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Linking temporal coordination of
hippocampal activity to memory
function

Guillaume Etter*†, James E. Carmichael† and Sylvain Williams*

Department of Psychiatry, Douglas Mental Health Research Institute, McGill University, Montreal, QC,

Canada

Oscillations in neural activity are widespread throughout the brain and can

be observed at the population level through the local field potential. These

rhythmic patterns are associated with cycles of excitability and are thought to

coordinate networks of neurons, in turn facilitating e�ective communication

both within local circuits and across brain regions. In the hippocampus, theta

rhythms (4–12 Hz) could contribute to several key physiological mechanisms

including long-range synchrony, plasticity, and at the behavioral scale, support

memory encoding and retrieval. While neurons in the hippocampus appear to be

temporally coordinated by theta oscillations, they also tend to fire in sequences

that are developmentally preconfigured. Although loss of theta rhythmicity impairs

memory, these sequences of spatiotemporal representations persist in conditions

of altered hippocampal oscillations. The focus of this review is to disentangle

the relative contribution of hippocampal oscillations from single-neuron activity

in learning and memory. We first review cellular, anatomical, and physiological

mechanisms underlying the generation andmaintenance of hippocampal rhythms

and how they contribute to memory function. We propose candidate hypotheses

for how septohippocampal oscillations could support memory function while

not contributing directly to hippocampal sequences. In particular, we explore

how theta rhythms could coordinate the integration of upstream signals in the

hippocampus to form future decisions, the relevance of such integration to

downstream regions, as well as setting the stage for behavioral timescale synaptic

plasticity. Finally, we leverage stimulation-based treatment in Alzheimer’s disease

conditions as an opportunity to assess the su�ciency of hippocampal oscillations

for memory function.
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Introduction

One of the most striking features of the hippocampus is its role in encoding and
retrieving recent experiences (Scoville andMilner, 1957), providing downstream neocortical
circuits with highly associative and context-relevant information (Maviel et al., 2004;
Frankland and Bontempi, 2005). In humans, the hippocampus is necessary to imagine
the future (Hassabis et al., 2007; Buckner, 2010; Squire et al., 2010; Robinson and
Brandon, 2021). This function may be critical in planning actions and learning to
predict future outcomes (Keller and Mrsic-Flogel, 2018; Barron et al., 2020; Momennejad,
2020). Neurons in the hippocampus fire in response to task-dependent variables, and in
particular spatiotemporal features during active navigation (O’Keefe and Dostrovsky, 1971;
Eichenbaum, 2014). The activity of those neurons is organized temporally with respect to
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oscillations in the theta frequency band (4–12 Hz; Figure 1A)
recorded in the local field potential (Buzski et al., 1983; Buzsáki,
2002), which have been described in most mammals (Arnolds
et al., 1980; Tesche and Karhu, 2000; Bódizs et al., 2001; Buzsáki,
2002) including humans (Bohbot et al., 2017; Rudoler et al.,
2023). These oscillations reflect the sum of transmembrane synaptic
currents that synchronize most prominently in the theta frequency
band (Buzsáki and Wang, 2012). Although theta oscillations have
been proposed to support working memory (Hasselmo, 2005;
Fuentemilla et al., 2010; Lisman, 2010) and offline memory
consolidation (Poe et al., 2000; Ognjanovski et al., 2014, 2018; Boyce
et al., 2016; de Almeida-Filho et al., 2021) the exact underlying
mechanisms remain unknown. Neurons in the hippocampus
represent past, present, and multiple future trajectories which are
segmented in time by individual theta cycles (Johnson and Redish,
2007; Gupta et al., 2012; Wikenheiser and Redish, 2015a; Kay et al.,
2020; Zheng et al., 2021). These representations are contingent on
salient cues in the environment and may be essential for updating
decisions during memory retrieval. Yet, recent data suggest that
such representations can be dissociated from local field potential
oscillations and memory performance (Petersen and Buzsáki, 2020;
Etter et al., 2023) (Figure 1B). This dissociation between the distinct
roles of theta oscillations and hippocampal representations in
memory is particularly puzzling and will be the focus of this review.

Here, we will first cover landmark studies that established
the mechanisms underlying the generation of theta rhythms
before reviewing the effects of experimentally disrupting theta on
aspects of memory and hippocampal representations. We then
explore potential mechanisms that could underlie the disruption
of memory encoding, maintenance, and retrieval when controling
theta oscillations in spite of hippocampal representations persisting
in those conditions. In particular, we look into how theta
could coordinate incoming signals to regulate the activity of
hippocampal neurons, the implications for downstream regions,
and how the interplay between theta rhythms and hard-wired
sequential activities could contribute to behavioral timescale
synaptic plasticity (Figure 1C).

Mechanisms for the generation and
maintenance of theta rhythms

The generation and maintenance of hippocampal theta
rhythms involve local network interactions as well as external
inputs from the medial septum and entorhinal cortex (Figure 2A).
In the local hippocampal circuit, theta oscillations can emerge in
the absence of external inputs (Goutagny et al., 2009) and rely
primarily on interactions between parvalbumin (PV) inhibitory
interneurons and excitatory pyramidal cells (Amilhon et al., 2015).
Although the hippocampus can oscillate ex vivo in the absence
of external inputs, lesion or inactivation of neurons in the medial
septum lead to a major reduction of theta rhythms in vivo (Boyce
et al., 2016). This indicates that the medial septum, which provides
the main extra-cortical inputs to the hippocampus, contributes to
theta oscillations through its interactions with local hippocampal
circuits (Rawlins et al., 1979; Mizumori et al., 1990; Jeffery et al.,
1995). In vivo, neurons in the medial septum fire at theta frequency
and this activity likely contributes to driving hippocampal theta

rhythms (Freund and Antal, 1988; Paulsen and Moser, 1998;
Paulsen and Sejnowski, 2000). While this suggests that the medial
septum could act as a pacemaker of hippocampal theta oscillations
(Sotty et al., 2003), ex vivo recordings of isolated medial septum
neurons show that hippocamposeptal activity is capable of driving
theta rhythmicity in the medial septum (Manseau et al., 2008).

