly, the rats 
except the controls received daily intraperitoneal injections of 
MK-801 (0.2 mg/kg/day, #M107, Sigma-Aldrich, St. Louis, MO, 
USA) between 10:00 AM and 10:30 AM for 2 weeks, while the 
control group were intraperitoneally injected saline (0.9%) for 
comparison. In our previous study, this modeling method induced 
schizophrenia-like abnormalities in male SD rats (Pan et al., 2022b). 
After the 2-week modeling, the risperidone group were orally 
administrated with risperidone (0.3 mg/kg/day, Xian Janssen 
Pharmaceutical Ltd., Xi’an, Shaanxi, China) three times a day 
(07:00 AM, 3:00 PM, and 11:00 PM) for another 2 weeks. 
Risperidone was orally delivered by mixing risperidone powder 
with a 0.2 g cookie dough pellet (containing corn flour, sugar, and 
milk powder). The other two groups were administrated with 
equivalent cookie dough pellets without risperidone. Two hours 
after the last administration, the rats were sacrificed and their blood 
and brains were collected and frozen for the subsequent 
biological experiments.

Prefrontal cortex (PFC), caudate putamen (CPu), nucleus 
accumbens (NAc), and hippocampus (HIP) are the brain regions 
that were reported to be  closely associated with schizophrenia 
(Heckers, 2004; Bois et al., 2015; Mueller et al., 2015; Brady et al., 
2019). In this study, the PFC, CPu, NAc, and HIP samples were 
dissected and collected using a cryostat (#CM1860, Leica 
Biosystems, Nussloch, Germany), as described previously (Pan 
et al., 2016, 2023a,b).

2.8. Enzyme-linked immunosorbent assay

CLIC3 levels in the rat plasma were detected using enzyme-
linked immunosorbent assay (ELISA). Recombinant CLIC3 
protein was used as standards. Blanks, standards, and plasma 
samples were loaded on a 96 well ELISA plate. Then, the plate was 
treated with an anti-CLIC3 antibody (1:500; #sc-390006, Santa 
Cruz, Dallas, TX, USA), a m-IgG2b BP-HRP secondary antibody 
(1:2000, #sc-542741, Santa Cruz), and a TMB (3, 
3′,5,5’-Tetramethylbenzidine) solution (#P0210, Beyotime). 
Lastly, the plate was measured spectrophotometrically at 450 nm 
on a microplate reader. All standards and samples were run in 
duplicate to ensure consistency.
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2.9. Western blots

Western blots were performed as described in our previous 
studies (Pan et al., 2016, 2022a,b, 2023a; Pan and Deng, 2019). Briefly, 
the brain samples were homogenized in a NP-40 homogenizing 
buffer (#P0013F, Beyotime, Shanghai, China) containing Protease 
Inhibitor Cocktail (#P8340, Sigma-Aldrich). Then, the homogenized 
samples were denatured under 95°C to prepare loading samples. The 
total protein concentration in each sample was detected using a 
Bradford protein assay kit (#P0006, Beyotime). Loading samples 
containing 15 μg of total protein were loaded into a 12% SDS-PAGE 
gel and then transferred to a polyvinylidene difluoride (PVDF) 
membrane. The PVDF membranes were blocked by 5% skim milk for 
2 h at room temperature and incubated with a primary antibody 
overnight at 4°C. The immunoreactive signals were examined by the 
ChemiDoc XRS+ System (Bio-Rad, Hercules, CA, USA) and 
quantified by ImageLab Software (Bio-Rad, Version 6.1). The data 
were normalized with their corresponding GAPDH levels and then 
transferred by taking the value of the control group as 100%. The 
images of the uncut membranes used in this study are shown in the 
Supplementary Figure S1.

