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Animal behavior, from simple to complex, is dependent on the faithful wiring

of neurons into functional neural circuits. Neural circuits undergo dramatic

experience-dependent remodeling during brief developmental windows called

critical periods. Environmental experience during critical periods of plasticity

produces sustained changes to circuit function and behavior. Precocious critical

period closure is linked to autism spectrum disorders, whereas extended synaptic

remodeling is thought to underlie circuit dysfunction in schizophrenia. Thus,

resolving the mechanisms that instruct critical period timing is important to

our understanding of neurodevelopmental disorders. Control of critical period

timing is modulated by neuron-intrinsic cues, yet recent data suggest that some

determinants are derived from neighboring glial cells (astrocytes, microglia, and

oligodendrocytes). As glia make up 50% of the human brain, understanding how

these diverse cells communicate with neurons and with each other to sculpt

neural plasticity, especially during specialized critical periods, is essential to our

fundamental understanding of circuit development and maintenance.

KEYWORDS
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1. Introduction

1.1. Discovering critical period plasticity

Critical periods are brief windows when sensory experience induces structural and
functional plasticity at neuronal synapses to facilitate long-term changes in brain function
and behavior. The first description of experience-dependent synaptic remodeling in the
brain was published in the classic Wiesel and Hubel (1963) study of the cat visual cortex.
In brief, the authors determined that occluding visual input to one eye (e.g., monocular
deprivation) resulted in weakening of synapses downstream of the occluded eye, along with
strengthening of corresponding synapses downstream of the open eye— a process they
termed ocular dominance. This structural remodeling resulted in sustained changes to visual
acuity. Importantly, ocular dominance plasticity was limited to a narrow developmental
window (critical period) around eye opening, after which visual experience had limited
impact of circuit structure/function (Presson and Gordon, 1979; LeVay et al., 1980; Maffei
et al., 1992; Fagiolini et al., 1994; Gordon and Stryker, 1996; Levelt and Hübener, 2012; Chen
et al., 2014). As neuronal plasticity is the basis of learning and memory, understanding why
and how plasticity is developmentally restricted has fascinated neuroscientists for decades.
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1.2. Classic determinants of critical
period timing

While the mechanisms that instruct critical period timing and
expression have been best studied in the visual cortex, work in
other systems suggest broad conservation of these pathways across
other circuits and species (Reh et al., 2020; Ackerman et al., 2021;
Hageter et al., 2023). The onset of critical period plasticity requires
the introduction of inhibitory circuit elements. In mammals,
critical period opening in the cortex requires the maturation
of fast-spiking, GABAergic, parvalbumin + interneurons (PV
cells; reviewed in Takesian and Hensch, 2013). Indeed, critical
period onset can be accelerated by precocious inhibitory circuit
maturation (Hanover et al., 1999; Huang et al., 1999; Di Cristo et al.,
2001; Sugiyama et al., 2008), or by premature, pharmacological
activation of GABAA receptors with benzodiazepines (Hensch
et al., 1998; Fagiolini and Hensch, 2000; Fagiolini et al., 2003;
Iwai et al., 2003). By contrast, failed maturation of inhibitory
neurons via deletion of Gad65, an enzyme that is necessary for
production of GABA, can permanently delay the visual critical
period (Hensch et al., 1998; Fagiolini and Hensch, 2000). Thus,
excitatory/inhibitory (E/I) balance is an important determinant of
critical period onset.

Beyond expression of GABA, maturation of PV cells is
accompanied by the development of a unique extracellular scaffold
called perineuronal nets. Perineuronal nets are a mesh-like
structure composed of chondroitin sulfate proteoglycans (CSPGs)
and other extracellular matrix components that encase the cell
bodies and proximate neurites of PV cells. CSPGs are known
molecular brakes that prevent remodeling and repair of the
injured central nervous system (CNS, Levine, 1994; McKeon et al.,
1999; Asher et al., 2000; Bradbury et al., 2002). In development,
application of chondroitinase-ABC, an enzyme that degrades
CSPGs, can reopen plasticity in the adult visual system and
basolateral amygdala (Pizzorusso et al., 2002, 2006; Gogolla et al.,
2009). Interestingly, experimental conditions that delay critical
period closure, such as developmental sensory deprivation, impair
the development of perineuronal nets (Sur et al., 1988; McRae et al.,
2007; Balmer et al., 2009; Ye and Miao, 2013). Thus, perineuronal
net maturation is timed by environmental experience, which in
turn functions as a timer to limit activity-dependent remodeling of
the underlying neural circuit.