In addition to the hippocampus, the medial septum also
projects to the entorhinal cortex, the main cortical input to the
hippocampus. Surgical removal of the entorhinal cortex selectively
abolishes theta oscillations corresponding to entorhinal inputs
but spares CA1 theta in the proximity of the pyramidal cell
layer (Ylinen et al., 1995; Kamondi et al., 1998; Buzsáki, 2002).
Altogether, these studies indicate that theta oscillations in the
hippocampus emerge through the interplay of local pacemakers
and external rhythmic drives including the medial septum.

Linking theta rhythms to memory
function by manipulating the medial
septum

Since theta oscillations have been proposed to play a major
role in memory function, and the medial septum is essential for
maintaining theta drive in vivo, a large body of work has focused
on establishing a relationship between manipulations of the medial
septum, theta physiology, and memory performance. While lesions
of the medial septum consistently disrupt or abolish hippocampal
theta oscillations (Winson, 1978; Rawlins et al., 1979; Mizumori
et al., 1990; Jeffery et al., 1995), targeted circuit manipulations of the
medial septum during specific phases of memory tasks have shown
a strong correlation between the loss or pacing of hippocampal
oscillations and impairments in memory encoding (Gemzik et al.,
2021; Quirk et al., 2021; Gonzalez et al., 2022), consolidation (Boyce
et al., 2016), reconsolidation (Radiske et al., 2020), and recall
(Pastalkova et al., 2008; Wang et al., 2015; Mouchati et al., 2020;
Gemzik et al., 2021; Etter et al., 2023) (summarized in Table 1,
see Müller and Remy, 2018 for review). Furthermore, stimulating
PV interneurons in the hippocampus at either the peak or trough
of theta enhanced memory encoding or retrieval, respectively,
depending on the stage of a memory task (Siegle andWilson, 2014),
suggesting that coordination between local hippocampal activities
and remote septal drive is necessary for memory function.

Although silencing the medial septum as a whole is a crucial
starting point in understanding the role of hippocampal oscillations
in memory, it should be noted that the medial septum contains
three major classes of neurons that have been categorized on
the basis of their neurochemical profiles: GABAergic, cholinergic,
and glutamatergic neurons (Figure 2B). Non-specific manipulation
of septal neurons could therefore lead to side effects due to
the confounding release of neuromodulators. In recent years,
optogenetic manipulation of targeted sub-populations of septal
neurons has shed light on their contribution to hippocampal theta
and memory.

Septal neurons that release the inhibitory neurotransmitter
GABA might be the most critical in driving hippocampal
rhythms. In addition to expressing the vesicular GABA transporter
(VGAT) which can be used to target these cells specifically
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FIGURE 1

Linking temporal coordination of hippocampal activity to memory function. (A) Most prominent hippocampal oscillations and their respective

frequency band. (B) Disruption of theta oscillations is associated with impaired memory performance, but preserved representations of space. This

dissociation prompts to question how theta oscillations contribute to memory function. (C) Main hypotheses for how theta oscillations could

contribute to memory function. Firstly, hippocampal theta could support the coordination of input signals from upstream regions. Secondly, theta

rhythms could contribute to timing hippocampal activities with respect to downstream regions. Lastly, theta oscillations could play an essential role

in the temporal coordination of plasticity events, and in particular behavioral timescale plasticity.

FIGURE 2

Generation and maintenance of theta oscillations in the septohippocampal system. (A) Schema of a coronal section from the mouse brain. Main

inputs to the hippocampus originate in the medial septum and entorhinal cortex. The medial septum also projects to the entorhinal cortex, and the

hippocampus sends sparse projections to both of these regions. The lateral septum is the most prominent subcortical output of the hippocampus,

and sends sparse feedback projections to the medial septum and other subcortical regions. (B) Detailed diagram of known connectivity between

neurochemically identified cell types in the septohippocampal system that are involved in theta oscillations. In particular, the interaction between

septal and hippocampal inhibitory neurons play an essential role in the generation and maintenance of theta oscillations.
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TABLE 1 Summary of septal and hippocampal manipulations, their e�ects on hippocampal oscillations and memory function.

Model Target Manip. θ γ W.M. Enc. Ret. Con. Note References

Mouse MS-PV opto.∼ ↑ ↓ Quirk et al., 2021

opto. ↑ ⊗ ↓ = ↓ Etter et al., 2023

opto.∼ ↑ ↓ ↓ ↓ Etter et al., 2023

MS-GABA opto. ↓ ↓ = ↓ REM Boyce et al., 2016

opto. ↓ ↓ = Yong et al., 2022

HC opto. ↑∼ = ↑ Rahsepar et al., 2022

HC-PV opto. ↑∼ ↑ ↑ ↑ ↑ Siegle and Wilson, 2014

pharm. ↓ ↓ ↓ Ognjanovski et al., 2017

opto. ↓ ↓ ↓ NREM Ognjanovski et al., 2018

opto. ↑ ↑ ↑ sleep dep. Ognjanovski et al., 2018

Rat MS Lesion ⊗ ↓ Winson, 1978

Lesion ⊗ ↓ learning Mitchell et al., 1982

Lesion ⊗ ↓ ↓ M’Harzi and Jarrard, 1992

pharm. ↓ ↓ ↓ ↓ Mizumori et al., 1990

pharm. ↓ ↓ ↓ McNaughton N. et al., 2006

elec. ↑∼ ↑ ↑ McNaughton N. et al., 2006

pharm. ↓ ↓ = ↓ Shirvalkar et al., 2010

elec. ↑ ↑ ↑ Shirvalkar et al., 2010

pharm. ↓ ↓ ↓ Wang et al., 2015

cool. ↓ ↓ Petersen and Buzsáki, 2020

opto. ↑∼ ↑ ↑ Blumberg et al., 2016

opto. ↑∼ = = = Mouchati et al., 2020

opto. ↓ ↓ = = ↓ ReCon. Radiske et al., 2020

pharm. ↓ ↓ ↓ Givens and Olton, 1990

pharm. ↓ ↓ ↓ = = Givens and Olton, 1994

pharm. ↓ ↓ ↓ ↓ Bolding et al., 2020

MS-GABA pharm. ↓ ↓ ↓ ↓ Bolding et al., 2020

pharm. ↑ ↓ ↓ ↓ Bolding et al., 2020

pharm. ↑ ↓ ↓ Givens and Olton, 1990

pharm. ↑ ↓ ↓ = = Givens and Olton, 1994

MS-Ach pharm. ↓ ↓ ↓ Givens and Olton, 1990

pharm. ↓ ↓ ↓ = = Givens and Olton, 1994

pharm. ↑ = = Givens and Olton, 1990

HC elec. ↑∼ ↑ ↓ Lipponen et al., 2012

θ theta; γ gamma; W.M., working memory; Enc., encoding; Ret., retrieval; Con., consolidation; ReCon., reconsolidation; MS, medial septum; HC, hippocampus; PV, parvalbumin; Ach,

acetylcholine; opto., optogenetic; elec., electrical; pharm., pharmacological; fnx, fornix; REM, rapid eye movement sleep; NREM, non-REM sleep; ↑ increased/excitation; ↓ decreased/inhibition;

⊗ abolished/scrambled;∼ pacing;= unaltered.