An anti-CLIC3 primary antibody (1:1000; #15971-1-AP, 
Proteinech) was purchased and used to detect CLIC3 protein 
expression in the four rat brain regions. A mouse anti-GAPDH 
monoclonal antibody (1:50000; #60004-1-lg, Proteintech) was used to 
determine GAPDH levels. A secondary HRP-linked anti-mouse IgG 
antibody (1:2000; #7076, Cell Signaling) and HRP-linked anti-rabbit 
IgG antibody (1:2000; #7074, Cell Signaling) were used to generate 
immunoreactive signals.

2.10. Statistical analysis

All bioinformatic analyses in the present study were performed 
either in R or in the SangerBox platform, as described in the previous 
sections. The data of the in vivo experiments were analyzed and 
visualized using Prism GraphPad (Version 9.5.1) (GraphPad Software, 
San Diego, CA, USA). One-way analysis of variance (one-way 
ANOVA) analysis was performed, followed by performing post-hoc 
Dunnett’s t-tests to compare each group with their corresponding 
model (MK-801) groups. Statistical significance was accepted when 
p-value was less than 0.05. All in vivo experiments were performed in 
triplicate to ensure consistency.

3. Results

3.1. Multiple data aggregation and 
de-batch effects

Four datasets of the mRNA expression of the whole blood, blood 
lymphocytes, or PBMC of schizophrenia patients and matched 
controls were included in the present study. The boxplot (Figure 2A), 
density plot (Figure 2C), and UMAP plot (Figure 2E) of the four 
datasets exhibited that the sample distribution of each dataset was 
quite different, indicating the existence of a batch effect. After the 
empirical Bayesian method COMBAT was employed to remove the 
batch effect, the data distribution between the datasets tended to 

be consistent. Specifically, the median of each dataset was basically on 
a line (Figure 2B); the mean and variance of the four datasets became 
similar (Figure 2D); and, the samples are clustered and intertwined 
(Figure 2F), which together indicated a satisfying de-batching effect.

3.2. Screening of schizophrenia-related 
genes using WGCNA

For a more precise follow-up analysis, 10,543 genes from a total 
of 309 samples were obtained by combining the four datasets 
(Supplementary Table S1). The top 5,272 most distinct genes were 
selected to build a co-expression network using WGCNA (Figure 3). 
The soft threshold power was set to 12, by which the scale 
independence reached 0.86 and the average connection value was 
16.94 (Figures 3A,B). Additionally, the module sensitivity was set to 
1.0, the module pooling threshold was set to 0.5, and the minimum 
module gene number set to 30. Finally, 9 co-expression modules were 
identified (Figure 3C). There were 277 genes in the black module, 
1,621 genes in the cyan module, 132 genes in the greenyellow module, 
215 genes in the lightyellow module, 78 genes in the midnightblue 
module, 489 genes in the purple module, 720 genes in the tan module, 
467 genes in the yellow module, and 1,273 genes in the grey60 module 
(gene expression and sample matrix information in 
Supplementary Table S2). The grey module, consisting of non-co-
expressed genes, was considered as an invalid module and excluded 
from the following analysis (Figure 3D). Depending on the ME values 
of the obtained modules, the correlation between these modules and 
the clinical trait (schizophrenia vs. control) was performed. The cyan 
module, possessing a high correlation with schizophrenia (r = 0.25, 
p = 2.4e-5) and the largest number of genes among these modules, was 
selected as a key module for the subsequent analysis (Figure 3E). The 
relationship between MM and GS was evaluated in the key module 
with a correlation coefficient of 0.50 and a p-value of 5.9e-104 
(Figure 3F).

3.3. DEG analysis and identification of 
schizophrenia-related key genes

The DEG analysis for the 10,543 genes were performed using the 
R package limma. The top 25 up-regulated and down-regulated DEGs 
(ranked by logFC) are shown in Figure 4A. Totally, 319 DEGs were 
identified, including 237 up-regulated and 82 down-regulated DEGs 
(Figure 4B and Supplementary Table S3). Furthermore, we used a 
Venn diagram to screen and visualize the schizophrenia-related key 
gene by intersecting the DEGs with the genes of the cyan module of 
WGCNA. Finally, 317 schizophrenia-related key genes were obtained 
(Figure 4C and Supplementary Table S4).