1.3. Glial regulation of neural plasticity

While much of the critical period field has focused on
neuronal mechanisms of critical period timing, such as circuit
inhibition, neurons do not function in isolation. A prominent
proportion of brain mass is composed of non-neuronal cells called
glia, including microglia, as well as the macroglia (astrocytes
and oligodendrocytes). Changes in glial development strongly
impact neural circuit function, from relatively simple invertebrates
through humans (Lago-Baldaia et al., 2020). In this mini review,
we discuss how diverse glial cell types communicate with neurons
and with each other to mediate critical period plasticity (Figure 1).
Finally, we highlight a growing body of evidence that glia are
essential regulators of critical period timing. Together, these studies

highlight the importance of considering non-neuronal cells in
shaping experience-dependent circuit remodeling.

2. Glia as mediators of critical period
plasticity via

2.1. Synaptic pruning

In development, neurons make more synapses than they
ultimately require. During critical periods of plasticity, ectopic
synaptic connections are then pruned in an activity-dependent
manner, a process that is heavily regulated by all glial types (Allen
and Eroglu, 2017; Wilton et al., 2019; Faust et al., 2021; Auguste
et al., 2022a; Xiao et al., 2022). Microglia, the resident immune cells
of the CNS, were long thought to act only as sentinels of pathology.
While there are some neuron-intrinsic mechanisms of pruning
(Parrish et al., 2007; Riccomagno and Kolodkin, 2015; Yaron and
Schuldiner, 2016), the presence of professional phagocytes in the
brain prompted an important question: can microglia phagocytose
neuronal materials in a homeostatic context? Indeed, the last 10-
years revealed many essential roles for microglia in sculpting neural
circuit structure (reviewed in Faust et al., 2021). This is particularly
well-studied studied in the developing visual circuit, which we will
focus on here for simplicity, though we note that activity-dependent
synaptic pruning by microglia is physiologically relevant across the
brain (Paolicelli et al., 2011; Kopec et al., 2018; Vainchtein et al.,
2018; Gunner et al., 2019; VanRyzin et al., 2020; Faust et al., 2021;
Dayananda et al., 2023).

In a series of landmark studies from the Barres and Stevens labs,
the authors demonstrated that neuronal activity drives microglial-
refinement of retinogeniculate synapses during an early postnatal
“pruning period” (Stevens et al., 2007; Schafer et al., 2012). In
mammals, retinal ganglion cells (RGCs) send both contralateral
and ipsilateral projections to the dorsal lateral geniculate nucleus
(dLGN); thus, each dLGN receives connections from both eyes.
During development, left and right eye RGCs form supernumerary
synapses on relay neurons with overlapping dendritic territories
within the dLGN. Through high resolution imaging, microglia
were shown to position themselves near RGC > dLGN synapses
at postnatal (P) day 5 (peak refinement) in mouse, and synaptic
material could be found inside microglial processes. The authors
then showed that microglial engulfment of RGC synapses is
activity-dependent, requires the complement signaling cascade
(CR3/C3; Figures 1A, B), and that impairing complement-
dependent synaptic pruning permanently altered RGC > dLGN
connectivity (Stevens et al., 2007; Schafer et al., 2012). Thus,
microglia can regulate activity-dependent refinement of synaptic
connections in the developing (P5) mouse brain.