(Boyce et al., 2016), the majority of these neurons express the
calcium-binding protein parvalbumin (PV), which is typically
found in fast-spiking interneurons (Borhegyi et al., 2004). This
population of septal PV neurons targets interneurons in the
hippocampus (Freund and Antal, 1988) and entorhinal cortex
(Gonzalez-Sulser et al., 2014), a large portion of which also
expresses PV (Unal et al., 2015). Theta oscillations can be controlled
by this feedforward inhibitory circuit, and rhythmic optogenetic

activation of septal PV neurons effectively entrains hippocampal
oscillations (Bender et al., 2015; Zutshi et al., 2018; Etter et al.,
2019).

The medial septum also contains glutamatergic neurons that
specifically express the vesicular glutamate transporter VGlut2 and
make up approximately a quarter of all neurons in the region (Sotty
et al., 2003; Colom et al., 2005). Septal glutamatergic neurons are
largely connected with other septal sub-populations (GABAergic
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and cholinergic, which we will review next) and display rhythmic
activity in the theta band (Manseau et al., 2005). These neurons
exhibit diverse firing patterns (slow, fast, and bursting) and have
the potential for driving hippocampal neurons in the theta band
(Huh et al., 2010). While septal glutamatergic neurons may be
critical for spatial memory retrieval (Bott et al., 2022), this control
could depend on local interactions with PV neurons (Manseau
et al., 2005; Robinson et al., 2016) or by modulating CA3 and CA1
interneurons (Fuhrmann et al., 2015; Robinson et al., 2016).

Finally, the medial septum contains slow-firing neurons that
release the neuromodulator acetylcholine. These neurons represent
about two-thirds of septal projections to the hippocampus (Sotty
et al., 2003; Sun et al., 2014). Optogenetic stimulation of these
septal cholinergic neurons has a striking effect of blocking sharp-
wave ripples (Vandecasteele et al., 2014) and could have some
implications for spatial representations of hippocampal neurons
(Mamad et al., 2015). However, cholinergic neurons often co-
transmit GABA (Ren et al., 2011; Saunders et al., 2015; Takács
et al., 2018) as well as glutamate (Sotty et al., 2003; Allen et al.,
2006). Release of GABA was shown to be sufficient to inhibit
the expression of sharp-wave ripples (Takács et al., 2018), further
complicating the interpretation of specific manipulation of septal
cholinergic cells on memory. Although acetylcholine can modulate
the activity of hippocampal pyramidal neurons, they are not
believed to control theta oscillations directly (Dannenberg et al.,
2015). Acetylcholine has, on its own, many proposed functions
for memory which we will not discuss here (see Haam and
Yakel, 2017 for review). Nevertheless, it is worth mentioning that
this neuromodulator could play an important role in controlling
the flow of information between the hippocampus and the
entorhinal cortex and could be critical for segregating periods of
encoding and consolidation (Hasselmo et al., 1992; Hasselmo and
Giocomo, 2006; Lovett-Barron et al., 2014). In summary, while
both glutamatergic and cholinergic projections to the hippocampus
could control some aspects of memory function, the generation
and maintenance of theta rhythms specifically rely on the activity
of septal inhibitory neurons, either directly, or indirectly (through
local circuit interactions; Figure 2B).

The aforementioned studies show that controlling hippocampal
oscillations by way of septal manipulations can be complicated
by neurochemical heterogeneity. On the one hand, non-specific
activation of septal neurons could be associated with spurious
release of glutamate and acetylcholine in the hippocampus. On
the other hand, selectively silencing septal inhibitory neurons
could lead to altered excitatory/inhibitory balance in the
hippocampus. More recently, a further refinement in this type
of circuit manipulation has focused on altering the timing of
theta oscillations, instead of disrupting circuit activity. These
manipulations preserve septal drive and offer possible solutions
to study the specific contributions of hippocampal oscillations to
memory. A first approach has leveraged thermal cooling of the
medial septum, effectively slowing down septal activity and in
turn reducing hippocampal theta power and frequency (Petersen
and Buzsáki, 2020). In another study, optogenetic stimulations
of septal PV neurons were used to scramble or pace theta, but
not other oscillation frequencies (Etter et al., 2023). In both
studies, manipulating theta physiology led to memory defects, yet
the tuning of hippocampal neurons to spatiotemporal features

remained unaltered, providing a clear example of a dissociation
between theta, memory, and spatial tuning. Spatiotemporal coding
has long been proposed to serve as a substrate for memory
(Kentros et al., 2004; Eichenbaum, 2014; Moser et al., 2015; Lisman
et al., 2017), making this dissociation between hippocampal
representations and memory performance perplexing. In the
following sections, we will explore potential explanations for
this phenomenon and in particular why sequential activities of
hippocampal neurons can be uncoupled from theta oscillations.