3.4. Functional enrichment analyses

In order to clarify the biological function of the schizophrenia-
related key genes obtained in the previous step, KEGG and GO 
enrichment analyses on these genes were performed. The KEGG 
pathway enrichment analysis showed several schizophrenia-related 
signaling pathways, including ‘cell adhesion molecules (CAMs),’ 
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‘toll-like receptor signaling pathway,’ ‘platelet activation,’ ‘oxidative 
phosphorylation,’ and ‘apoptosis’ (Figure  5A and 
Supplementary Table S5). The GO enrichment analysis revealed 
that these genes were largely enriched in the biological functions 
related to immune activities, such as ‘cell–cell adhesion mediator 
activity,’ ‘leukocyte activation involved in immune response,’ ‘cell 
activation involved in immune response,’ ‘neutrophil activation 

involved in immune response,’ ‘neutrophil mediated immunity,’ 
‘leukocyte activation,’ ‘neutrophil activation,’ and ‘granulocyte 
activation’ (Figures  5B–D and Supplementary Table S6). These 
enrichment analyses together suggest that schizophrenia may 
be  related to cell cycle, vesicle trafficking, apoptosis, and 
particularly immune-related signaling pathways. Besides, the 
results also showed that the DEGs are also involved in some other 

FIGURE 2

Normalization, merging, and de-batching of the four datasets. (A,B) Boxplots of the four datasets before and after removing the batch effect. (C,D) 
Density maps of the four datasets before and after removing the batch effect. (E,F) UMAP maps of the four datasets before and after removing the 
batch effect.
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molecular pathways that are associated with schizophrenia. For 
example, PPP2R1A, NSMAF, S1PR5, FYN, PTEN, PPP2R5A, 
GNA13, and PLCB2 are involved in the ‘Sphingolipid signaling 
pathway’; RHOT1, BNIP3L, TAX1BP1, MFN1, and BCL2L1 are 
associated with ‘Mitophagy’; NDUFA4, NDUFB3, COX7A2, PPA2, 
UQCRQ, ATP6V1G1, and COX7B are related to the process of 
‘Oxidative phosphorylation’; and, SPTAN1, PRF1, CTSW, CTSK, 
GZMB, and BCL2L1 are linked to ‘Apoptosis.’ Interestingly, some 
DEGs, such as RSL24D1, RPS15A, RPLP0, IRF3, RPL31, RPL23, 
RPL15, RPS27L, RPS4Y1, TLR8, and RPS24, are found to 
be associated with ‘Coronavirus disease - COVID-19’. A previous 
study found that severe COVID-19 could increase risk for 
schizophrenia and suggested that schizophrenia should be assessed 
as one of the post-COVID-19 sequelae (Baranova et  al., 2022). 
Therefore, the current findings strengthened the genetic link 
between schizophrenia and COVID-19 and revealed possible genes 
that are involved in.

3.5. Immune infiltration analyses and 
screening of immune-related key genes of 
schizophrenia

The enrichment analyses indicated that immune-related biological 
functions are particularly related to schizophrenia, therefore, 
we further used a machine learning algorithm CIBERSORT to analyze 
the immunological features of the datasets. The multi-group stacked 
histogram shows the distribution and infiltration abundance of 22 
groups of immune cells in the 309 samples (Figure 6A). Among them, 
eosinophils, M0 macrophages, mast cells testing, and gamma delta T 
cells were revealed to be  significantly different between the 
schizophrenia subjects and heathy controls (Figure 6B). A principal 
component analysis (PCA) indicated that the immune cell infiltration 
of the schizophrenia group is significantly different from that of the 
controls (Figure 6C). Moreover, by intersecting the immune genes 
from online databases with the key schizophrenia-related genes 