While the pruning period peaks prior to eye opening,
and is thus outside the context of the classic visual critical
period defined by Hubel and Weisel (peaks at ∼P28 in
mouse; Tremblay et al., 2010), these initial studies laid the
groundwork for numerous follow up studies on microglial
behavior in other developmental contexts, including ocular
dominance. During monocular deprivation, microglia become
hyper-ramified and exhibit increased association with neuronal
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synapses (Tremblay et al., 2010). Recent data suggests that activity-
dependent changes in microglial morphology and function are,
in part, due to P2Y12 purinergic receptor signaling. P2Y12 is
specifically expressed in homeostatic microglia, and changes in
P2Y12 signaling are accompanied by reduced microglia-synapse
association and reduced ocular dominance plasticity (Sipe et al.,
2016). These data suggest that monocular deprivation induces
microglial engulfment of inactive synapses, as observed during
the “pruning period” in the retinogeniculate system (Stevens
et al., 2007; Schafer et al., 2012). To test this, Ma et al. (2020)
performed pharmacological depletion of microglia using a colony-
stimulating factor 1 receptor inhibitor PLX3397 during the visual
critical period (P14 through P28). Here, they found increased
spine density on L5 pyramidal (excitatory) neurons, presumably
due to lack of microglial synaptic pruning. Accordingly, ocular
dominance plasticity was diminished during the visual critical
period (Ma et al., 2020). Together, these data demonstrate the
importance of microglial synaptic pruning for activity-dependent
synapse refinement during the visual critical period. Interestingly,
a recent study demonstrated that microglia can also regulate
RGC > dLGN connectivity independent of their role in synaptic
pruning via a TWEAK/Fn14 intercellular signaling axis (Cheadle
et al., 2020), suggesting that deeper exploration of microglia-
synapse communication is required to fully understand the role of
microglia in experience-dependent synaptic remodeling.

2.2. Modulating the extracellular
environment

While microglia are better known for their role in synaptic
pruning, recent data indicate that microglia can also regulate the
structure of the extracellular matrix (ECM). The ECM makes up
20% of the volume of the human brain, serving many diverse
roles including cell signaling, barrier functions, and structural
support (Nicholson and Syková, 1998; Crapser et al., 2021). Glial
cells secrete both ECM and ECM-modulating enzymes, including
MMPS (matrix metalloproteases) and ADAMs (a disintegrin and
metalloprotease), and recent data suggests that glial-modulation
of the ECM can have a profound effect on synapse stability
in development (Desjardins et al., 1992; Crapser et al., 2021;
Tewari et al., 2022). As microglia-ECM dynamics are thoroughly
reviewed elsewhere (Crapser et al., 2021), here we will focus on
a set of studies that beautifully highlight how diverse glial cell
types communicate with one another, and the environment, to
shape critical period plasticity. Recent work from the Molofsky lab
identified astrocyte-derived IL-33 as a key modulator of microglial
phagocytosis. Loss of Il33 depressed microglial engulfment of
excitatory synapses in the spinal cord and thalamus, leading
to an accumulation of synapses and impaired circuit function
(Vainchtein et al., 2018; Figure 1F). More recently, they went on to
show that in adulthood, Il33 is strongly expressed in hippocampal
neurons. Interestingly, neuron-derived IL-33 drove microglial
engulfment of the ECM, which was required for experience-
dependent synaptic remodeling and memory consolidation at adult
stages (Nguyen et al., 2020). Thus, microglia are essential regulators
of activity-dependent synaptic remodeling in development and in
the adult brain.