Hippocampal sequences can occur in
the absence of external stimuli

A core property of hippocampal neurons is their propensity
to fire in sequences (Buzsáki and Tingley, 2018). On a behavioral
timescale (order of seconds), hippocampal sequences can be
described regardless of the underlying theta phase and can emerge
in the absence of external stimuli (Villette et al., 2015; Haimerl
et al., 2019), and typically take the form of relatively fast (∼10
Hz), bursting activity (Figure 3A). These activity patterns suggest
that the hippocampus uses a primordial neural syntax to represent
sequential information over behaviorally relevant periods of time
(typically on the order of seconds). Hippocampal sequences could
support path integration in the absence of cues (McNaughton et al.,
1996; McNaughton B. L. et al., 2006) and anchor to signals from
the external world, such as visual cues, when available (Muller
and Kubie, 1987; Gothard et al., 1996; Bourboulou et al., 2019).
Consistent with this idea of path integration using internally driven
self-motion information, hippocampal neurons can represent time
(Eichenbaum, 2014) or distance (Ravassard et al., 2013; Aghajan
et al., 2015; Etter et al., 2023). Similar sequential patterns are
present in hippocampal cells that encode the temporal relationship
between events (Manns et al., 2007; Pastalkova et al., 2008;
MacDonald et al., 2011). Beyond spatiotemporal variables, recent
studies suggest that hippocampal neurons can encode broad, task-
specific abstract representations (Nieh et al., 2021). While early
interpretations of hippocampal representations have been related
to a “cognitive map” that registers the geometry of surroundings
(Tolman, 1948), more recent interpretations propose that the
hippocampus learns a predictive map instead (Stachenfeld et al.,
2017). This model, termed “successor representation,” originates
in reinforcement learning (Dayan, 1993; Stachenfeld et al., 2014),
and proposes that neurons in the hippocampus represent the
value of future states instead of pure spatial locations. This is
a reasonable framework as the activity of hippocampal neurons
tends not to represent the external world perfectly and instead
display activity patterns that are skewed toward their preferred
firing location over the course of learning (Mehta et al., 2000) and
biases toward rewarding locations (Ormond and O’Keefe, 2022).
A key takeaway from the successor representation model is that
hippocampal neurons could be involved in predicting future states,
which would be particularly relevant for making decisions, to
overcome obstacles, or reach goals. Interpreting sequences in the
context of successor representations would imply that the value of
future states is constantly being evaluated during each theta cycle.
The idea that hippocampal neurons might represent future states is
further supported by theta sequences and phase-precession.
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FIGURE 3

Role of theta and gamma oscillation in coordinating hippocampal sequences into distinct cell assemblies. (A) Hippocampal sequences can be

expressed in either sub-second, compressed regimes (o	ine, during sharp-wave ripples or online, in theta sequences) and, when considering faster

firing frequencies, on a behavioral timescale as animals explore environments. (B) Spatial representations of hippocampal neurons and their position

within sequential activities are predominantly determined by connectivity which can be traced back to neuronal birth dates. (C) Example raw local

field potential trace (black) and corresponding theta (green) and gamma oscillations (orange), which are nest within individual theta cycles. (D)

Gamma waves further segregate hippocampal sequences into distinct neuronal assemblies, with preferential phase-frequency coupling patterns.

Theta sequences support real-time
decision-making during memory
retrieval

Sequences in the hippocampus can also occur on the scale

of milliseconds, and are referred to as “theta sequences” because

they are compressed within distinct theta cycles (Skaggs and

McNaughton, 1996; Lee and Wilson, 2002; Harris et al., 2003; Diba
and Buzsáki, 2007; Pfeiffer and Foster, 2013). While hippocampal

place cells tend to burst in their preferred state (“place field”), the

activity of other neurons within a theta sequence typically involves

single, or a few action potentials and represent past or future states
(Dragoi and Buzsáki, 2006; Lisman and Redish, 2009; Figure 3A).
Unlike the aforementioned place-cell sequences, these rapid theta-
sequences are directly related to the phase of theta, which shift
over the course of behavior, a phenomenon referred to as “phase-
precession” (O’Keefe and Recce, 1993; Skaggs et al., 1996; Jones and
Wilson, 2005; Hafting et al., 2008; van der Meer and Redish, 2011).
Additionally, some neurons could represent future possibilities
across multiple theta cycles. These neurons, commonly referred to
as “splitter cells,” could play a critical role in active inference and
decisionmaking (Wood et al., 2000; Ferbinteanu and Shapiro, 2003;
Grieves et al., 2016; Duvelle et al., 2023). Given that single action
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potentials alone are less likely to trigger long-lasting plasticity
events by integrating pre-synaptic inputs when compared to bursts
(Naud et al., 2022, 2023), sub-second theta sequences could mainly
be involved in real-time decision-making during memory retrieval.
While the exact role of phase-precession remains to be clearly
established, theta sequences can display distinct prospective (ahead
of current location) and retrospective (behind) phases, the balance
of which depends on behavioral states (Wikenheiser and Redish,
2013) and appears to bias toward behaviorally salient features of
the environment or outcomes of decisions (Johnson and Redish,
2007; Gupta et al., 2012; Wikenheiser and Redish, 2015a,b; Kay
et al., 2020; Zheng et al., 2021). Sequences representing possible
trajectories can be active on alternating theta cycles, a phenomenon
called “cycle skipping” (Johnson and Redish, 2007; Kay et al., 2020)
which may serve to functionally segregate ensembles within the
hippocampus and in downstream regions (Tang et al., 2021). This
idea suggests that while sequences could be driven by internal
signals, disruptions of theta could in turn cause a mismatch
between the ongoing phase or cycle of theta and the timing of
neural activities representing possible future states.

If theta rhythms provide a means of segregating multiple
representations in time, shifting theta outside of the optimal
frequency would result in altered ensemble activity, leading to
inaccurate representations and poor memory performance. Septal
inactivations that reduce or abolish theta rhythms reliably impair
spatial working memory (Table 1) and disrupt theta sequences
(Wang et al., 2015), however manipulating the timing of septal
and hippocampal activity may offer insights into the specific
role of the theta rhythm in ensemble coordination. Pacing the
septum and hippocampus within the theta band can enhance or
restore workingmemory performance (McNaughtonN. et al., 2006;
Shirvalkar et al., 2010; Siegle and Wilson, 2014 but see Etter et al.,
2023) while shifting septal activity outside of the endogenous theta
range results in memory impairments (Quirk et al., 2021; Etter
et al., 2023). Slowing septal drive also produces general working
memory impairments which coincide with less compressed theta
sequences (Petersen and Buzsáki, 2020). Even with intact theta
oscillations, errors during memory recall can be associated with
lower theta sequence compression and an underestimation of
distances to rewards (Zheng et al., 2021). These less compressed
sequences suggest that the disagreement between hippocampal
representations of future states and the ongoing theta rhythms
may underlie retrieval impairments. Removing septal rhythmicity
appears to only impair memory recall during both episodic
and working memory (Etter et al., 2023), while experimentally
increasing theta frequency has been reported to selectively impair
memory encoding only (Quirk et al., 2021).