FIGURE 3

Weighted gene co-expression network analysis. (A,B) The values of soft-threshold power based on scale independence and mean connectivity of the 
weighted gene co-expression network analysis (WGCNA). (C) Nine co-expression modules of WGCNA. (D) Cluster dendrogram of genes of WGCNA. 
Each color represented a module, and the gray module included the genes that could not be classified into any module. (E) Heatmap of the eigengene 
network representing the relationships among the modules and the clinical trait status Heatmap of correlations between module characteristic genes 
(MEs) and phenotype of clinical traits (type of disease). Red represented correlation and green represented p-value. (F) Correlation of gene significance 
(GS) and module membership (MM) of the cyan module.
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obtained in the previous step, a total of 95 immune-related key genes 
for schizophrenia were obtained (Figure  6D and 
Supplementary Table S7).

3.6. Screening and validation of 
immune-related hub gene(s) for 
schizophrenia

Three Machine learning algorithms including Random Forest, 
LASSO, and SVM-RFE were further employed to screen hub genes 
using the 96 immune-related signature genes of schizophrenia. First, 

according to the lowest point of the tenfold cross-validation error 
curve of the Random Forest algorithm, the number of candidate genes 
was 36 (Figure  7A). In addition, by intersecting the genes with 
top-ranked mean decrease accuracy and those with top-ranked mean 
decrease Gini (Figure  7B), a total of 27 genes were acquired as 
candidate hub genes (Table 2). Second, the LASSO analysis identified 
35 candidate hub genes as indicated by the lowest point of the tenfold 
cross-validation error curve (Figure 7C and Table 2). Third, the cross-
validation error curve of the SVM-RFE algorithm revealed 5 candidate 
hub genes (Figure 7D and Table 2). Of these 3 candidate groups, 1 
intersection gene was acquired as the immune-related hub genes of 
schizophrenia, which was CLIC3 (Figure 7E). Back to the mRNA 

FIGURE 4

Differentially expressed gene analysis. (A) Hot map of the differentially expressed genes (DEGs). (B) Volcano map of the DEGs. (C) Venn diagram of the 
genes screened by weighted gene co-expression network analysis (WGCNA) and DEGs. −, p  >  0.05; *p  <  0.05; **p  <  0.01; ***p  <  0.001; ****p  <  0.0001.
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expression data, the mRNA expression of CLIC3 was significantly 
decreased in the schizophrenia samples compared to the healthy 
controls (Figure 7F).

Correlation analyses were performed to reveal the relationship 
between CLIC3 and the 4 significantly different immune cells 
discovered in the previous step (Figure 7G). The analysis revealed that 
CLIC3 was negatively correlated with eosinophil and gamma delta T 
cells and positively correlated with M0 macrophages and resting 
mast cells.

ROC curves of the immune-associated hub genes for 
schizophrenia were drawn to show the potential of these hub genes to 
differentiate schizophrenia patients from healthy controls. The AUC 
values and 95% confidence interval of CLIC3 was 0.69 (Figure 7H). 
Since the AUC value of CLIC3 was larger than 0.5, it was very likely 
that CLIC3 could be  an indicator (biomarker) that is able to 
differentiate schizophrenia subjects from normal controls and could 
be  a potential genetic marker for the clinical diagnosis 
of schizophrenia.

To validate above bioinformatic results, we investigated CLIC3 
expression in a schizophrenia animal model. First, the CLIC3 levels in 
the rat plasma were measured. The results showed that the levels of 
CLIC3 was significantly decreased in the model rats (ANOVA: 
F2,15 = 4.6, p < 0.05; post hoc: –41.6%, p < 0.05 vs. the control group) 
(Figure 8A). However, the risperidone administration elevated the 
CLIC3 expression to near normal levels. Additionally, we validated the 
expression of CLIC3 in the brain. First, we analyzed a post-mortem 