2.3. Axonal remodeling

Beyond synaptic remodeling, glial cells can both mediate
and suppress larger-scale structural remodeling of neurons
during developmental critical periods. Oligodendrocytes are the
myelinating glia of the CNS, iteratively wrapping axons to form the
myelin sheath, an insulating membrane required for rapid action
potential propagation. Although oligodendrocytes derive from
oligodendrocyte precursor cells (OPCs), OPCs are abundant in the
CNS well into adulthood (Dawson et al., 2003), and increasing
evidence suggests that OPCs have many independent functions
apart from their role as precursor cells (Lin and Bergles, 2004;
Fernandez-Castaneda and Gaultier, 2016; Auguste et al., 2022a; Li
et al., 2022; Xiao et al., 2022). A recent study in zebrafish identified a
novel role for OPCs in sculpting the developing visual circuit (Xiao
et al., 2022; Figure 1D). Intriguingly, the authors found that the
ratio of OPCs to myelinating glia differed across brain regions, with
the optic tectum showing relatively little myelin even into juvenile
stages (14 days post-fertilization), though OPCs were abundant.
This led the authors to question: what is the role of OPCs in
the optic tectum, if not to generate myelinating oligodendrocytes?
The appearance of OPCs coincided with the arrival of RGC
axons within the tectum. To test the functional significance
of this association, the authors genetically ablated OPCs using
the inducible nitroreductase-mediated cell ablation system. In
brief, nitroreductase is an enzyme that reduces the antibiotic
metronidazole into a cytotoxic compound, resulting in cell death
(Curado et al., 2008). Thus, using an OPC-specific nitroreductase
transgenic line, the authors were able to genetically ablate OPCs
with cell type-specific, temporal precision. Interestingly, removal of
OPCs during activity-dependent circuit refinement (7 days post-
fertilization) resulted in ectopic RGC neurites and altered visual
processing (Xiao et al., 2022). A similar role was then described for
OPCs in pruning synapses in the developing mouse visual system
(Auguste et al., 2022b). Thus, OPCs mediate experience-dependent
circuit remodeling in development (Figure 1D).

3. Glia as mediators of critical period
timing

Recent data indicate that apart from mediating plasticity within
critical periods, glia can non-autonomously regulate critical period
timing. These studies shed new light on classic mediators of
critical period closure (E/I balance and ECM cues) and unveil
new pathways that warrant further investigation (summarized in
Figure 1G).

3.1. E/I balance in developing neural
circuits

It is well-known that circuit inhibition is a key determinant of
critical period timing, as altering the level of GABA or disrupting
the maturation of key inhibitory neurons can delay critical
period closure (Hensch et al., 1998; Fagiolini and Hensch, 2000).
Astrocytes are the most abundant glial cell type in the brain,
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FIGURE 1

Glial modulation of signaling between two neurons regulating critical periods associated plasticity. (A) Representative illustration of various glial cells
regulating the signaling between pre- (gray-blue) and post-synaptic (gray-green) neurons. (B) Neuron with the strongest synaptic input creating
complement regulating proteins (blue) and releasing C3 proteins (orange) onto weaker inputs, thus signaling to microglia for engulfment and
removal. (C) Oligodendrocyte (blue) myelination wrapping the axon of pre-synaptic neurons (gray-blue) and communicating through NgR/Nogo-A
signaling. Oligodendrocyte Nogo-A (green) and MAG (magenta) are upregulated through critical period with increased binding to neuronal NgR1/2
(orange/yellow) to solidify projection and decrease plasticity. (D) Oligodendrocyte precursor cell (OPC, cyan) regulating neuronal signaling via
phagocytosis of the pre-synaptic axon terminals. (E) Astrocyte modulating the strength of inhibitory signaling between neurons by utilizing GABABR
(blue-red) to detect GABA release and upregulate GAT (yellow) channels to uptake GABA, reducing critical period associated inhibitory signaling.
(F) Astrocyte (orange) and microglia (magenta) regulating the formation of the perineuronal net in the extracellular matrix (ECM) around the
pre-synaptic neuron. IL-33 is released from the astrocyte and neuron, signaling the microglia to break down the ECM and thus, perineuronal net
formation. (G) Table describing the processes of glial regulation of critical period progression and closure for microglia (magenta), astrocytes
(orange), OPCs (cyan), and oligodendrocytes (blue).
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where they extend many fine processes to simultaneously interact
with thousands to millions of neuronal synapses as part of the
tripartite synapse (reviewed in Allen and Eroglu, 2017; Perez-
Catalan et al., 2021). One of the most important roles of
astrocytes at the synapse is regulating neurotransmitter turnover,
and in turn, E/I balance. To do this, astrocytes express both
excitatory and inhibitory neurotransmitter transporters. Astrocyte-
specific GABA transporters (GATs) allow for the uptake of
GABA from local synapses to modulate signaling (Shigetomi
et al., 2011; Muthukumar et al., 2014). In addition, astrocyte-
specific metabotropic GABA-B receptors act as regulators of GABA
reuptake (Muthukumar et al., 2014; Figure 1E). The levels of GAT
expression is critical for GABAergic synapse function, as mouse
GAT-1 mutants show a significant decrease in GABA reuptake by
astrocytes in the cortex and thalamus, resulting in epilepsy-like
seizures (Mermer et al., 2022). Drosophila mutants for the sole
GABA transporter Gat are embryonic lethal (Stork et al., 2014).
Thus, astrocyte modulation of local and global neurotransmitter
levels is essential for circuit function and animal survival. As E/I
balance is a key determinant of critical period timing, astrocytes are
well-placed to sculpt local and global patterns of plasticity.