O	ine, time-compressed sequences
reflect preconfigured connectivity

In addition to place cell sequences that occur on a behavioral
timescale, and theta sequences that occur on a sub-second
timescale, time-compressed sequences can also be expressed
offline, beyond periods of active exploration (Figure 3A). These
sequences typically coincide with sharp-wave ripples, which are
high-frequency oscillations (∼200 Hz) that can be recorded in

the close proximity of hippocampal pyramidal neurons during
quiet wakefulness and non-REM sleep (Wikenheiser and Redish,
2015a; Figure 1A). Having been extensively described (see Buzsáki,
1996, 2015; Liu et al., 2022 for reviews), we will not cover sharp-
wave ripple sequences in detail here. It should be noted, however,
that the sequential activity of neurons during sharp-wave ripples
could reflect some preconfigured connectivity between neuronal
ensembles (Huszár et al., 2022). One particular observation
supports this idea: while time-compressed sequences have long
been thought to represent previous experiences (Foster andWilson,
2006), sequences of place cells appear to exist prior to a novel
experience (Dragoi and Tonegawa, 2011; Farooq and Dragoi,
2019) (although challenged by Silva et al., 2015) suggesting that
hippocampal sequences may be—at least in part—dictated by
developmental priors.

Role of structural priors on
hippocampal sequences

Given the emergence of online and offline sequences in
the hippocampus prior to, or even without receiving sensory
information (Dragoi and Tonegawa, 2011; Ólafsdóttir et al.,
2015; Villette et al., 2015; Farooq and Dragoi, 2019) there
would need to be inherent biases within the hippocampus that
would predetermine how new sensory information would be
indexed by an existing sequence. This idea is consistent with
the fact that the embryonic “birthday” of neurons dictates their
topographical location across the septotemporal and radial axes
of the hippocampus, which in turn will bias the genetic profile,
physiology, connectivity, and representations of space across
neurons (Bayer, 1980; Lein et al., 2007; Henriksen et al., 2010;
Mizuseki et al., 2011; Valero et al., 2015; Cembrowski et al.,
2016; Danielson et al., 2016; English et al., 2017; Masurkar
et al., 2017, 2020; Cossart and Khazipov, 2022). In agreement
with this idea, neurons born around the same time tend to fire
simultaneously within theta cycles and sharp-wave ripples across
the sleep/wake cycle, have overlapping spatial representations
across environments, and are more likely to belong to the same
cell assembly (Huszár et al., 2022; Figure 3B). Strikingly, these
structural priors provide a convincing explanation as to why
artificially inducing place fields tend to bias onto pre-existing
networks in CA1 (McKenzie et al., 2021). These structural priors
could also explain why in pathological conditions including
Alzheimer’s disease, hippocampal sequences can become rigid and
not update across environments compared to healthy controls
(Cheng and Ji, 2013). Interestingly, theta sequences are resilient
to septal inactivation when environmental cues are rich but lose
stability when cues are limited, suggesting that the septal theta
drive may provide a mechanism for maintaining internal priors
in the face of uncertainty (Wang et al., 2016). The idea that
at least a portion of hippocampal representations are dictated
by developmental priors provides some explanation as to why
they can persist in the absence of theta coordination. In this
context, how disrupting theta can cause memory impairments
remains a critical question. In the following section, we provide
an interpretation based on the idea of coordinating pre-synaptic
inputs in memory tasks.

Frontiers inCellularNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncel.2023.1233849
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Etter et al. 10.3389/fncel.2023.1233849

Gamma oscillations could facilitate
communication between presynaptic
regions and hippocampal cell
assemblies

In addition to containing distinct cell assemblies, theta cycles
also include nested gamma oscillations, which are fast rhythms
within the∼30–150 Hz range (Fries, 2009; Colgin andMoser, 2010;
Buzsáki andWang, 2012; Lisman and Jensen, 2013; Figure 1A) and
tend to occur in short bursts (Belluscio et al., 2012; Figure 3C).
Similarly to theta, gamma oscillations result from interactions
between inhibitory and excitatory neurons (Wulff et al., 2009).
Several computational models propose mechanisms of interactions
between excitatory and inhibitory neurons in the generation of
these oscillations (Tiesinga et al., 2001; Tiesinga and Sejnowski,
2009; Aussel et al., 2018). In contrast to theta rhythms, gamma
waves would involve localized oscillators and smaller populations
of neurons (Csicsvari et al., 2003), leading to the idea of specialized
microcircuits (Hasenstaub et al., 2005) that could co-exist on
top of the slower network oscillations. Gamma rhythms can also
emerge in isolated hippocampal in vitro preparations (Jackson
et al., 2011), and optogenetic frequency scrambling of septal PV
neurons specifically disrupts hippocampal theta, but not gamma
oscillations, further supporting the idea of localized gamma
generators rather than a direct result of septal drive (Etter et al.,
2023). Previously, oscillations in the gamma band have been
classified by their peak frequency, and preferred theta phase (Lopes-
dos Santos et al., 2018; Zhang et al., 2019, see Aguilera et al., 2022;
Fernandez-Ruiz et al., 2023 for review). Distinct cell assemblies fire
in sequences that tend to associate to different gamma oscillations
(Zheng et al., 2016), with theta sequences being more reliably
expressed during slow gamma waves (Guardamagna et al., 2023)
(Figure 3D). While this segregation of gamma oscillations into a set
of few distinct classes could be the result of averaging over many
theta cycles, it is noteworthy that gamma oscillations can take any
frequency on a given theta cycle (Douchamps et al., 2022).

Gamma-based coherence has been a prominent model for
communication across the hippocampal-entorhinal circuit and has
classically focused on slow and fast gamma oscillations originating
in CA3 and medial entorhinal cortex, respectively. These two
distinct gammas are then hypothesized to be integrated into
hippocampal CA1 with theta oscillations on a cycle-to-cycle
basis (Colgin et al., 2009; Schomburg et al., 2014). This would
suggest that theta oscillations in CA1 could serve to partition
temporal windows that enable the integration of inputs from
these upstream regions using alternating gamma waves (Vinck
et al., 2023). However, these models have largely been based on
correlations between shifting CA3 and medial entorhinal cortex
to CA1 coherence in theta and gamma bands. In vivo, excitatory
inputs from the entorhinal cortex to the dentate gyrus are most
coherent in the theta band, while gamma oscillations would be
generated locally from presumed local inhibitory inputs (Pernía-
Andrade and Jonas, 2014). This predominance of theta over gamma
coherence has also been reported between hippocampal CA1 and
the medial entorhinal cortex (Zhou et al., 2022). Another potential
pitfall in the communication-through-coherence hypothesis is that

theta oscillations harmonics could overlap with higher frequency
bands (Czurkó et al., 1999; Terrazas et al., 2005) including slow
gamma (Petersen and Buzsáki, 2020). The asymmetry of theta
oscillations (Belluscio et al., 2012) can lead to harmonics that
extend into the slow gamma range (Scheffer-Teixeira and Tort,
2016), which may lead to a misattribution as to the origin of
slow-gamma coherence and the degree of spike modulation in the
gamma range during movement (Zhou et al., 2019).