brain dataset (GSE78936) from the GEO database. This dataset 
recorded the mRNA expression of schizophrenia patients’ cortex 
(including orbitofrontal cortex, anterior cingulate cortex, and 
dorsolateral prefrontal cortex). The result showed that the CLIC3 
expression was down-regulated in schizophrenia patients’ cortex 
(Figure 8B). Furthermore, we examined the protein expression of 
CLIC3 in rat schizophrenia rat brains. The expression of CLIC3 was 
presented in all four schizophrenia-related brain regions. Specifically, 
the repeated MK-801 administration significantly reduced the protein 
levels of CLIC3  in PFC (ANOVA: F2,15 = 5.84, p < 0.05; post hoc: 
–28.4%, p < 0.05 vs. the control group) and CPu of the model rats 
(ANOVA: F2,15 = 4.56, p < 0.05; post hoc: –30.8%, p < 0.05 vs. the control 
group) (Figures 8C,D). On the other hand, in the NAc and HIP, the 
expression of CLIC3 was not significantly altered by the MK-801 
administration (both p > 0.05) (Figures 8E,F). It should also be noted 
that the antipsychotic drug - risperidone also eliminated the inhibitory 
effects of MK-801 on CLIC3 expression in both PFC and CPu (both 
p < 0.05 vs. the MK-801 group) (Figures 8A,B), indicating that CLIC3 
might be a potential therapeutic target of schizophrenia.

4. Discussion

Schizophrenia is a group of extremely severe neurodevelopmental 
disorders, resulting in substantial economic and social burdens 
(McCutcheon et al., 2020). It has been accepted that early and accurate 

FIGURE 5

Functional enrichment analyses. (A) Signaling pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. (B) Biological 
processes of the Gene Ontology (GO) enrichment analysis. (C) Cellular components of the GO enrichment analysis. (D) Molecular function of the GO 
enrichment analysis (the color of the bubble represents the p-value, and the size of the bubble represents the number of genes).
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identification and diagnosis are critical for the clinical treatment of 
schizophrenia. Due to the poor understanding on the molecular basis 
of schizophrenia, exploration and identification of peripheral genetic 
markers in blood is imperative, which will greatly benefit the clinical 
diagnosis and treatment of schizophrenia. The present study analyzed 
four datasets of schizophrenia peripheral blood gene expression 
(GSE18312, GSE27383, GSE165604, and GSE38484). By using the 
WGCNA and DEG analyses and the KEGG and GO enrichment 
analyses, 317 DEGs were identified and also found to be related with 
immune processes. Subsequently, an immune infiltration analysis was 
performed using the CIBERSORT algorithm and revealed that 4 types 
of immune cells (eosinophils, M0 macrophages, resting mast cells, and 
gamma delta T cells) dramatically differed between the schizophrenia 
subjects and healthy controls. Moreover, three machine-learning 
algorithms including Random Forest, LASSO, and SVM-RFE were 
employed to further screen hub gene(s) from these 317 genes. Finally, 
1 immune-related hub gene of schizophrenia - CLIC3 was identified, 
followed by the protein-level validations of CLIC3  in the brain of 
schizophrenia model rats. To our best knowledge, the present study is 
the first study that revealed the relationship between CLIC3 
and schizophrenia.

In the present study, we first identified 317 differentially-expressed 
key genes associated with schizophrenia using the WGCNA and DEG 
analyses. The subsequent KEGG and GO enrichment analyses pointed 
out that these 317 key genes were mainly related to immune processes, 
such as, toll-like receptor signaling pathway, oxidative phosphorylation, 
apoptosis, leukocyte activation involved in immune response, cell 
activation involved in immune response, neutrophil activation involved 