The first line of evidence that astrocytes shape critical
period timing was published in Müller and Best (1989), when
demonstrated that implantation of immature astrocytes into the
adult cat visual cortex was sufficient to reopen ocular dominance
plasticity, which was recently validated in mouse (Ribot et al.,
2021). These data suggested that immature astrocytes create an
environment that is permissive of critical period plasticity. In search
of the elusive cue released by immature astrocytes to promote
plasticity, Ribot et al. leveraged mouse genetics to delay astrocyte
maturation. They found that astrocyte maturation coincides with
a switch from a mitotic state to a state that prioritizes cell-
cell communication. Thus, to perturb astrocyte maturation, they
performed astrocyte knockdown (KD) of the gap-junction channel
subunit connexin 30 (Cx30), a protein that is known to regulate
astrocyte to astrocyte signaling. They found that astrocyte KD of
Cx30 reopened ocular dominance plasticity in adult mice due to
altered PV neuron maturation. The authors observed a significant
reduction in both miniature excitatory and inhibitory post-synaptic
currents (mEPSCs and mIPSCs) from V1 pyramidal neurons, with
a greater reduction observed in mIPSCs. Thus, changes in astrocyte
Cx30 delayed the maturation of inhibitory circuits required for
critical period closure. To further address how astrocytes might
modulate the timing of critical period plasticity, a recent study
leveraged Drosophila to screen for astrocyte-derived cues that drive
critical period closure. During this critical period, changes in motor
neuron activity shaped the numbers and distribution of excitatory
and inhibitory inputs onto motor dendrites in a homeostatic
manner (Ackerman et al., 2021). Like sensory systems (Müller and
Best, 1989; Ribot et al., 2021), the authors found that the motor
critical period is terminated by astrocyte maturation, and that
astrocyte-specific ablation delayed the closure of the motor critical
period. Moreover, they found that KD of the astrocyte GABA
transporter (Gat) abolished the ability of astrocytes to uptake
GABA, disrupted E/I balance, and extended plasticity (Ackerman
et al., 2021).

While the above studies demonstrate that astrocytes modulate
synaptic function and thus critical period timing, it is important to
note that a primary role of astrocytes is to regulate both excitatory

and inhibitory synaptogenesis (Ullian et al., 2004; Kucukdereli
et al., 2011; Muthukumar et al., 2014; Blanco-Suarez et al., 2018;
Takano et al., 2020), which also influences E/I balance across
circuits. For example, astrocytes express neuronal cell adhesion
molecule (NRCAM), which complexes with gephyrin to stabilize
GABAergic synapses (Takano et al., 2020), a key determinant of
critical period timing (Hensch et al., 1998; Fagiolini and Hensch,
2000). Interestingly, a recent study demonstrated that astrocyte-
specific deletion of chordin like 1 (Chrdl1), which regulates
excitatory synapse maturation, was sufficient to extend ocular
dominance plasticity to adult stages (Blanco-Suarez et al., 2018;
Figure 1G). These data indicated that astrocytes time synapse
maturation to instruct critical period timing.