Recently, circuit manipulations of the entorhinal cortex suggest
that the lateral and medial subregions provide a mechanism to
engage specific downstream cell assemblies through slow- or fast-
gamma band timing during specific behaviors (Fernández-Ruiz
et al., 2021). Gamma-range communication would be fast, on
the orders of tens of milliseconds, yet communication across the
hippocampus is much slower at roughly half a theta cycle (∼60 ms)
(Mizuseki et al., 2009). Under themodel proposed byMizuseki et al.
(2009), computations within regions can occur at faster (gamma)
timescales while inter-regional communication would occur at the
slower theta scale. In this case a loss of theta would effectively
break an essential communication channel while preserving other
oscillations, a hypothesis supported by scrambling septal theta
(Etter et al., 2023). Gamma oscillations still offer a mechanism for
entraining specific cell assemblies within a region. CA1 dendrites
can act as band-pass filters effectively down-sampling gamma range
inputs to the theta timescale (Vaidya and Johnston, 2013), but
such mechanisms may still allow for the functional segregation of
specific cell assemblies by the phase of theta may still be essential
for updating representations in downstream readers (Zutshi et al.,
2022), albeit at a slower timescale.

Despite the limitations of gamma communication hypotheses
in the hippocampal-entorhinal circuit, it has been proposed
that distinct memory functions (encoding vs. retrieval) could be
segregated along phases of the theta rhythm and its nested gamma
oscillations (Hasselmo and Stern, 2014; Colgin, 2016). Because
of its auto-associative properties and role in pattern completion,
CA3 would provide signals necessary for memory retrieval during
periods of slow (∼40 Hz) gamma. In contrast, the entorhinal cortex
would provide signals during memory encoding during periods
of faster (∼80 Hz) gamma (Colgin, 2015a,b). Experimentally,
theta phase-specific activation of interneurons during either the
encoding or retrieval phase of a memory task produced a small
but significant enhancement in performance (Siegle and Wilson,
2014) in line with segmentation models (Hasselmo et al., 2002;
Colgin and Moser, 2010; Hasselmo and Stern, 2014). Additionally,
slow, but not fast gamma was shown to be recruited at times
where memory retrieval is most useful in an avoidance task
(Dvorak et al., 2018). Analogous to the aforementioned splitter
cells that could represent distinct decisions on individual theta
cycles, the idea that distinct gamma oscillations and associated
cell assemblies are recruited on separate theta cycles suggests
that hippocampal theta oscillations could be computationally
useful for segregating and integrating past experiences and future
decisions. In summary, hippocampal sequences are at least partly
determined by developmental priors, represent past and multiple
future states, and coordinate ensemble activity via local gamma
oscillations and inter-regional theta rhythms. Consequently, one
possible interpretation of the dissociation between hippocampal
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theta, representations, and memory is that under impaired theta
conditions, sequences representing two different trajectories could
overlap and confound decision-making (Figure 4).

Relevance of hippocampal theta for
downstream regions

Given that neural computations are highly compositional and
increase in complexity and abstraction with every hierarchical level
(Hubel andWiesel, 1962;Moser et al., 2008), hippocampal activities
are also relevant in the context of how downstream neurons
integrate such signals (Buzsáki and Tingley, 2018). The lateral
septum is the most prominent subcortical target of hippocampal
projections (Risold and Swanson, 1996; Figure 2A) and contains
GABAergic cells that display conjunctive tuning to spatial and self-
motion signals (including speed, acceleration, and head direction)
similar to CA1 and CA3 pyramidal neurons (Wirtshafter and
Wilson, 2019; Veldt et al., 2021). Additionally, the timing of action
potentials of lateral septum neurons is locked to specific theta
phases at different positions in space, such that the position of the
animal can be accurately decoded by the phase at which lateral
septum neurons fire (Tingley and Buzsáki, 2018). Furthermore,
the functional connectivity between CA3/CA1 and lateral septum
(as measured by theta coherence, theta-gamma coupling, and cell
assembly strength) shifts from a CA1 bias early on the track to CA3
at later positions andmay explain the phase preference of the lateral
septum readers. Altogether, these studies suggest that neurons in
the lateral septumnot only inherit hippocampal representations but
also leverage the phase of theta to encode spatial features during
active navigation and could be critical for memory retrieval. By
extension, one could infer that disruption of theta phase signals
would in turn disrupt lateral septum representations of space
that specifically depend on the phase of theta (Figure 5). In the
following section, we explore how theta rhythms and preconfigured
sequences could interact to trigger long-term synaptic plasticity
during active exploration and memory tasks.

Potential roles of theta oscillations in
behavioral timescale synaptic
plasticity during memory encoding

So far, we have reviewed the potential roles of theta rhythms
in memory retrieval, at inference time, from the perspectives
of regions that are either upstream or downstream from the
hippocampus. As mentioned earlier, retrieval of information
occurs on compressed timescales where hippocampal neurons
typically emit only a few action potentials within each theta
cycle, which are unlikely to trigger long-term plasticity between
hippocampal neurons and pre-synaptic regions. Since learning
and the acquisition of new information involves long-lasting
changes at the level of synapses that either strengthen or
weaken communication between neurons, understanding how
task-relevant information could be encoded in hippocampal
neurons of animals solving memory tasks during learning
is essential. While the physiological mechanisms of synaptic

plasticity have been well described in vitro, the mechanisms
through which theta oscillations could orchestrate plasticity
events in vivo and in real time during learning remain
to be defined.