in immune response, neutrophil mediated immunity. Since the samples 
examined in this study were blood lymphocytes or PBMC, these 
enrichment results were consistent with our speculation. It has been 
well-documented that immunity and inflammation are closely 
associated with the pathophysiology of schizophrenia (Khandaker 
et al., 2015). These findings confirmed that abnormal alteration in the 
immune system is strongly associated with schizophrenia and also 
indicated that the peripheral immune system is very likely to be a 
diagnostic indicator and therapeutic target for schizophrenia. 
Therefore, further research focusing on the peripheral immune system 
is going to be of great importance in the diagnosis and therapeutics of 
schizophrenia. However, it is also worth noting that the other molecular 
pathway revealed by the enrichment analyses such as ‘Sphingolipid 
signaling pathway,’ ‘Mitophagy,’ ‘Oxidative phosphorylation,’ ‘Apoptosis,’ 
and ‘COVID-19’ cannot be neglected and in-depth investigations on 
these pathways in schizophrenia are also required in the future.

CIBERSORT is a de-convolution machine learning algorithm 
used to estimate the proportion of 22 types of immune cells on the 
basis of gene expression. Since the 317 schizophrenia-associated key 
genes were related to various immune processes, the CIBERSORT 
algorithm were employed to identify related immune cell types. The 
data revealed that among the 22 immune cell types, 4 types of immune 
cells, including eosinophils, gamma delta T cell, M0 macrophages, and 
resting mast cells, were revealed to be  significantly different in 
schizophrenia. Under inflammatory conditions, eosinophils were 
involved in immune regulation in neurons mainly through migrating 
to inflammatory sites and acting with various cytokines (Rothenberg 
and Hogan, 2006; Wechsler et al., 2021). In addition, gamma delta T 

FIGURE 6

Immune cell infiltration analysis. (A) Relative percentage of 22 groups of immune cells in each sample. (B) Differences in immune infiltration between 
schizophrenia and control samples, including 4 significantly different immune cell groups: eosinophils, M0 macrophages, resting mast cells, and 
gamma delta T cell. (C) Principal component analysis for the immune cell infiltration between schizophrenia subjects and healthy controls. (D) Venn 
diagram indicating 95 immune-related key genes for schizophrenia. −, p  >  0.05; *p  <  0.05; **p  <  0.01; ***p  <  0.001; ****p  <  0.0001.
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FIGURE 7

Identification of immune-related hub genes for schizophrenia. (A) The Random Forest analysis indicates 36 candidate hub genes. (B) The 36 candidate 
hub genes generated by the Random Forest algorithm are ranked by ‘MeanDecreaseAccuracy’ (left) and ‘MeanDecreaseGini’ (right), respectively. 
(C) The least absolute shrinkage and selection operator (LASSO) analysis indicates 35 candidate hub genes. (D) The support vector machines - 
recursive feature elimination (SVM-RFE) analysis indicates 5 candidate hub genes. (E) A Venn diagram indicating one hub gene of schizophrenia by 
intersecting the three groups of candidate genes revealed by the three machine-learning algorithms, respectively. (F) The mRNA expression of CLIC3 
between the schizophrenia patients and healthy controls (****p  <  0.0001). (G) The relationship between CLIC3 and immune cells. (H) The ROC curve 
of CLIC3 to assess the accuracy of CLIC3 to potentially differentiate between the schizophrenia patients and healthy controls.
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cells were reported to be involved in the pathogenesis of a variety of 
neurological diseases, including multiple sclerosis, Parkinson’s disease 
(PD), Alzheimer’s disease (AD), cerebrovascular disease, epilepsy, and 
Rasmussen encephalitis (Fiszer, 1995; Al Nimer et al., 2018; Xu et al., 
2018). Macrophages play a major role in innate immunity in the brain 
(Monji et al., 2013) and macrophage CD163 mRNA levels were found 
to be  increased in schizophrenia patients, particularly in the high 
inflammation schizophrenia subgroup (Zhu et al., 2022). Lastly, mast 
cells were found in various brain regions, interacting with neurons, 
glia, blood vessels, and other hematopoietic cells (Dimitriadou et al., 
1990; Manning et al., 1994; Silver and Curley, 2013). Up-regulation of 
mast cells induced by inflammation can lead to cognitive, socio-
behavioral abnormalities and anxiety-like behavior (Nautiyal et al., 
2008; Skaper et al., 2014; Breach et al., 2021). These findings suggest 
that these types of immune cells are very likely to be associated with 
the pathogenesis of schizophrneia and could be used as diagnostic 
biomarkers or therapeutic targets of schizophrenia in the future.