3.2. ECM structure and composition

In addition to E/I balance, maturation of the ECM is a primary
driver of critical period closure (Reh et al., 2020). As noted above,
immature astrocytes are enriched in the visual cortex during the
critical period (Müller and Best, 1989; Ribot et al., 2021), and
astrocyte maturation instructs critical period closure. In addition
to changes in E/I balance, Reh et al. (2020) found that Cx30
functions to regulate ECM maturation around developing PV
neurons. Although Cx30 is better known for mediating astrocyte-
astrocyte communication as a gap junction protein, they found
that Cx30 signals through RhoA/ROCK to suppress expression of
MMP9, a matrix metalloprotease that degrades perineuronal nets.
Thus, astrocyte-specific KD of Cx30 increased MMP9 expression
and prevented perineuronal net formation, which in turn delayed
PV neuron maturation and extended ocular dominance plasticity
(Figure 1G). Cortical engraftment of mature astrocytes without
Cx30 was sufficient to enhance visual plasticity in adult mice.
These data support Müller and Best’s seminal finding that immature
astrocytes can reopen critical period plasticity, and identify Cx30
as a key intervention point. Of note, astrocyte-specific KD of
ECM proteins was also sufficient to extend the critical period
of motor circuit plasticity in Drosophila (Ackerman et al., 2021);
thus, astrocyte regulation of the extracellular environment is an
evolutionarily conserved mechanism that drives critical period
closure.

3.3. Myelination and critical period
closure

Recent data from mouse and from Drosophila indicate that
the timing of astrocyte maturation can predict critical period
closure (Ackerman et al., 2021; Ribot et al., 2021). Astrocytes and
oligodendrocytes are both born late in embryonic development,
and oligodendrocyte maturation similarly mirrors the transition
from critical period plasticity to stability. Indeed, a recent study
found that blocking oligodendrocyte maturation was sufficient
to extend ocular dominance plasticity (Xin et al., 2023). While
astrocytes mediate critical period closure through modulation
of E/I balance and ECM composition, oligodendrocytes seem
to function in parallel to ensure critical period closure. In a
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landmark study, McGee et al. (2005) demonstrated that the myelin
proteins MAG and Nogo-A increase in abundance during the
visual critical period. As Nogo Receptor (NgR) had previously
been linked to suppressed CNS regeneration (GrandPré et al.,
2002; Kim et al., 2003), the authors questioned whether NgR
might similarly suppress ocular dominance plasticity. Indeed,
monocular deprivation in adult NgR knockout mice (postnatal
day 45–49) resulted in an ocular dominance shift that is not
observed in wildtype controls; importantly, the Nogo-A mutant
mice phenocopy this result. Together, these data indicate that
ocular dominance plasticity is extended beyond development
in the absence of NgR/Nogo-A signaling between neurons and
myelinating oligodendrocytes (McGee et al., 2005). Of note, while
NgR signaling regulates structural remodeling of neurons following
injury (GrandPré et al., 2002; Kim et al., 2003), NgR signaling
appears to limit developmental plasticity through timing PV cell
maturation and E/I balance (Stephany et al., 2016). Thus, immature
oligodendrocytes (e.g., OPCs, see section “2.3. Axonal remodeling”)
promote critical period plasticity (Figure 1D), whereas myelinating
oligodendrocytes are key regulators of critical period closure
(Figure 1C). As neural activity can drive OPC differentiation
and myelination (Hill et al., 2014; Monje, 2018), neurons and
developing oligodendrocytes reciprocally communicate to set
critical period closure.

4. Discussion

Development is an especially important time in an animal’s
life. Social, emotional, and environmental experiences during
key developmental critical periods have dramatic and long-
lasting consequences to brain function. Thus, understanding the
mechanisms that set critical period timing will impact how
we understand human behavior and disease. It is increasingly
clear that diverse glial types (OPCs, oligodendrocytes, astrocytes,
and microglia) shape both the expression and timing of neural

plasticity. In other words, neurons may be the musicians, but glia
may very well be in the conductor’s seat.
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