A key signal for synaptic plasticity is the influx of postsynaptic
calcium through NMDA receptors and voltage-dependent calcium
channels (Lisman, 1989; Nevian and Sakmann, 2006; Graupner
and Brunel, 2010; Shouval et al., 2010). To this day, spike-timing-
dependent plasticity, which postulates that the precise timing
of pre- and post-synaptic activity underlies long-term synaptic
plasticity, has been a dominating in vitro stimulation protocol
(Markram et al., 1997; Sjöström et al., 2001). However, several
studies have since challenged the idea that spike-timing-dependent
plasticity can form in vivo on the basis that it requires a high
number of pairings that would be unrealistic for in vivo conditions,
where online learning occurs on short timescales, and in vitro

calcium concentrations typically tend to increase synaptic release
probabilities beyond physiological levels (Inglebert and Debanne,
2021; Chindemi et al., 2022). While the exact mechanisms of
plasticity remain unclear in vivo, place cells can emerge de novo

with only a few excitatory post-synaptic events (Bittner et al.,
2015). One mechanism that has been proposed to support this
form of behavioral timescale synaptic plasticity is the long-lasting
depolarization of post-synaptic neurons (on the order of seconds),
a phenomenon referred to as “plateau potentials.” This form of
plasticity necessitates pre-synaptic activity in vivo (Fan et al., 2023)
and can also be replicated experimentally by injecting intracellular
current to generate artificial plateau potentials in vitro (Bittner
et al., 2017). The main idea behind this form of plasticity is
that plateau potentials could enable dendrites to “memorize”
signals for a longer period of time and support the decoding of
temporal sequences (Hawkins and Ahmad, 2016), as demonstrated
experimentally (Branco et al., 2010) and with computational
models (Leugering et al., 2023).

Given that the ordering of hippocampal sequences is
predominantly determined during early post-natal stages and that
long-term plasticity can be triggered by only a few action potentials,
theta oscillations could play a pivotal role in coordinating these
two phenomena (sequences and plateau potentials). This is because
theta oscillations are not only observable in the extracellular field
potential, but also in intracellular compartments which directly
determines excitability, i.e., the degree to which a neuron can be
activated by presynaptic inputs. Such excitability varies through
time and across cellular compartments of pyramidal neurons
including the soma as well as basal and apical dendrites. Calcium
can accumulate specifically in apical dendrites (Yuste et al., 1994)
that receive prominent inputs from the entorhinal cortex, and
concomitant basal and apical activations can drive the generation
of plateau potentials reliably (Naud et al., 2023). While the exact
effects of theta oscillations on synaptic plasticity remain unclear in
vivo, in vitro stimulations in the theta band can induce synaptic
potentiation in a subpopulation of hippocampal neurons (Sammari
et al., 2022).

Taken together, these observations suggest that theta rhythms
could play a unique role in setting the stage for behavioral timescale
synaptic plasticity, and in turn memory encoding. Considering
that a single CA1 hippocampal neuron receives presynaptic
information about multiple locations on its dendrites (Sheffield
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FIGURE 4

Role of theta oscillation in coordinating inputs during decision making. Given that hippocampal sequences are—at least in part—preconfigured, and

that distinct states (each color corresponds to a state) can be represented on alternating theta cycles, disrupting theta oscillations could scramble

retrospective and/or prospective trajectories, and in turn impair memory retrieval.

FIGURE 5

Relevance of theta oscillations for downstream neurons. A single lateral septum neuron can integrate activities from many hippocampal place cells,

representing a wide array of states or locations. Lateral septum neurons express preferential activities in a specific location (here in light green), but

also encodes multiple spatial locations when considering the phase of hippocampal theta at which single action potentials are emitted. In

consequence, the disruption of theta oscillations could lead to the specific loss of phase-place information in lateral septum neurons.

and Dombeck, 2015, 2019), the ablation of theta rhythms could
prevent the formation of dendritic plateau potentials necessary for
the induction of synaptic plasticity. In these conditions, synaptic
inputs and existing sequences would remain unaltered, but the
recruitment of de novo place cell in existing sequences would be
prevented, ultimately disrupting the acquisition of new memories
(Figure 6).

Dissecting space, timing, and memory
in Alzheimer’s disease

So far, we have leveraged loss-of-function approaches to
assess the necessity of theta oscillation in memory. A common

phenotype in Alzheimer’s disease (AD) patients and animal models
is the loss of rhythmicity and cross-frequency coupling which
correlate with memory performance. Recently, gain-of-function
treatments in neuropathologies, especially in Alzheimer’s disease,
have focused on restoring network timing in the septohippocampal
circuit. AD interventions have attempted to entrain regions or
specific populations of neurons to biologically relevant rhythms. As
previously discussed, gamma oscillations in the hippocampus are
thought to be a marker of healthy circuit function which are linked
to specific sequence representations (Zheng et al., 2016). Gamma
oscillations are altered in AD patients as well as rodent models
(Nakazono et al., 2017; Mably and Colgin, 2018; Jun et al., 2020;
Casula et al., 2022) and are correlated with memory impairments
(Etter et al., 2019). Focal gamma-band stimulation of hippocampal
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FIGURE 6

Hippocampal theta oscillations contribute to behavioral timescale plasticity. Hippocampal neurons integrate information from pre-synaptic neurons

that represent a wide array of states, including spatial locations. In normal conditions, the timing of pre-synaptic inputs and oscillations of the

membrane potential could give rise to plateau potentials. In absence of theta oscillations, a mismatch between hard-wired sequences in

pre-synaptic inputs and rhythmic oscillations in the apical compartment could prevent the build-up of plateau potentials, ultimately precluding

plasticity, the recruitment of new cell in hippocampal sequences, and thus the encoding of new information.

PV cells has been shown to reduce amyloid beta plaques (Iaccarino
et al., 2016) and restore memory performance (Etter et al.,
2019) in a mouse model of AD that overexpress the amyloid
precursor protein (APP). Auditory and visual stimulation in the
gamma frequency has also been studied as a possible non-invasive
treatment option with early reports of network entrainment and
memory improvement (Clements-Cortes et al., 2016; Iaccarino
et al., 2016; McDermott et al., 2018; Jones et al., 2019; Martorell
et al., 2019; Adaikkan and Tsai, 2020). However, the efficacy of 40
Hz external light stimulation to entrain native gamma oscillations
and remove plaques has recently been called into question (Soula
et al., 2023). Nevertheless, optogenetic manipulations provide an
excellent opportunity to assess the sufficiency of hippocampal
oscillations in memory function and a promising avenue for
effective AD treatment (Li et al., 2022).