Although 317 schizophrenia-associated key genes were identified 
in the first section of this study, it is unfortunately almost impossible 
to use all of them to diagnosis schizophrenia or develop new drugs. It 
is necessary to investigate their importance or correlations with the 
pathogenesis of schizophrenia and then screen out one or several most 
important gene(s) for schizophrenia. Machine learning techniques 
have emerged from Artificial Intelligence (AI), which primarily sought 
to determine pattern recognition. Applications of machine learning in 
translational medicine include the development of novel drugs and 
treatments, diagnostic development, surgical planning, outcome 
prediction, and intraoperative assistance. At present, machine learning 
has become one of the most important methods for identifying critical 
genes, which can facilitate the identification of therapeutic targets and/
or diagnostic biomarkers; at the same time, machine learning is 
considered as one of the major supplementary approaches to reduce 
the resources required for necessity measurement (Aromolaran et al., 
2021). In the field of psychiatry, machine learning has been widely used 
for modeling and therapeutic discovery of various neuropsychiatric 
diseases, inducing Alzheimer’s disease, schizophrenia, Parkinson’s 
disease, depression disorders, etc (Tai et al., 2019). In the present study, 

three machine-learning algorithms were adopted to screen hub 
gene(s), including Random Forest, LASSO, and SVM-RFE. These three 
machine-learning algorithms are able to screen out and rank the genes 
that are very likely to be associated with schizophrenia based on the 
current data. Since these three machine-learning algorithms have their 
own intrinsic advantages and shortcomings, using only one algorithm 
would bring unpredictably biased screening results. Therefore, to avoid 
such biases, the shared gene(s) of the results of these three machine-
learning algorithms were considered as hub gene(s) in the current 
study. As the results showed, only one gene was screened out by the 
three machine-learning algorithms, namely CLIC3.

CLIC3 has been found to be expressed in human placenta and fetal 
membranes (Money et al., 2007), osteoblasts (Brum et al., 2017), and 
various cancer cells (Patel et al., 2019; Chen et al., 2020; Kawai et al., 
2020). Its rich expression promotes immune evasion in cancer cells 
(Vlachostergios et  al., 2022). Addtionally, it was reported that in 
hepatitis B virus, CLIC3 promotes classical macrophage activation via 
the NF-κB pathway (Liang et al., 2022). Unfortunately, the exact role of 
CLIC3  in schizophrenia is not clear based on existing literature. 
Therefore, we established a schizophrenia animal model and examined 
the protein expression of CLIC3 in the plasma and brain. The results 
demonstrated the CLIC3 expression was decreased in the plasma and 
the PFC and CPu of the brains. These findings indicate that altered 
CLIC3 expression is very likely to be associated with schizophrenia and 
could be a potential biomarker of schizophrneia. However, in-depth 
investigations, especially the examination of CLIC3 expression in 
schizophrenia patients, are still required to further verify the role of 
CLIC3  in schizophrenia. Futhermore, since schizophrenic patients 
always experience a long history of various medications, it is possible 
that the alterations in the CLIC3 protein expression may not be observed 
in patients due to feedback regulation of the body. Therefore, CLIC3 
expression in clinical samples such as post-mortem brain, peripheral 
blood, or cerebrospinal fluid, is required to be investigated in the future. 
On the other hand, employing a long-term schizophrenia animal model 
might also be an effective approach to examine the changes of CLIC3 in 
schizophrenia and validate our current findings.

In the present study, we  found that risperidone was able to 
reverse the altered expression of CLIC3 in the plasma and brains of 
the schizophrenia model rats, suggesting that regulating CLIC3 
expression might be a potential approach to treating schizophrenia 
and CLIC3 is a possible therapeutic target of risperidone. 
Nevertheless, it should be  noted that although risperidone is a 
common-used antipsychtic drug, there are many other antipsychotic 
drugs in the market, such as haloperidol, aripiprazole, brexpiprazole, 
etc. These drugs possess different pharmacological mechanisms and 
are suitable for different clinical manifestations. Therefore, the effects 
of other antipsychotic drugs on CLIC3 are also required to 
be  examined in the future. In addition, besides schizophrenia, 
risperidone is also used to treat symptoms of bipolar disorder and 
symptoms of irritability in autistic children (Chopko and Lindsley, 
2018). Thus, whether CLIC3 is also a potential diagnostic biomarker 
and therapeutic target in bipolar disorder and autism is also a topic 
worth further exploring.

It is also worth noting that the current study used MK-801 to 
establish a NMDAR hyperfunction animal model, thus whether 
abnormal CLIC3 expression is associated with NMDAR 
dysfunction requires to be verified in future studies. Moreover, 
risperidone was widely reported to have positive effects on 

TABLE 2 Candidate hub genes for schizophrenia screened out by the 
random forest, LASSO, and SVM-RFE algorithms.

Random forest LASSO SVM-RFE

TLR10, S100A8, ITGAL, 

FBXO4, RPLP0, CKLF, 

MS4A6A, ACTN4, GDI2, 

CLIC3, ARG1, PLXNA3, 

CD48, GENE, HPSE, 

TPM2, GMFB, TFRC, 

LY96, SAMSN1, CD3E, 

TPT1, RASGRP3, 

ANXA1, SPTAN1, 

PTGDS

S100A8, SPTAN1, 

TLR10, ARG1, CLIC3, 

SAMSN1, CD3E, 

RPLP0, CREG1, TFRC, 

CXCR3, CKLF, HPSE, 

ABCA1, GOLGA7, 

CD48, TAX1BP1, 

ATP7A, JUP, ATP8B4, 

RASGRP3, PLXNA3, 

ARPC5, CTSK, OGT, 

CD160, PTGS2, 

S100A12, HDC, LYZ, 

GCA, ELANE, PROK2, 

IFITM3

GCA, HDC, CLIC3, 

ARPC5, TAX1BP1

LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector 
machines - recursive feature elimination.
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immune dysfunction (Richtand et al., 2011; Casquero-Veiga et al., 
2019; Lokmer et  al., 2023). Therefore, whether risperidone 
regulates the immune system through modulating CLIC3 
expression is worth being explored in the future. It should be also 
noted that in the NAc and HIP, the CLIC3 expression was not 
significantly modulated, indicating that the alterations of CLIC3 
expression are probably dependent on brain regions. Nevertheless, 
the exact relationship between CLIC3 expression and 
schizophrenia-related brain regions cannot be elucidated by the 
present data.

In conclusion, the current study identified 1 immune-related 
hub gene - CLIC3 and 4 peripheral immune cells (eosinophils, M0 
macrophages, resting mast cells, and gamma delta T cells), which 
might be closely related to the pathogenesis of schizophrenia. In 
particular, CLIC3 has potential to be a promising biomarker or 
therapeutic target of schizophrenia. These findings together 
provide new insights for the diagnosis and therapeutics 
of schizophrenia.
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FIGURE 8

Protein expression of CLIC3 in the rat plasma and brains. (A) CLIC3 expression in the plasma. (B) CLIC3 mRNA expression in schizophrenia patients’ 
cortex. (C) CLIC3 expression in the prefrontal cortex (PFC). (D) CLIC3 expression in the caudate putamen (CPu). (E) CLIC3 expression in the nucleus 
accumbens (NAc). (F) CLIC3 expression in the hippocampus (HIP). *p  <  0.05; +mean value.
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