Coupling between theta and gamma rhythms is a reliable
biomarker for healthy hippocampal synchrony and memory in
both humans and rodents (Moretti et al., 2009; Tort et al., 2009;
Axmacher et al., 2010; Lisman and Jensen, 2013; Heusser et al.,
2016; Lega et al., 2016; Vivekananda et al., 2021). Altered theta-
gamma coupling strength has commonly been used as a predictor of
Alzheimer’s disease and has been reported in both APPmice as well
as hyperphosphorylated tau mouse models (Booth et al., 2016a,b;
Ahnaou et al., 2017; Mably et al., 2017; Mably and Colgin, 2018;
Etter et al., 2019; Jun et al., 2020; van den Berg et al., 2023). In an
APP AD mouse model altered theta-gamma coupling can emerge
before amyloid plaques and hyperphosphorelated tau proteins
(Goutagny et al., 2013). Additionally, memory impairments can
emerge in young APP mice before plaques accumulate (Francis
et al., 2012). These data suggest that altered network timing may
trigger a shift in excitation-inhibition balance that could underlie

subsequent pathological markers (Goutagny and Krantic, 2013).
As discussed above, effective communication in the hippocampus
would be best served through an interaction between local
ensemble dynamics within the gamma frequency band and the
broad theta dynamics. As such, a loss of theta-gamma coupling
would mark a failure in effective communication that is required
for updating CA1 representations. This raises the promise of
targeted early interventions to maintain healthy timing in at-risk
brain networks.

Finally, spatial disorientation (Henderson et al., 1989; Tu
et al., 2015) and impairments in navigation, which can manifest
before the onset of episodic memory loss (Allison et al., 2016),
are often overlooked features of preclinical and early onset
Alzheimer’s disease. Both APP and tau mouse AD models typically
display disrupted spatially tuning in grid and place cells in
conjunction with navigation or memory impairments (Cacucci
et al., 2008; Booth et al., 2016b; Fu et al., 2017; Jun et al.,
2020; Ying et al., 2022). Furthermore, AD mice also display
inflexible spatial tuning and rigid theta sequences (Cheng and Ji,
2013; Jun et al., 2020) across environments, suggesting that AD
model mice may not be able to update representations within
the hippocampus. While disruptions of spatial representations is
consistently associated with lower memory performance, the link
with theta power is unclear. On the one hand, reports differ in
the degree of altered theta power in AD conditions, while theta-
gamma coupling is more consistently impaired in such conditions
(Booth et al., 2016a,b; Ahnaou et al., 2017; Tanninen et al., 2017;
Jun et al., 2020; Ying et al., 2022; van den Berg et al., 2023).
Together these studies highlight a correlation between spatial
tuning and memory, but the functional role of theta appears
to be more complicated as in most cases theta rhythms remain
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unaltered, suggesting that other mechanisms could be involved in
memory disruption.

Summary and perspectives

While hippocampal theta oscillations are essential for memory
function, the exact underlying mechanisms remain unclear. Here
we summarize landmark studies that defined the mechanisms
involved in the generation and maintenance of theta rhythms,
which are prominently controlled by medial septum interneurons.
This septohippocampal circuit has been specifically targeted to
control theta oscillations in health and disease. Importantly, recent
studies show that hippocampal theta rhythms and sequences
in neural activities can be dissociated. One key takeaway from
these studies is that, given the developmental structural priors of
hippocampal neurons, their activities with respect to each other
might not be relevant for memory function taken out of the
oscillatory context. Instead, the timing of those preconfigured
ensembles with respect to the phase of theta rhythms could be
critical for memory function.

In this review, we propose distinct roles for theta oscillations
in the retrieval and encoding of hippocampal-dependent memory.
When considering memory retrieval, we propose that theta and
gamma oscillations coordinate incoming presynaptic inputs from
upstream regions. In this context, disruption of theta rhythms
would significantly impact how downstream regions (including
the lateral septum) integrate spatiotemporal information. While
it was previously proposed that the lateral septum only encodes
spatial location through a hippocampal phase code, we propose
that this idea could be revised in the light of recent data showing
that lateral septum neurons display robust and stable tuning
to spatial locations. On the other hand, we also propose that
theta oscillations could contribute to the acquisition of novel
information during memory encoding. In particular, recent results
suggest that plasticity on a behavioral timescale necessitates plateau
potentials in the apical compartment of hippocampal pyramidal
neurons. Therefore, the timing of preconfigured sequences with
respect to the phase of intracellular oscillations would be key in
generating such plateau potentials, and in turn, enable learning of
new information. Previous work has highlighted the importance
of timing pre- and postsynaptic activities for learning. On the
other hand, other studies propose that neural oscillations could
play a central role in coordinating these pre- and postsynaptic
activities. Here we propose that understanding learning in vivo

requires a holistic view where one must jointly consider synaptic
plasticity dynamics, developmental priors in connectivity, as
well as oscillations in specific dendritic compartments. Taken
together, these hypotheses suggest that the precise coordination of
hippocampal neurons would not only be necessary for planning
future actions but could also play a key role in supporting plasticity
and in turn the recruitment of new neurons in hippocampal
sequences. In consequence, we propose testable hypotheses to
explain why the disruption of theta oscillations would lead to
impaired memory functions.When considering memory encoding,
we propose that the precise timing of pre-synaptic inputs and
dendritic theta oscillations is necessary for the build-up of
plateau potentials necessary to induce long-term potentiation. In

absence of these plateau potentials, we predict that pre-synaptic
inputs are unable to drive reliable post-synaptic activities and
trigger plasticity events. On the other hand, when considering
memory retrieval, we propose that the absence of physiological
theta could lead to overlap between hippocampal sequences
representing different decisions. In these conditions, memory
performance would decrease in spite of hippocampal sequences
persisting.

Testing these hypotheses experimentally will be key in defining
the exact roles of hippocampal theta oscillations in memory
function. Since oscillations are generated by the interaction
between distinct subpopulations of neurons, disentangling
synaptic release from oscillatory activities will be challenging.
Nevertheless, such advances will be valuable since manipulations
of hippocampal rhythms are already been used as a therapeutic
tool for Alzheimer’s disease, and would benefit from any
mechanistic refinement.
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